// SPDX-License-Identifier: GPL-2.0-only /* * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility, * using the CPU's debug registers. * * Copyright (C) 2012 ARM Limited * Author: Will Deacon */ #define pr_fmt(fmt) "hw-breakpoint: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Breakpoint currently in use for each BRP. */ static DEFINE_PER_CPU(struct perf_event *, bp_on_reg[ARM_MAX_BRP]); /* Watchpoint currently in use for each WRP. */ static DEFINE_PER_CPU(struct perf_event *, wp_on_reg[ARM_MAX_WRP]); /* Currently stepping a per-CPU kernel breakpoint. */ static DEFINE_PER_CPU(int, stepping_kernel_bp); /* Number of BRP/WRP registers on this CPU. */ static int core_num_brps; static int core_num_wrps; int hw_breakpoint_slots(int type) { /* * We can be called early, so don't rely on * our static variables being initialised. */ switch (type) { case TYPE_INST: return get_num_brps(); case TYPE_DATA: return get_num_wrps(); default: pr_warn("unknown slot type: %d\n", type); return 0; } } #define READ_WB_REG_CASE(OFF, N, REG, VAL) \ case (OFF + N): \ AARCH64_DBG_READ(N, REG, VAL); \ break #define WRITE_WB_REG_CASE(OFF, N, REG, VAL) \ case (OFF + N): \ AARCH64_DBG_WRITE(N, REG, VAL); \ break #define GEN_READ_WB_REG_CASES(OFF, REG, VAL) \ READ_WB_REG_CASE(OFF, 0, REG, VAL); \ READ_WB_REG_CASE(OFF, 1, REG, VAL); \ READ_WB_REG_CASE(OFF, 2, REG, VAL); \ READ_WB_REG_CASE(OFF, 3, REG, VAL); \ READ_WB_REG_CASE(OFF, 4, REG, VAL); \ READ_WB_REG_CASE(OFF, 5, REG, VAL); \ READ_WB_REG_CASE(OFF, 6, REG, VAL); \ READ_WB_REG_CASE(OFF, 7, REG, VAL); \ READ_WB_REG_CASE(OFF, 8, REG, VAL); \ READ_WB_REG_CASE(OFF, 9, REG, VAL); \ READ_WB_REG_CASE(OFF, 10, REG, VAL); \ READ_WB_REG_CASE(OFF, 11, REG, VAL); \ READ_WB_REG_CASE(OFF, 12, REG, VAL); \ READ_WB_REG_CASE(OFF, 13, REG, VAL); \ READ_WB_REG_CASE(OFF, 14, REG, VAL); \ READ_WB_REG_CASE(OFF, 15, REG, VAL) #define GEN_WRITE_WB_REG_CASES(OFF, REG, VAL) \ WRITE_WB_REG_CASE(OFF, 0, REG, VAL); \ WRITE_WB_REG_CASE(OFF, 1, REG, VAL); \ WRITE_WB_REG_CASE(OFF, 2, REG, VAL); \ WRITE_WB_REG_CASE(OFF, 3, REG, VAL); \ WRITE_WB_REG_CASE(OFF, 4, REG, VAL); \ WRITE_WB_REG_CASE(OFF, 5, REG, VAL); \ WRITE_WB_REG_CASE(OFF, 6, REG, VAL); \ WRITE_WB_REG_CASE(OFF, 7, REG, VAL); \ WRITE_WB_REG_CASE(OFF, 8, REG, VAL); \ WRITE_WB_REG_CASE(OFF, 9, REG, VAL); \ WRITE_WB_REG_CASE(OFF, 10, REG, VAL); \ WRITE_WB_REG_CASE(OFF, 11, REG, VAL); \ WRITE_WB_REG_CASE(OFF, 12, REG, VAL); \ WRITE_WB_REG_CASE(OFF, 13, REG, VAL); \ WRITE_WB_REG_CASE(OFF, 14, REG, VAL); \ WRITE_WB_REG_CASE(OFF, 15, REG, VAL) static u64 read_wb_reg(int reg, int n) { u64 val = 0; switch (reg + n) { GEN_READ_WB_REG_CASES(AARCH64_DBG_REG_BVR, AARCH64_DBG_REG_NAME_BVR, val); GEN_READ_WB_REG_CASES(AARCH64_DBG_REG_BCR, AARCH64_DBG_REG_NAME_BCR, val); GEN_READ_WB_REG_CASES(AARCH64_DBG_REG_WVR, AARCH64_DBG_REG_NAME_WVR, val); GEN_READ_WB_REG_CASES(AARCH64_DBG_REG_WCR, AARCH64_DBG_REG_NAME_WCR, val); default: pr_warn("attempt to read from unknown breakpoint register %d\n", n); } return