// SPDX-License-Identifier: GPL-2.0 /* * BPF Jit compiler for s390. * * Minimum build requirements: * * - HAVE_MARCH_Z196_FEATURES: laal, laalg * - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj * - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf * - PACK_STACK * - 64BIT * * Copyright IBM Corp. 2012,2015 * * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com> * Michael Holzheu <holzheu@linux.vnet.ibm.com> */ #define KMSG_COMPONENT "bpf_jit" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/netdevice.h> #include <linux/filter.h> #include <linux/init.h> #include <linux/bpf.h> #include <linux/mm.h> #include <linux/kernel.h> #include <asm/cacheflush.h> #include <asm/dis.h> #include <asm/facility.h> #include <asm/nospec-branch.h> #include <asm/set_memory.h> #include "bpf_jit.h" struct bpf_jit { u32 seen; /* Flags to remember seen eBPF instructions */ u32 seen_reg[16]; /* Array to remember which registers are used */ u32 *addrs; /* Array with relative instruction addresses */ u8 *prg_buf; /* Start of program */ int size; /* Size of program and literal pool */ int size_prg; /* Size of program */ int prg; /* Current position in program */ int lit32_start; /* Start of 32-bit literal pool */ int lit32; /* Current position in 32-bit literal pool */ int lit64_start; /* Start of 64-bit literal pool */ int lit64; /* Current position in 64-bit literal pool */ int base_ip; /* Base address for literal pool */ int exit_ip; /* Address of exit */ int r1_thunk_ip; /* Address of expoline thunk for 'br %r1' */ int r14_thunk_ip; /* Address of expoline thunk for 'br %r14' */ int tail_call_start; /* Tail call start offset */ int excnt; /* Number of exception table entries */ }; #define SEEN_MEM BIT(0) /* use mem[] for temporary storage */ #define SEEN_LITERAL BIT(1) /* code uses literals */ #define SEEN_FUNC BIT(2) /* calls C functions */ #define SEEN_TAIL_CALL BIT(3) /* code uses tail calls */ #define SEEN_STACK (SEEN_FUNC | SEEN_MEM) /* * s390 registers */ #define REG_W0 (MAX_BPF_JIT_REG + 0) /* Work register 1 (even) */ #define REG_W1 (MAX_BPF_JIT_REG + 1) /* Work register 2 (odd) */ #define REG_L (MAX_BPF_JIT_REG + 2) /* Literal pool register */ #define REG_15 (MAX_BPF_JIT_REG + 3) /* Register 15 */ #define REG_0 REG_W0 /* Register 0 */ #define REG_1 REG_W1 /* Register 1 */ #define REG_2 BPF_REG_1 /* Register 2 */ #define REG_14 BPF_REG_0 /* Register 14 */ /* * Mapping of BPF registers to s390 registers */ static const int reg2hex[] = { /* Return code */ [BPF_REG_0] = 14, /* Function parameters */ [BPF_REG_1] = 2, [BPF_REG_2] = 3, [BPF_REG_3] = 4, [BPF_REG_4] = 5, [BPF_REG_5] = 6, /* Call saved registers */ [BPF_REG_6] = 7, [BPF_REG_7] = 8, [BPF_REG_8] = 9, [BPF_REG_9] = 10, /* BPF stack pointer */ [BPF_REG_FP] = 13, /* Register for blinding */ [BPF_REG_AX] = 12, /* Work registers for s390x backend */ [REG_W0] = 0, [REG_W1] = 1, [REG_L] = 11, [REG_15] = 15, }; static inline u32 reg(u32 dst_reg, u32 src_reg) { return reg2hex[dst_reg] << 4 | reg2hex[src_reg]; } static inline u32 reg_high(u32 reg) { return reg2hex[reg] << 4; } static inline void reg_set_seen(struct bpf_jit *jit, u32 b1) { u32 r1 = reg2hex[b1]; if (r1 >= 6 && r1 <= 15 && !jit->seen_reg[r1]) jit->seen_reg[r1] = 1; } #define REG_SET_SEEN(b1) \ ({ \ reg_set_seen(jit, b1); \ }) #define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]] /* * EMIT macros for code generation */ #define _EMIT2(op) \ ({ \ if (jit->prg_buf) \ *(u16 *) (jit->prg_buf + jit->prg) = (op); \ jit->prg += 2; \ }) #define EMIT2(op, b1, b2) \ ({ \ _EMIT2((op) | reg(b1, b2)); \ REG_SET_SEEN(b1); \ REG_SET_SEEN(b2); \ }) #define _EMIT4(op) \ ({ \ if (jit->prg_buf) \ *(u32 *) (jit->prg_buf + jit->prg) = (op); \ jit->prg += 4; \ }) #define EMIT4(op, b1, b2) \ ({ \ _EMIT4((op) | reg(b1, b2)); \ REG_SET_SEEN(b1); \ REG_SET_SEEN(b2); \ }) #define EMIT4_RRF(op, b1, b2, b3) \ ({ \ _EMIT4((op) | reg_high(b3) << 8 | reg(b1, b2)); \ REG_SET_SEEN(b1); \ REG_SET_SEEN(b2); \ REG_SET_SEEN(b3); \ }) #define _EMIT4_DISP(op, disp) \ ({ \ unsigned int __disp = (disp) & 0xfff; \ _EMIT4((op) | __disp); \ }) #define EMIT4_DISP(op, b1, b2, disp) \ ({ \ _EMIT4_DISP((op) | reg_high(b1) << 16 | \ reg_high(b2) << 8, (disp)); \ REG_SET_SEEN(b1); \ REG_SET_SEEN(b2); \ }) #define EMIT4_IMM(op, b1, imm) \ ({ \ unsigned int __imm = (imm) & 0xffff; \ _EMIT4((op) | reg_high(b1) << 16 | __imm); \ REG_SET_SEEN(b1); \ }) #define EMIT4_PCREL(op, pcrel) \ ({ \ long __pcrel = ((pcrel) >> 1) & 0xffff; \ _EMIT4((op) | __pcrel); \ }) #define EMIT4_PCREL_RIC(op, mask, target) \ ({ \ int __rel = ((target) - jit->prg) / 2; \ _EMIT4((op) | (mask) << 20 | (__rel & 0xffff)); \ }) #define _EMIT6(op1, op2) \ ({ \ if (jit->prg_buf) { \ *(u32 *) (jit->prg_buf + jit->prg) = (op1); \ *(u16 *) (jit->prg_buf + jit->prg + 4) = (op2); \ } \ jit->prg += 6; \ }) #define _EMIT6_DISP(op1, op2, disp) \ ({ \ unsigned int __disp = (disp) & 0xfff; \ _EMIT6((op1) | __disp, op2); \ }) #define _EMIT6_DISP_LH(op1, op2, disp) \ ({ \ u32 _disp = (u32) (disp); \ unsigned int __disp_h = _disp & 0xff000; \ unsigned int __disp_l = _disp & 0x00fff; \ _EMIT6((op1) | __disp_l, (op2) | __disp_h >> 4); \ }) #define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp) \ ({ \ _EMIT6_DISP_LH((op1) | reg(b1, b2) << 16 | \ reg_high(b3) << 8, op2, disp); \ REG_SET_SEEN(b1); \ REG_SET_SEEN(b2); \ REG_SET_SEEN(b3); \ }) #define EMIT6_PCREL_RIEB(op1, op2, b1, b2, mask, target) \ ({ \ unsigned int rel = (int)((target) - jit->prg) / 2; \ _EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), \ (op2) | (mask) << 12); \ REG_SET_SEEN(b1); \ REG_SET_SEEN(b2); \ }) #define EMIT6_PCREL_RIEC(op1, op2, b1, imm, mask, target) \ ({ \ unsigned int rel = (int)((target) - jit->prg) / 2; \ _EMIT6((op1) | (reg_high(b1) | (mask)) << 16 | \ (rel & 0xffff), (op2) | ((imm) & 0xff) << 8); \ REG_SET_SEEN(b1); \ BUILD_BUG_ON(((unsigned long) (imm)) > 0xff); \ }) #define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask) \ ({ \ int rel = (addrs[(i) + (off) + 1] - jit->prg) / 2; \ _EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), (op2) | (mask));\ REG_SET_SEEN(b1); \ REG_SET_SEEN(b2); \ }) #define EMIT6_PCREL_RILB(op, b, target) \ ({ \ unsigned int rel = (int)((target) - jit->prg) / 2; \ _EMIT6((op) | reg_high(b) << 16 | rel >> 16, rel & 0xffff);\ REG_SET_SEEN(b); \ }) #define EMIT6_PCREL_RIL(op, target) \ ({ \ unsigned int rel = (int)((target) - jit->prg) / 2; \ _EMIT6((op) | rel >> 16, rel & 0xffff); \ }) #define EMIT6_PCREL_RILC(op, mask, target) \ ({ \ EMIT6_PCREL_RIL((op) | (mask) << 20, (target)); \ }) #define _EMIT6_IMM(op, imm) \ ({ \ unsigned int __imm = (imm); \ _EMIT6((op) | (__imm >> 16), __imm & 0xffff); \ }) #define EMIT6_IMM(op, b1, imm) \ ({ \ _EMIT6_IMM((op) | reg_high(b1) << 16, imm); \ REG_SET_SEEN(b1); \ }) #define _EMIT_CONST_U32(val) \ ({ \ unsigned int ret; \ ret = jit->lit32; \ if (jit->prg_buf) \ *(u32 *)(jit->prg_buf + jit->lit32) = (u32)(val);\ jit->lit32 += 4; \ ret; \ }) #define EMIT_CONST_U32(val) \ ({ \ jit->seen |= SEEN_LITERAL; \ _EMIT_CONST_U32(val) - jit->base_ip; \ }) #define _EMIT_CONST_U64(val) \ ({ \ unsigned int ret; \ ret = jit->lit64; \ if (jit->prg_buf) \ *(u64 *)(jit->prg_buf + jit->lit64) = (u64)(val);\ jit->lit64 += 8; \ ret; \ }) #define EMIT_CONST_U64(val) \ ({ \ jit->seen |= SEEN_LITERAL; \ _EMIT_CONST_U64(val) - jit->base_ip; \ }) #define EMIT_ZERO(b1) \ ({ \ if (!fp->aux->verifier_zext) { \ /* llgfr %dst,%dst (zero extend to 64 bit) */ \ EMIT4(0xb9160000, b1, b1); \ REG_SET_SEEN(b1); \ } \ }) /* * Return whether this is the first pass. The first pass is special, since we * don't know any sizes yet, and thus must be conservative. */ static bool is_first_pass(struct bpf_jit *jit) { return jit->size == 0; } /* * Return whether this is the code generation pass. The code generation pass is * special, since we should change as little as possible. */ static bool is_codegen_pass(struct bpf_jit *jit) { return jit->prg_buf; } /* * Return whether "rel" can be encoded as a short PC-relative offset */ static bool is_valid_rel(int rel) { return rel >= -65536 && rel <= 65534; } /* * Return whether "off" can be reached using a short PC-relative offset */ static bool can_use_rel(struct bpf_jit *jit, int off) { return is_valid_rel(off - jit->prg); } /* * Return whether given displacement can be encoded using * Long-Displacement Facility */ static bool is_valid_ldisp(int disp) { return disp >= -524288 && disp <= 524287; } /* * Return whether the next 32-bit literal pool entry can be referenced using * Long-Displacement Facility */ static bool can_use_ldisp_for_lit32(struct bpf_jit *jit) { return is_valid_ldisp(jit->lit32 - jit->base_ip); } /* * Return whether the next 64-bit literal pool entry can be referenced using * Long-Displacement Facility */ static bool can_use_ldisp_for_lit64(struct bpf_jit *jit) { return is_valid_ldisp(jit->lit64 - jit->base_ip); } /* * Fill whole space with illegal instructions */ static void jit_fill_hole(void *area, unsigned int size) { memset(area, 0, size); } /* * Save registers from "rs" (register start) to "re" (register end) on stack */ static void save_regs(struct bpf_jit *jit, u32 rs, u32 re) { u32 off = STK_OFF_R6 + (rs - 6) * 8; if (rs == re) /* stg %rs,off(%r15) */ _EMIT6(0xe300f000 | rs << 20 | off, 0x0024); else /* stmg %rs,%re,off(%r15) */ _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off); } /* * Restore registers from "rs" (register start) to "re" (register end) on stack */ static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re, u32 stack_depth) { u32 off = STK_OFF_R6 + (rs - 6) * 