// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2015, 2016 ARM Ltd. */ #include <linux/uaccess.h> #include <linux/interrupt.h> #include <linux/cpu.h> #include <linux/kvm_host.h> #include <kvm/arm_vgic.h> #include <asm/kvm_emulate.h> #include <asm/kvm_mmu.h> #include "vgic.h" /* * Initialization rules: there are multiple stages to the vgic * initialization, both for the distributor and the CPU interfaces. The basic * idea is that even though the VGIC is not functional or not requested from * user space, the critical path of the run loop can still call VGIC functions * that just won't do anything, without them having to check additional * initialization flags to ensure they don't look at uninitialized data * structures. * * Distributor: * * - kvm_vgic_early_init(): initialization of static data that doesn't * depend on any sizing information or emulation type. No allocation * is allowed there. * * - vgic_init(): allocation and initialization of the generic data * structures that depend on sizing information (number of CPUs, * number of interrupts). Also initializes the vcpu specific data * structures. Can be executed lazily for GICv2. * * CPU Interface: * * - kvm_vgic_vcpu_init(): initialization of static data that * doesn't depend on any sizing information or emulation type. No * allocation is allowed there. */ /* EARLY INIT */ /** * kvm_vgic_early_init() - Initialize static VGIC VCPU data structures * @kvm: The VM whose VGIC districutor should be initialized * * Only do initialization of static structures that don't require any * allocation or sizing information from userspace. vgic_init() called * kvm_vgic_dist_init() which takes care of the rest. */ void kvm_vgic_early_init(struct kvm *kvm) { struct vgic_dist *dist = &kvm->arch.vgic; INIT_LIST_HEAD(&dist->lpi_list_head); INIT_LIST_HEAD(&dist->lpi_translation_cache); raw_spin_lock_init(&dist->lpi_list_lock); } /* CREATION */ /** * kvm_vgic_create: triggered by the instantiation of the VGIC device by * user space, either through the legacy KVM_CREATE_IRQCHIP ioctl (v2 only) * or through the generic KVM_CREATE_DEVICE API ioctl. * irqchip_in_kernel() tells you if this function succeeded or not. * @kvm: kvm struct pointer * @type: KVM_DEV_TYPE_ARM_VGIC_V[23] */ int kvm_vgic_create(struct kvm *kvm, u32 type) { int i, ret; struct kvm_vcpu *vcpu; if (irqchip_in_kernel(kvm)) return -EEXIST; /* * This function is also called by the KVM_CREATE_IRQCHIP handler, * which had no chance yet to check the availability of the GICv2 * emulation. So check this here again. KVM_CREATE_DEVICE does * the proper checks already. */ if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && !kvm_vgic_global_state.can_emulate_gicv2) return -ENODEV; ret = -EBUSY; if (!lock_all_vcpus(kvm)) return ret; kvm_for_each_vcpu(i, vcpu, kvm) { if (vcpu->arch.has_run_once) goto out_unlock; } ret = 0; if (type == KVM_DEV_TYPE_ARM_VGIC_V2) kvm->arch.max_vcpus = VGIC_V2_MAX_CPUS; else kvm->arch.max_vcpus = VGIC_V3_MAX_CPUS; if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus) { ret = -E2BIG; goto out_unlock; } kvm->arch.vgic.in_kernel = true; kvm->arch.vgic.vgic_model = type; kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF; if (type == KVM_DEV_TYPE_ARM_VGIC_V2) kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF; else INIT_LIST_HEAD(&kvm->arch.vgic.rd_regions); out_unlock: unlock_all_vcpus(kvm); return ret; } /* INIT/DESTROY */ /** * kvm_vgic_dist_init: initialize the dist data structures * @kvm: kvm struct pointer * @nr_spis: number of spis, frozen by caller */ static int kvm_vgic_dist_init(struct kvm *kvm, unsigned int nr_spis) { struct vgic_dist *dist = &kvm->arch.vgic; struct kvm_vcpu *vcpu0 = kvm_get_vcpu(kvm, 0); int i; dist->spis = kcalloc(nr_spis, sizeof(struct vgic_irq), GFP_KERNEL); if (!dist->spis) return -ENOMEM; /* * In the following code we do not take the irq struct lock since * no other action on irq structs can happen while the VGIC is * not initialized yet: * If someone wants to inject an interrupt or does a MMIO access, we * require prior initialization in case of a virtual GICv3 or trigger * initialization when using a virtual GICv2. */ for (i = 0; i < nr_spis; i++) { struct vgic_irq *irq = &dist->spis[i]; irq->intid = i + VGIC_NR_PRIVATE_IRQS; INIT_LIST_HEAD(&irq->ap_list); raw_spin_lock_init(&irq->irq_lock); irq->vcpu = NULL; irq->target_vcpu = vcpu0; kref_init(&irq->refcount); switch (dist->vgic_model) { case KVM_DEV_TYPE_ARM_VGIC_V2: irq->targets = 0; irq->group = 0; break; case KVM_DEV_TYPE_ARM_VGIC_V3: irq->mpidr = 0; irq->group = 1; break; default: kfree(dist->spis); dist->spis = NULL; return -EINVAL; } } return 0; } /** * kvm_vgic_vcpu_init() - Initialize static VGIC VCPU data * structures and register VCPU-specific KVM iodevs * * @vcpu: pointer to the VCPU being created and initialized * * Only do initialization, but do not actually enable the * VGIC CPU interface */ int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu) { struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; struct vgic_dist *dist = &vcpu->kvm->arch.vgic; int ret = 0; int i; vgic_cpu->rd_iodev.base_addr = VGIC_ADDR_UNDEF; INIT_LIST_HEAD(&vgic_cpu->ap_list_head); raw_spin_lock_init(&vgic_cpu->ap_list_lock); atomic_set(&vgic_cpu->vgic_v3.its_vpe.vlpi_count, 0); /* * Enable and configure all SGIs to be edge-triggered and * configure all PPIs as level-triggered. */ for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) { struct vgic_irq *irq = &vgic_cpu->private_irqs[i]; INIT_LIST_HEAD(&irq->ap_list); raw_spin_lock_init(&irq->irq_lock); irq->intid = i; irq->vcpu = NULL; irq->target_vcpu = vcpu; kref_init(&irq->refcount); if (vgic_irq_is_sgi(i)) { /* SGIs */ irq->enabled = 1; irq->config = VGIC_CONFIG_EDGE; } else { /* PPIs */ irq->config = VGIC_CONFIG_LEVEL; } } if (!irqchip_in_kernel(vcpu->kvm)) return 0; /* * If we are creating a VCPU with a GICv3 we must also register the * KVM io device for the redistributor that belongs to this VCPU. */ if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) { mutex_lock(&vcpu->kvm->lock); ret = vgic_register_redist_iodev(vcpu); mutex_unlock(&vcpu->kvm->lock); } return ret; } static void kvm_vgic_vcpu_enable(struct kvm_vcpu *vcpu) { if (kvm_vgic_global_state.type == VGIC_V2) vgic_v2_enable(vcpu); else vgic_v3_enable(vcpu); } /* * vgic_init: allocates and initializes dist and vcpu data structures * depending on two dimensioning parameters: * - the number of spis * - the number of vcpus * The function is generally called when nr_spis has been explicitly set * by the guest through the KVM DEVICE API. If not nr_spis is set to 256. * vgic_initialized() returns true when this function has succeeded. * Must be called with kvm->lock held! */ int vgic_init(struct kvm *kvm) { struct vgic_dist *dist = &kvm->arch.vgic; struct kvm_vcpu *vcpu; int ret = 0, i, idx; if (vgic_initialized(kvm)) return 0; /* Are we also in the middle of creating a VCPU? */ if (kvm->created_vcpus != atomic_read(&kvm->online_vcpus)) return -EBUSY; /* freeze the number of spis */ if (!dist->nr_spis) dist->nr_spis = VGIC_NR_IRQS_LEGACY - VGIC_NR_PRIVATE_IRQS; ret = kvm_vgic_dist_init(kvm, dist->nr_spis); if (ret) goto out; /* Initialize groups on CPUs created before the VGIC type was known */ kvm_for_each_vcpu(idx, vcpu, kvm) { struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) { struct vgic_irq *irq = &vgic_cpu->private_irqs[i]; switch (dist->vgic_model) { case KVM_DEV_TYPE_ARM_VGIC_V3: irq->group = 1; irq->mpidr = kvm_vcpu_get_mpidr_aff(vcpu); break; case KVM_DEV_TYPE_ARM_VGIC_V2: irq->group = 0; irq->targets = 1U << idx; break; default: ret = -EINVAL; goto out; } } } if (vgic_has_its(kvm)) vgic_lpi_translation_cache_init(kvm); /* * If we have GICv4.1 enabled, unconditionnaly request enable the * v4 support so that we get HW-accelerated vSGIs. Otherwise, only * enable it if we present a virtual ITS to the guest. */ if (vgic_supports_direct_msis(kvm)) { ret = vgic_v4_init(kvm); if (ret) goto out; } kvm_for_each_vcpu(i, vcpu, kvm) kvm_vgic_vcpu_enable(vcpu); ret = kvm_vgic_setup_default_irq_routing(kvm); if (ret) goto out; vgic_debug_init(kvm); dist->implementation_rev = 2; dist->initialized = true; out: return ret; } static void kvm_vgic_dist_destroy(struct kvm *kvm) { struct vgic_dist *dist = &kvm->arch.vgic; struct vgic_redist_region *rdreg, *next; dist->ready = false; dist->initialized = false; kfree(dist->spis); dist->spis = NULL; dist->nr_spis = 0; dist->vgic_dist_base = VGIC_ADDR_UNDEF; if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) { list_for_each_entry_safe(rdreg, next, &dist->rd_regions, list) vgic_v3_free_redist_region(rdreg); INIT_LIST_HEAD(&dist->rd_regions); } else { dist->vgic_cpu_base = VGIC_ADDR_UNDEF; } if (vgic_has_its(kvm)) vgic_lpi_translation_cache_destroy(kvm); if (vgic_supports_direct_msis(kvm)) vgic_v4_teardown(kvm); } void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu) { struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; /* * Retire all pending LPIs on this vcpu anyway as we're * going to destroy it. */ vgic_flush_pending_lpis(vcpu); INIT_LIST_HEAD(&vgic_cpu->ap_list_head); if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) { vgic_unregister_redist_iodev(vcpu); vgic_cpu->rd_iodev.base_addr = VGIC_ADDR_UNDEF; } } /* To be called with kvm->lock held */ static void __kvm_vgic_destroy(struct kvm *kvm) { struct kvm_vcpu *vcpu; int i; vgic_debug_destroy(kvm); kvm_for_each_vcpu(i, vcpu, kvm) kvm_vgic_vcpu_destroy(vcpu); kvm_vgic_dist_destroy(kvm); } void kvm_vgic_destroy(struct kvm *kvm) { mutex_lock(&kvm->lock); __kvm_vgic_destroy(kvm); mutex_unlock(&kvm->lock); } /** * vgic_lazy_init: Lazy init is only allowed if the GIC exposed to the guest * is a GICv2. A GICv3 must be explicitly initialized by the guest using the * KVM_DEV_ARM_VGIC_GRP_CTRL KVM_DEVICE group. * @kvm: kvm struct pointer */ int vgic_lazy_init(struct kvm *kvm) { int ret = 0; if (unlikely(!vgic_initialized(kvm))) { /* * We only provide the automatic initialization of the VGIC * for the legacy case of a GICv2. Any other type must * be explicitly initialized once setup with the respective * KVM device call. */ if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2) return -EBUSY; mutex_lock(&kvm->lock); ret = vgic_init(kvm); mutex_unlock(&kvm->lock); } return ret; } /* RESOURCE MAPPING */ /** * Map the MMIO regions depending on the VGIC model exposed to the guest * called on the first VCPU run. * Also map the virtual CPU interface into the VM. * v2 calls vgic_init() if not already done. * v3 and derivatives return an error if the VGIC is not initialized. * vgic_ready() returns true if this function has succeeded. * @kvm: kvm struct pointer */ int kvm_vgic_map_resources(struct kvm *kvm) { struct vgic_dist *dist = &kvm->arch.vgic; int ret = 0; if (likely(vgic_ready(kvm))) return 0; mutex_lock(&kvm->lock); if (vgic_ready(kvm)) goto out; if (!irqchip_in_kernel(kvm)) goto out; if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2) ret = vgic_v2_map_resources(kvm); else ret = vgic_v3_map_resources(kvm); if (ret) __kvm_vgic_destroy(kvm); else dist->ready = true; out: mutex_unlock(&kvm->lock); return ret; } /* GENERIC PROBE */ static int vgic_init_cpu_starting(unsigned int cpu) { enable_percpu_irq(kvm_vgic_global_state.maint_irq, 0); return 0; } static int vgic_init_cpu_dying(unsigned int cpu) { disable_percpu_irq(kvm_vgic_global_state.maint_irq); return 0; } static irqreturn_t vgic_maintenance_handler(int irq, void *data) { /* * We cannot rely on the vgic maintenance interrupt to be * delivered synchronously. This means we can only use it to * exit the VM, and we perform the handling of EOIed * interrupts on the exit path (see vgic_fold_lr_state). */ return IRQ_HANDLED; } static struct gic_kvm_info *gic_kvm_info; void __init vgic_set_kvm_info(const struct gic_kvm_info *info) { BUG_ON(gic_kvm_info != NULL); gic_kvm_info = kmalloc(sizeof(*info), GFP_KERNEL); if (gic_kvm_info) *gic_kvm_info = *info; } /** * kvm_vgic_init_cpu_hardware - initialize the GIC VE hardware * * For a specific CPU, initialize the GIC VE hardware. */ void kvm_vgic_init_cpu_hardware(void) { BUG_ON(preemptible()); /* * We want to make sure the list registers start out clear so that we * only have the program the used registers. */ if (kvm_vgic_global_state.type == VGIC_V2) vgic_v2_init_lrs(); else kvm_call_hyp(__vgic_v3_init_lrs); } /** * kvm_vgic_hyp_init: populates the kvm_vgic_global_state variable * according to the host GIC model. Accordingly calls either * vgic_v2/v3_probe which registers the KVM_DEVICE that can be * instantiated by a guest later on . */ int kvm_vgic_hyp_init(void) { bool has_mask; int ret; if (!gic_kvm_info) return -ENODEV; has_mask = !gic_kvm_info->no_maint_irq_mask; if (has_mask && !gic_kvm_info->maint_irq) { kvm_err("No vgic maintenance irq\n"); return -ENXIO; } /* * If we get one of these oddball non-GICs, taint the kernel, * as we have no idea of how they *really* behave. */ if (gic_kvm_info->no_hw_deactivation) { kvm_info("Non-architectural vgic, tainting kernel\n"); add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); kvm_vgic_global_state.no_hw_deactivation = true; } switch (gic_kvm_info->type) { case GIC_V2: ret = vgic_v2_probe(gic_kvm_info); break; case GIC_V3: ret = vgic_v3_probe(gic_kvm_info); if (!ret) { static_branch_enable(&kvm_vgic_global_state.gicv3_cpuif); kvm_info("GIC system register CPU interface enabled\n"); } break; default: ret = -ENODEV; } kvm_vgic_global_state.maint_irq = gic_kvm_info->maint_irq; kfree(gic_kvm_info); gic_kvm_info = NULL; if (ret) return ret; if (!has_mask) return 0; ret = request_percpu_irq(kvm_vgic_global_state.maint_irq, vgic_maintenance_handler, "vgic", kvm_get_running_vcpus()); if (ret) { kvm_err("Cannot register interrupt %d\n", kvm_vgic_global_state.maint_irq); return ret; } ret = cpuhp_setup_state(CPUHP_AP_KVM_ARM_VGIC_INIT_STARTING, "kvm/arm/vgic:starting", vgic_init_cpu_starting, vgic_init_cpu_dying); if (ret) { kvm_err("Cannot register vgic CPU notifier\n"); goto out_free_irq; } kvm_info("vgic interrupt IRQ%d\n", kvm_vgic_global_state.maint_irq); return 0; out_free_irq: free_percpu_irq(kvm_vgic_global_state.maint_irq, kvm_get_running_vcpus()); return ret; }