val; } NOKPROBE_SYMBOL(read_wb_reg); static void write_wb_reg(int reg, int n, u64 val) { switch (reg + n) { GEN_WRITE_WB_REG_CASES(AARCH64_DBG_REG_BVR, AARCH64_DBG_REG_NAME_BVR, val); GEN_WRITE_WB_REG_CASES(AARCH64_DBG_REG_BCR, AARCH64_DBG_REG_NAME_BCR, val); GEN_WRITE_WB_REG_CASES(AARCH64_DBG_REG_WVR, AARCH64_DBG_REG_NAME_WVR, val); GEN_WRITE_WB_REG_CASES(AARCH64_DBG_REG_WCR, AARCH64_DBG_REG_NAME_WCR, val); default: pr_warn("attempt to write to unknown breakpoint register %d\n", n); } isb(); } NOKPROBE_SYMBOL(write_wb_reg); /* * Convert a breakpoint privilege level to the corresponding exception * level. */ static enum dbg_active_el debug_exception_level(int privilege) { switch (privilege) { case AARCH64_BREAKPOINT_EL0: return DBG_ACTIVE_EL0; case AARCH64_BREAKPOINT_EL1: return DBG_ACTIVE_EL1; default: pr_warn("invalid breakpoint privilege level %d\n", privilege); return -EINVAL; } } NOKPROBE_SYMBOL(debug_exception_level); enum hw_breakpoint_ops { HW_BREAKPOINT_INSTALL, HW_BREAKPOINT_UNINSTALL, HW_BREAKPOINT_RESTORE }; static int is_compat_bp(struct perf_event *bp) { struct task_struct *tsk = bp->hw.target; /* * tsk can be NULL for per-cpu (non-ptrace) breakpoints. * In this case, use the native interface, since we don't have * the notion of a "compat CPU" and could end up relying on * deprecated behaviour if we use unaligned watchpoints in * AArch64 state. */ return tsk && is_compat_thread(task_thread_info(tsk)); } /** * hw_breakpoint_slot_setup - Find and setup a perf slot according to * operations * * @slots: pointer to array of slots * @max_slots: max number of slots * @bp: perf_event to setup * @ops: operation to be carried out on the slot * * Return: * slot index on success * -ENOSPC if no slot is available/matches * -EINVAL on wrong operations parameter */ static int hw_breakpoint_slot_setup(struct perf_event **slots, int max_slots, struct perf_event *bp, enum hw_breakpoint_ops ops) { int i; struct perf_event **slot; for (i = 0; i < max_slots; ++i) { slot = &slots[i]; switch (ops) { case HW_BREAKPOINT_INSTALL: if (!*slot) { *slot = bp; return i; } break; case HW_BREAKPOINT_UNINSTALL: if (*slot == bp) { *slot = NULL; return i; } break; case HW_BREAKPOINT_RESTORE: if (*slot == bp) return i; break; default: pr_warn_once("Unhandled hw breakpoint ops %d\n", ops); return -EINVAL; } } return -ENOSPC; } static int hw_breakpoint_control(struct perf_event *bp, enum hw_breakpoint_ops ops) { struct arch_hw_breakpoint *info = counter_arch_bp(bp); struct perf_event **slots; struct debug_info *debug_info = ¤t->thread.debug; int i, max_slots, ctrl_reg, val_reg, reg_enable; enum dbg_active_el dbg_el = debug_exception_level(info->ctrl.privilege); u32 ctrl; if (info->ctrl.type == ARM_BREAKPOINT_EXECUTE) { /* Breakpoint */ ctrl_reg = AARCH64_DBG_REG_BCR; val_reg = AARCH64_DBG_REG_BVR; slots = this_cpu_ptr(bp_on_reg); max_slots = core_num_brps; reg_enable = !debug_info->bps_disabled; } else { /* Watchpoint */ ctrl_reg = AARCH64_DBG_REG_WCR; val_reg = AARCH64_DBG_REG_WVR; slots = this_cpu_ptr(wp_on_reg); max_slots = core_num_wrps; reg_enable = !debug_info->wps_disabled; } i = hw_breakpoint_slot_setup(slots, max_slots, bp, ops); if (WARN_ONCE(i < 0, "Can't find any breakpoint slot")) return i; switch (ops) { case HW_BREAKPOINT_INSTALL: /* * Ensure debug monitors are enabled at the correct exception * level. */ enable_debug_monitors(dbg_el); fallthrough; case HW_BREAKPOINT_RESTORE: /* Setup the address register. */ write_wb_reg(val_reg, i, info->address); /* Setup the control register. */ ctrl = encode_ctrl_reg(info->ctrl); write_wb_reg(ctrl_reg, i, reg_enable ? ctrl | 0x1 : ctrl & ~0x1); break; case HW_BREAKPOINT_UNINSTALL: /* Reset the control register. */ write_wb_reg(ctrl_reg, i, 0); /* * Release the debug monitors for the correct exception * level. */ disable_debug_monitors(dbg_el); break; } return 0; } /* * Install a perf counter breakpoint. */ int arch_install_hw_breakpoint(struct perf_event *bp) { return hw_breakpoint_control(bp, HW_BREAKPOINT_INSTALL); } void arch_uninstall_hw_breakpoint(struct perf_event *bp) { hw_breakpoint_control(bp, HW_BREAKPOINT_UNINSTALL); } static int get_hbp_len(u8 hbp_len) { unsigned int len_in_bytes = 0; switch (hbp_len) { case ARM_BREAKPOINT_LEN_1: len_in_bytes = 1; break; case ARM_BREAKPOINT_LEN_2: len_in_bytes = 2; break; case ARM_BREAKPOINT_LEN_3: len_in_bytes = 3; break; case ARM_BREAKPOINT_LEN_4: len_in_bytes = 4; break; case ARM_BREAKPOINT_LEN_5: len_in_bytes = 5; break; case ARM_BREAKPOINT_LEN_6: len_in_bytes = 6; break; case ARM_BREAKPOINT_LEN_7: len_in_bytes = 7; break; case ARM_BREAKPOINT_LEN_8: len_in_bytes = 8; break; } return len_in_bytes; } /* * Check whether bp virtual address is in kernel space. */ int arch_check_bp_in_kernelspace(struct arch_hw_breakpoint *hw) { unsigned int len; unsigned long va; va = hw->address; len = get_hbp_len(hw->ctrl.len); return (va >= TASK_SIZE) && ((va + len - 1) >= TASK_SIZE); } /* * Extract generic type and length encodings from an arch_hw_breakpoint_ctrl. * Hopefully this will disappear when ptrace can bypass the conversion * to generic breakpoint descriptions. */ int arch_bp_generic_fields(struct arch_hw_breakpoint_ctrl ctrl, int *gen_len, int *gen_type, int *offset) { /* Type */ switch (ctrl.type) { case ARM_BREAKPOINT_EXECUTE: *gen_type = HW_BREAKPOINT_X; break; case ARM_BREAKPOINT_LOAD: *gen_type = HW_BREAKPOINT_R; break; case ARM_BREAKPOINT_STORE: *gen_type = HW_BREAKPOINT_W; break; case ARM_BREAKPOINT_LOAD | ARM_BREAKPOINT_STORE: *gen_type = HW_BREAKPOINT_RW; break; default: return -EINVAL; } if (!ctrl.len) return -EINVAL; *offset = __ffs(ctrl.len); /* Len */ switch (ctrl.len >> *offset) { case ARM_BREAKPOINT_LEN_1: *gen_len = HW_BREAKPOINT_LEN_1; break; case ARM_BREAKPOINT_LEN_2: *gen_len = HW_BREAKPOINT_LEN_2; break; case ARM_BREAKPOINT_LEN_3: *gen_len = HW_BREAKPOINT_LEN_3; break; case ARM_BREAKPOINT_LEN_4: *gen_len = HW_BREAKPOINT_LEN_4; break; case ARM_BREAKPOINT_LEN_5: *gen_len = HW_BREAKPOINT_LEN_5; break; case