8; if (jit->seen & SEEN_STACK) off += STK_OFF + stack_depth; if (rs == re) /* lg %rs,off(%r15) */ _EMIT6(0xe300f000 | rs << 20 | off, 0x0004); else /* lmg %rs,%re,off(%r15) */ _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off); } /* * Return first seen register (from start) */ static int get_start(struct bpf_jit *jit, int start) { int i; for (i = start; i <= 15; i++) { if (jit->seen_reg[i]) return i; } return 0; } /* * Return last seen register (from start) (gap >= 2) */ static int get_end(struct bpf_jit *jit, int start) { int i; for (i = start; i < 15; i++) { if (!jit->seen_reg[i] && !jit->seen_reg[i + 1]) return i - 1; } return jit->seen_reg[15] ? 15 : 14; } #define REGS_SAVE 1 #define REGS_RESTORE 0 /* * Save and restore clobbered registers (6-15) on stack. * We save/restore registers in chunks with gap >= 2 registers. */ static void save_restore_regs(struct bpf_jit *jit, int op, u32 stack_depth) { const int last = 15, save_restore_size = 6; int re = 6, rs; if (is_first_pass(jit)) { /* * We don't know yet which registers are used. Reserve space * conservatively. */ jit->prg += (last - re + 1) * save_restore_size; return; } do { rs = get_start(jit, re); if (!rs) break; re = get_end(jit, rs + 1); if (op == REGS_SAVE) save_regs(jit, rs, re); else restore_regs(jit, rs, re, stack_depth); re++; } while (re <= last); } static void bpf_skip(struct bpf_jit *jit, int size) { if (size >= 6 && !is_valid_rel(size)) { /* brcl 0xf,size */ EMIT6_PCREL_RIL(0xc0f4000000, size); size -= 6; } else if (size >= 4 && is_valid_rel(size)) { /* brc 0xf,size */ EMIT4_PCREL(0xa7f40000, size); size -= 4; } while (size >= 2) { /* bcr 0,%0 */ _EMIT2(0x0700); size -= 2; } } /* * Emit function prologue * * Save registers and create stack frame if necessary. * See stack frame layout desription in "bpf_jit.h"! */ static void bpf_jit_prologue(struct bpf_jit *jit, u32 stack_depth) { if (jit->seen & SEEN_TAIL_CALL) { /* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */ _EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT); } else { /* * There are no tail calls. Insert nops in order to have * tail_call_start at a predictable offset. */ bpf_skip(jit, 6); } /* Tail calls have to skip above initialization */ jit->tail_call_start = jit->prg; /* Save registers */ save_restore_regs(jit, REGS_SAVE, stack_depth); /* Setup literal pool */ if (is_first_pass(jit) || (jit->seen & SEEN_LITERAL)) { if (!is_first_pass(jit) && is_valid_ldisp(jit->size - (jit->prg + 2))) { /* basr %l,0 */ EMIT2(0x0d00, REG_L, REG_0); jit->base_ip = jit->prg; } else { /* larl %l,lit32_start */ EMIT6_PCREL_RILB(0xc0000000, REG_L, jit->lit32_start); jit->base_ip = jit->lit32_start; } } /* Setup stack and backchain */ if (is_first_pass(jit) || (jit->seen & SEEN_STACK)) { if (is_first_pass(jit) || (jit->seen & SEEN_FUNC)) /* lgr %w1,%r15 (backchain) */ EMIT4(0xb9040000, REG_W1, REG_15); /* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */ EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED); /* aghi %r15,-STK_OFF */ EMIT4_IMM(0xa70b0000, REG_15, -(STK_OFF + stack_depth)); if (is_first_pass(jit) || (jit->seen & SEEN_FUNC)) /* stg %w1,152(%r15) (backchain) */ EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0, REG_15, 152); } } /* * Function epilogue */ static void bpf_jit_epilogue(struct bpf_jit *jit, u32 stack_depth) { jit->exit_ip = jit->prg; /* Load exit code: lgr %r2,%b0 */ EMIT4(0xb9040000, REG_2, BPF_REG_0); /* Restore registers */ save_restore_regs(jit, REGS_RESTORE, stack_depth); if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable) { jit->r14_thunk_ip = jit->prg; /* Generate __s390_indirect_jump_r14 thunk */ if (test_facility(35)) { /* exrl %r0,.+10 */ EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10); } else { /* larl %r1,.+14 */ EMIT6_PCREL_RILB(0xc0000000, REG_1, jit->prg + 14); /* ex 0,0(%r1) */ EMIT4_DISP(0x44000000, REG_0, REG_1, 0); } /* j . */ EMIT4_PCREL(0xa7f40000, 0); } /* br %r14 */ _EMIT2(0x07fe); if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable && (is_first_pass(jit) || (jit->seen & SEEN_FUNC))) { jit->r1_thunk_ip = jit->prg; /* Generate __s390_indirect_jump_r1 thunk */ if (test_facility(35)) { /* exrl %r0,.+10 */ EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10); /* j . */ EMIT4_PCREL(0xa7f40000, 0); /* br %r1 */ _EMIT2(0x07f1); } else { /* ex 0,S390_lowcore.br_r1_tampoline */ EMIT4_DISP(0x44000000, REG_0, REG_0, offsetof(struct lowcore, br_r1_trampoline)); /* j . */ EMIT4_PCREL(0xa7f40000, 0); } } } static int get_probe_mem_regno(const u8 *insn) { /* * insn must point to llgc, llgh, llgf or lg, which have destination * register at the same position. */ if (insn[0] != 0xe3) /* common llgc, llgh, llgf and lg prefix */ return -1; if (insn[5] != 0x90 && /* llgc */ insn[5] != 0x91 && /* llgh */ insn[5] != 0x16 && /* llgf */ insn[5] != 0x04) /* lg */ return -1; return insn[1] >> 4; } static bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs) { int regno; u8 *insn; regs->psw.addr = extable_fixup(x); insn = (u8 *)__rewind_psw(regs->psw, regs->int_code >> 16); regno = get_probe_mem_regno(insn); if (WARN_ON_ONCE(regno < 0)) /* JIT bug - unexpected instruction. */ return false; regs->gprs[regno] = 0; return true; } static int bpf_jit_probe_mem(struct bpf_jit *jit, struct bpf_prog *fp, int probe_prg, int nop_prg) { struct exception_table_entry *ex; s64 delta; u8 *insn; int prg; int i; if (!fp->aux->extable) /* Do nothing during early JIT passes. */ return 0; insn = jit->prg_buf + probe_prg; if (WARN_ON_ONCE(get_probe_mem_regno(insn) < 0)) /* JIT bug - unexpected probe instruction. */ return -1; if (WARN_ON_ONCE(probe_prg + insn_length(*insn) != nop_prg)) /* JIT bug - gap between probe and nop instructions. */ return -1; for (i = 0; i < 2; i++) { if (WARN_ON_ONCE(jit->excnt >= fp->aux->num_exentries)) /* Verifier bug - not enough entries. */ return -1; ex = &fp->aux->extable[jit->excnt]; /* Add extable entries for probe and nop instructions. */ prg = i == 0 ? probe_prg : nop_prg; delta = jit->prg_buf + prg - (u8 *)&ex->insn; if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX)) /* JIT bug - code and extable must be close. */ return -1; ex->insn = delta; /* * Always land on the nop. Note that extable infrastructure * ignores fixup field, it is handled by ex_handler_bpf(). */ delta = jit->prg_buf + nop_prg - (u8 *)&ex->fixup; if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX)) /* JIT