ARM_BREAKPOINT_LEN_6: *gen_len = HW_BREAKPOINT_LEN_6; break; case ARM_BREAKPOINT_LEN_7: *gen_len = HW_BREAKPOINT_LEN_7; break; case ARM_BREAKPOINT_LEN_8: *gen_len = HW_BREAKPOINT_LEN_8; break; default: return -EINVAL; } return 0; } /* * Construct an arch_hw_breakpoint from a perf_event. */ static int arch_build_bp_info(struct perf_event *bp, const struct perf_event_attr *attr, struct arch_hw_breakpoint *hw) { /* Type */ switch (attr->bp_type) { case HW_BREAKPOINT_X: hw->ctrl.type = ARM_BREAKPOINT_EXECUTE; break; case HW_BREAKPOINT_R: hw->ctrl.type = ARM_BREAKPOINT_LOAD; break; case HW_BREAKPOINT_W: hw->ctrl.type = ARM_BREAKPOINT_STORE; break; case HW_BREAKPOINT_RW: hw->ctrl.type = ARM_BREAKPOINT_LOAD | ARM_BREAKPOINT_STORE; break; default: return -EINVAL; } /* Len */ switch (attr->bp_len) { case HW_BREAKPOINT_LEN_1: hw->ctrl.len = ARM_BREAKPOINT_LEN_1; break; case HW_BREAKPOINT_LEN_2: hw->ctrl.len = ARM_BREAKPOINT_LEN_2; break; case HW_BREAKPOINT_LEN_3: hw->ctrl.len = ARM_BREAKPOINT_LEN_3; break; case HW_BREAKPOINT_LEN_4: hw->ctrl.len = ARM_BREAKPOINT_LEN_4; break; case HW_BREAKPOINT_LEN_5: hw->ctrl.len = ARM_BREAKPOINT_LEN_5; break; case HW_BREAKPOINT_LEN_6: hw->ctrl.len = ARM_BREAKPOINT_LEN_6; break; case HW_BREAKPOINT_LEN_7: hw->ctrl.len = ARM_BREAKPOINT_LEN_7; break; case HW_BREAKPOINT_LEN_8: hw->ctrl.len = ARM_BREAKPOINT_LEN_8; break; default: return -EINVAL; } /* * On AArch64, we only permit breakpoints of length 4, whereas * AArch32 also requires breakpoints of length 2 for Thumb. * Watchpoints can be of length 1, 2, 4 or 8 bytes. */ if (hw->ctrl.type == ARM_BREAKPOINT_EXECUTE) { if (is_compat_bp(bp)) { if (hw->ctrl.len != ARM_BREAKPOINT_LEN_2 && hw->ctrl.len != ARM_BREAKPOINT_LEN_4) return -EINVAL; } else if (hw->ctrl.len != ARM_BREAKPOINT_LEN_4) { /* * FIXME: Some tools (I'm looking at you perf) assume * that breakpoints should be sizeof(long). This * is nonsense. For now, we fix up the parameter * but we should probably return -EINVAL instead. */ hw->ctrl.len = ARM_BREAKPOINT_LEN_4; } } /* Address */ hw->address = attr->bp_addr; /* * Privilege * Note that we disallow combined EL0/EL1 breakpoints because * that would complicate the stepping code. */ if (arch_check_bp_in_kernelspace(hw)) hw->ctrl.privilege = AARCH64_BREAKPOINT_EL1; else hw->ctrl.privilege = AARCH64_BREAKPOINT_EL0; /* Enabled? */ hw->ctrl.enabled = !attr->disabled; return 0; } /* * Validate the arch-specific HW Breakpoint register settings. */ int hw_breakpoint_arch_parse(struct perf_event *bp, const struct perf_event_attr *attr, struct arch_hw_breakpoint *hw) { int ret; u64 alignment_mask, offset; /* Build the arch_hw_breakpoint. */ ret = arch_build_bp_info(bp, attr, hw); if (ret) return ret; /* * Check address alignment. * We don't do any clever alignment correction for watchpoints * because using 64-bit unaligned addresses is deprecated for * AArch64. * * AArch32 tasks expect some simple alignment fixups, so emulate * that here. */ if (is_compat_bp(bp)) { if (hw->ctrl.len == ARM_BREAKPOINT_LEN_8) alignment_mask = 0x7; else alignment_mask = 0x3; offset = hw->address & alignment_mask; switch (offset) { case 0: /* Aligned */ break; case 1: case 2: /* Allow halfword watchpoints and breakpoints. */ if (hw->ctrl.len == ARM_BREAKPOINT_LEN_2) break; fallthrough; case 3: /* Allow single byte watchpoint. */ if (hw->ctrl.len == ARM_BREAKPOINT_LEN_1) break; fallthrough; default: return -EINVAL; } } else { if (hw->ctrl.type == ARM_BREAKPOINT_EXECUTE) alignment_mask = 0x3; else alignment_mask = 0x7; offset = hw->address & alignment_mask; } hw->address &= ~alignment_mask; hw->ctrl.len <<= offset; /* * Disallow per-task kernel breakpoints since these would * complicate the stepping code. */ if (hw->ctrl.privilege == AARCH64_BREAKPOINT_EL1 && bp->hw.target) return -EINVAL; return 0; } /* * Enable/disable all of the breakpoints active at the specified * exception level at the register level. * This is used when single-stepping after a breakpoint exception. */ static void toggle_bp_registers(int reg, enum dbg_active_el el, int enable) { int i, max_slots, privilege; u32 ctrl; struct perf_event **slots; switch (reg) { case AARCH64_DBG_REG_BCR: slots = this_cpu_ptr(bp_on_reg); max_slots = core_num_brps; break; case AARCH64_DBG_REG_WCR: slots = this_cpu_ptr(wp_on_reg); max_slots = core_num_wrps; break; default: return; } for (i = 0; i < max_slots; ++i) { if (!slots[i]) continue; privilege = counter_arch_bp(slots[i])->ctrl.privilege; if (debug_exception_level(privilege) != el) continue; ctrl = read_wb_reg(reg, i); if (enable) ctrl |= 0x1; else ctrl &= ~0x1; write_wb_reg(reg, i, ctrl); } } NOKPROBE_SYMBOL(toggle_bp_registers); /* * Debug exception handlers. */ static int breakpoint_handler(unsigned long unused, unsigned long esr, struct pt_regs *regs) { int i, step = 0, *kernel_step; u32 ctrl_reg; u64 addr, val; struct perf_event *bp, **slots; struct debug_info *debug_info; struct arch_hw_breakpoint_ctrl ctrl; slots = this_cpu_ptr(bp_on_reg); addr = instruction_pointer(regs); debug_info = ¤t->thread.debug; for (i = 0; i < core_num_brps; ++i) { rcu_read_lock(); bp = slots[i]; if (bp == NULL) goto unlock; /* Check if the breakpoint value matches. */ val = read_wb_reg(AARCH64_DBG_REG_BVR, i); if (val != (addr & ~0x3)) goto unlock; /* Possible match, check the byte address select to confirm. */ ctrl_reg = read_wb_reg(AARCH64_DBG_REG_BCR, i); decode_ctrl_reg(ctrl_reg, &ctrl); if (!((1 << (addr & 0x3)) & ctrl.len)) goto unlock; counter_arch_bp(bp)->trigger = addr; perf_bp_event(bp, regs); /* Do we need to handle the stepping? */ if (is_default_overflow_handler(bp)) step = 1; unlock: rcu_read_unlock(); } if (!step) return 0; if (user_mode(regs)) { debug_info->bps_disabled = 1; toggle_bp_registers(AARCH64_DBG_REG_BCR, DBG_ACTIVE_EL0, 0); /* If we're already stepping a watchpoint, just return. */ if (debug_info->wps_disabled) return 0; if (test_thread_flag(TIF_SINGLESTEP)) debug_info->suspended_step = 1; else user_enable_single_step(current); } else { toggle_bp_registers(AARCH64_DBG_REG_BCR, DBG_ACTIVE_EL1, 0); kernel_step = this_cpu_ptr(&stepping_kernel_bp); if (*kernel_step != ARM_KERNEL_STEP_NONE) return 0; if (kernel_active_single_step()) { *kernel_step = ARM_KERNEL_STEP_SUSPEND; } else { *kernel_step = ARM_KERNEL_STEP_ACTIVE; kernel_enable_single_step(regs); } } return 0; } NOKPROBE_SYMBOL(breakpoint_handler); /* * Arm64 hardware does not always report a watchpoint hit address that matches * one of the watchpoints set. It can also report an address "near" the * watchpoint if a single instruction access both watched and unwatched * addresses. There is no straight-forward way, short of disassembling the * offending instruction, to map that address back to the watchpoint. This * function computes the distance of the memory access from the watchpoint as a * heuristic for the likelyhood that a given access triggered the watchpoint. * * See Section D2.10.5 "Determining the memory location that caused a Watchpoint * exception" of ARMv8 Architecture Reference Manual for details. * * The function returns the distance of the address from the bytes watched by * the watchpoint. In case of an exact match, it returns 0. */ static u64 get_distance_from_watchpoint(unsigned long addr, u64 val, struct arch_hw_breakpoint_ctrl *ctrl) { u64 wp_low, wp_high; u32 lens, lene; addr = untagged_addr(addr); lens = __ffs(ctrl->len); lene = __fls(ctrl->len); wp_low = val + lens; wp_high = val + lene; if (addr < wp_low) return wp_low - addr; else if (addr > wp_high) return addr - wp_high; else return 0; } static int watchpoint_report(struct perf_event *wp, unsigned long addr, struct pt_regs *regs) { int step = is_default_overflow_handler(wp); struct arch_hw_breakpoint *info = counter_arch_bp(wp); info->trigger = addr; /* * If we triggered a user watchpoint from a uaccess routine, then * handle the stepping ourselves since userspace really can't help * us with this. */ if (!user_mode(regs) && info->ctrl.privilege == AARCH64_BREAKPOINT_EL0) step = 1; else perf_bp_event(wp, regs); return step; } static int watchpoint_handler(unsigned long addr, unsigned long esr, struct pt_regs *regs) { int i, step = 0, *kernel_step, access, closest_match = 0; u64 min_dist = -1, dist; u32 ctrl_reg; u64 val; struct perf_event *wp, **slots; struct debug_info *debug_info; struct arch_hw_breakpoint_ctrl ctrl; slots = this_cpu_ptr(wp_on_reg); debug_info = ¤t->thread.debug; /* * Find all watchpoints that match the reported address. If no exact * match is found. Attribute the hit to the closest watchpoint. */ rcu_read_lock(); for (i = 0; i < core_num_wrps; ++i) { wp = slots[i]; if (wp == NULL) continue; /* * Check that the access type matches. * 0 => load, otherwise => store */ access = (esr & AARCH64_ESR_ACCESS_MASK) ? HW_BREAKPOINT_W : HW_BREAKPOINT_R; if (!(access & hw_breakpoint_type(wp))) continue; /* Check if the watchpoint value and byte select match. */ val = read_wb_reg(AARCH64_DBG_REG_WVR, i); ctrl_reg = read_wb_reg(AARCH64_DBG_REG_WCR, i); decode_ctrl_reg(ctrl_reg, &ctrl); dist = get_distance_from_watchpoint(addr, val, &ctrl); if (dist < min_dist) { min_dist = dist; closest_match = i; } /* Is this an exact match? */ if (dist != 0) continue; step = watchpoint_report(wp, addr, regs); } /* No exact match found? */ if (min_dist > 0 && min_dist != -1) step = watchpoint_report(slots[closest_match], addr, regs); rcu_read_unlock(); if (!step) return 0; /* * We always disable EL0 watchpoints because the kernel can * cause these to fire via an unprivileged access. */ toggle_bp_registers(AARCH64_DBG_REG_WCR, DBG_ACTIVE_EL0, 0); if (user_mode(regs)) { debug_info->wps_disabled = 1; /* If we're already stepping a breakpoint, just return. */ if (debug_info->bps_disabled) return 0; if (test_thread_flag(TIF_SINGLESTEP)) debug_info->suspended_step = 1; else user_enable_single_step(current); } else { toggle_bp_registers(AARCH64_DBG_REG_WCR, DBG_ACTIVE_EL1, 0); kernel_step = this_cpu_ptr(&stepping_kernel_bp); if (*kernel_step != ARM_KERNEL_STEP_NONE) return 0; if (kernel_active_single_step()) { *kernel_step = ARM_KERNEL_STEP_SUSPEND; } else { *kernel_step = ARM_KERNEL_STEP_ACTIVE; kernel_enable_single_step(regs); } } return 0; } NOKPROBE_SYMBOL(watchpoint_handler); /* * Handle single-step exception. */ int reinstall_suspended_bps(struct pt_regs *regs) { struct debug_info *debug_info = ¤t->thread.debug; int handled_exception = 0, *kernel_step; kernel_step = this_cpu_ptr(&stepping_kernel_bp); /* * Called from single-step exception handler. * Return 0 if execution can resume, 1 if a SIGTRAP should be * reported. */ if (user_mode(regs)) { if (debug_info->bps_disabled) { debug_info->bps_disabled = 0; toggle_bp_registers(AARCH64_DBG_REG_BCR, DBG_ACTIVE_EL0, 1); handled_exception = 1; } if (debug_info->wps_disabled) { debug_info->wps_disabled = 0; toggle_bp_registers(AARCH64_DBG_REG_WCR, DBG_ACTIVE_EL0, 1); handled_exception = 1; } if (handled_exception) { if (debug_info->suspended_step) { debug_info->suspended_step = 0; /* Allow exception handling to fall-through. */ handled_exception = 0; } else { user_disable_single_step(current); } } } else if (*kernel_step != ARM_KERNEL_STEP_NONE) { toggle_bp_registers(AARCH64_DBG_REG_BCR, DBG_ACTIVE_EL1, 1); toggle_bp_registers(AARCH64_DBG_REG_WCR, DBG_ACTIVE_EL1, 1); if (!debug_info->wps_disabled) toggle_bp_registers(AARCH64_DBG_REG_WCR, DBG_ACTIVE_EL0, 1); if (*kernel_step != ARM_KERNEL_STEP_SUSPEND) { kernel_disable_single_step(); handled_exception = 1; } else { handled_exception = 0; } *kernel_step = ARM_KERNEL_STEP_NONE; } return !handled_exception; } NOKPROBE_SYMBOL(reinstall_suspended_bps); /* * Context-switcher for restoring suspended breakpoints. */ void hw_breakpoint_thread_switch(struct task_struct *next) { /* * current next * disabled: 0 0 => The usual case, NOTIFY_DONE * 0 1 => Disable the registers * 1 0 => Enable the registers * 1 1 => NOTIFY_DONE. per-task bps will * get taken care of by perf. */ struct debug_info *current_debug_info, *next_debug_info; current_debug_info = ¤t->thread.debug; next_debug_info = &next->thread.debug; /* Update breakpoints. */ if (current_debug_info->bps_disabled != next_debug_info->bps_disabled) toggle_bp_registers(AARCH64_DBG_REG_BCR, DBG_ACTIVE_EL0, !next_debug_info->bps_disabled); /* Update watchpoints. */ if (current_debug_info->wps_disabled != next_debug_info->wps_disabled) toggle_bp_registers(AARCH64_DBG_REG_WCR, DBG_ACTIVE_EL0, !next_debug_info->wps_disabled); } /* * CPU initialisation. */ static int hw_breakpoint_reset(unsigned int cpu) { int i; struct perf_event **slots; /* * When a CPU goes through cold-boot, it does not have any installed * slot, so it is safe to share the same function for restoring and * resetting breakpoints; when a CPU is hotplugged in, it goes * through the slots, which are all empty, hence it just resets control * and value for debug registers. * When this function is triggered on warm-boot through a CPU PM * notifier some slots might be initialized; if so they are * reprogrammed according to the debug slots content. */ for (slots = this_cpu_ptr(bp_on_reg), i = 0; i < core_num_brps; ++i) { if (slots[i]) { hw_breakpoint_control(slots[i], HW_BREAKPOINT_RESTORE); } else { write_wb_reg(AARCH64_DBG_REG_BCR, i, 0UL); write_wb_reg(AARCH64_DBG_REG_BVR, i, 0UL); } } for (slots = this_cpu_ptr(wp_on_reg), i = 0; i < core_num_wrps; ++i) { if (slots[i]) { hw_breakpoint_control(slots[i], HW_BREAKPOINT_RESTORE); } else { write_wb_reg(AARCH64_DBG_REG_WCR, i, 0UL); write_wb_reg(AARCH64_DBG_REG_WVR, i, 0UL); } } return 0; } #ifdef CONFIG_CPU_PM extern void cpu_suspend_set_dbg_restorer(int (*hw_bp_restore)(unsigned int)); #else static inline void cpu_suspend_set_dbg_restorer(int (*hw_bp_restore)(unsigned int)) { } #endif /* * One-time initialisation. */ static int __init arch_hw_breakpoint_init(void) { int ret; core_num_brps = get_num_brps(); core_num_wrps = get_num_wrps(); pr_info("found %d breakpoint and %d watchpoint registers.\n", core_num_brps, core_num_wrps); /* Register debug fault handlers. */ hook_debug_fault_code(DBG_ESR_EVT_HWBP, breakpoint_handler, SIGTRAP, TRAP_HWBKPT, "hw-breakpoint handler"); hook_debug_fault_code(DBG_ESR_EVT_HWWP, watchpoint_handler, SIGTRAP, TRAP_HWBKPT, "hw-watchpoint handler"); /* * Reset the breakpoint resources. We assume that a halting * debugger will leave the world in a nice state for us. */ ret = cpuhp_setup_state(CPUHP_AP_PERF_ARM_HW_BREAKPOINT_STARTING, "perf/arm64/hw_breakpoint:starting", hw_breakpoint_reset, NULL); if (ret) pr_err("failed to register CPU hotplug notifier: %d\n", ret); /* Register cpu_suspend hw breakpoint restore hook */ cpu_suspend_set_dbg_restorer(hw_breakpoint_reset); return ret; } arch_initcall(arch_hw_breakpoint_init); void hw_breakpoint_pmu_read(struct perf_event *bp) { } /* * Dummy function to register with die_notifier. */ int hw_breakpoint_exceptions_notify(struct notifier_block *unused, unsigned long val, void *data) { return NOTIFY_DONE; }