bug - landing pad and extable must be close. */ return -1; ex->fixup = delta; ex->handler = (u8 *)ex_handler_bpf - (u8 *)&ex->handler; jit->excnt++; } return 0; } /* * Compile one eBPF instruction into s390x code * * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of * stack space for the large switch statement. */ static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp, int i, bool extra_pass, u32 stack_depth) { struct bpf_insn *insn = &fp->insnsi[i]; u32 dst_reg = insn->dst_reg; u32 src_reg = insn->src_reg; int last, insn_count = 1; u32 *addrs = jit->addrs; s32 imm = insn->imm; s16 off = insn->off; int probe_prg = -1; unsigned int mask; int nop_prg; int err; if (BPF_CLASS(insn->code) == BPF_LDX && BPF_MODE(insn->code) == BPF_PROBE_MEM) probe_prg = jit->prg; switch (insn->code) { /* * BPF_MOV */ case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */ /* llgfr %dst,%src */ EMIT4(0xb9160000, dst_reg, src_reg); if (insn_is_zext(&insn[1])) insn_count = 2; break; case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */ /* lgr %dst,%src */ EMIT4(0xb9040000, dst_reg, src_reg); break; case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */ /* llilf %dst,imm */ EMIT6_IMM(0xc00f0000, dst_reg, imm); if (insn_is_zext(&insn[1])) insn_count = 2; break; case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */ /* lgfi %dst,imm */ EMIT6_IMM(0xc0010000, dst_reg, imm); break; /* * BPF_LD 64 */ case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */ { /* 16 byte instruction that uses two 'struct bpf_insn' */ u64 imm64; imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32; /* lgrl %dst,imm */ EMIT6_PCREL_RILB(0xc4080000, dst_reg, _EMIT_CONST_U64(imm64)); insn_count = 2; break; } /* * BPF_ADD */ case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */ /* ar %dst,%src */ EMIT2(0x1a00, dst_reg, src_reg); EMIT_ZERO(dst_reg); break; case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */ /* agr %dst,%src */ EMIT4(0xb9080000, dst_reg, src_reg); break; case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */ if (imm != 0) { /* alfi %dst,imm */ EMIT6_IMM(0xc20b0000, dst_reg, imm); } EMIT_ZERO(dst_reg); break; case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */ if (!imm) break; /* agfi %dst,imm */ EMIT6_IMM(0xc2080000, dst_reg, imm); break; /* * BPF_SUB */ case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */ /* sr %dst,%src */ EMIT2(0x1b00, dst_reg, src_reg); EMIT_ZERO(dst_reg); break; case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */ /* sgr %dst,%src */ EMIT4(0xb9090000, dst_reg, src_reg); break; case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */ if (imm != 0) { /* alfi %dst,-imm */ EMIT6_IMM(0xc20b0000, dst_reg, -imm); } EMIT_ZERO(dst_reg); break; case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */ if (!imm) break; if (imm == -0x80000000) { /* algfi %dst,0x80000000 */ EMIT6_IMM(0xc20a0000, dst_reg, 0x80000000); } else { /* agfi %dst,-imm */ EMIT6_IMM(0xc2080000, dst_reg, -imm); } break; /* * BPF_MUL */ case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */ /* msr %dst,%src */ EMIT4(0xb2520000, dst_reg, src_reg); EMIT_ZERO(dst_reg); break; case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */ /* msgr %dst,%src */ EMIT4(0xb90c0000, dst_reg, src_reg); break; case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */ if (imm != 1) { /* msfi %r5,imm */ EMIT6_IMM(0xc2010000, dst_reg, imm); } EMIT_ZERO(dst_reg); break; case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */ if (imm == 1) break; /* msgfi %dst,imm */ EMIT6_IMM(0xc2000000, dst_reg, imm); break; /* * BPF_DIV / BPF_MOD */ case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */ case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */ { int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0; /* lhi %w0,0 */ EMIT4_IMM(0xa7080000, REG_W0, 0); /* lr %w1,%dst */ EMIT2(0x1800, REG_W1, dst_reg); /* dlr %w0,%src */ EMIT4(0xb9970000, REG_W0, src_reg); /* llgfr %dst,%rc */ EMIT4(0xb9160000, dst_reg, rc_reg); if (insn_is_zext(&insn[1])) insn_count = 2; break; } case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */ case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */ { int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0; /* lghi %w0,0 */ EMIT4_IMM(0xa7090000, REG_W0, 0); /* lgr %w1,%dst */ EMIT4(0xb9040000, REG_W1, dst_reg); /* dlgr %w0,%dst */ EMIT4(0xb9870000, REG_W0, src_reg); /* lgr %dst,%rc */ EMIT4(0xb9040000, dst_reg, rc_reg); break; } case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */ case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */ { int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0; if (imm == 1) { if (BPF_OP(insn->code) == BPF_MOD) /* lhgi %dst,0 */ EMIT4_IMM(0xa7090000, dst_reg, 0); else EMIT_ZERO(dst_reg); break; } /* lhi %w0,0 */ EMIT4_IMM(0xa7080000, REG_W0, 0); /* lr %w1,%dst */ EMIT2(0x1800, REG_W1, dst_reg); if (!is_first_pass(jit) && can_use_ldisp_for_lit32(jit)) { /* dl %w0,<d(imm)>(%l) */ EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L, EMIT_CONST_U32(imm)); } else { /* lgfrl %dst,imm */ EMIT6_PCREL_RILB(0xc40c0000, dst_reg, _EMIT_CONST_U32(imm)); jit->seen |= SEEN_LITERAL; /* dlr %w0,%dst */ EMIT4(0xb9970000, REG_W0, dst_reg); } /* llgfr %dst,%rc */ EMIT4(0xb9160000, dst_reg, rc_reg); if (insn_is_zext(&insn[1])) insn_count = 2; break; } case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */ case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */ { int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0; if (imm == 1) { if (BPF_OP(insn->code) == BPF_MOD) /* lhgi %dst,0 */ EMIT4_IMM(0xa7090000, dst_reg, 0); break; } /* lghi %w0,0 */ EMIT4_IMM(0xa7090000, REG_W0, 0); /* lgr %w1,%dst */ EMIT4(0xb9040000, REG_W1, dst_reg); if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) { /* dlg %w0,<d(imm)>(%l) */ EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L, EMIT_CONST_U64(imm)); } else { /* lgrl %dst,imm */ EMIT6_PCREL_RILB(0xc4080000, dst_reg, _EMIT_CONST_U64(imm)); jit->seen |= SEEN_LITERAL; /* dlgr %w0,%dst */ EMIT4(0xb9870000, REG_W0, dst_reg); } /* lgr %dst,%rc */ EMIT4(0xb9040000, dst_reg, rc_reg); break; } /* * BPF_AND */ case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */ /* nr %dst,%src */ EMIT2(0x1400, dst_reg, src_reg); EMIT_ZERO(dst_reg); break; case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */ /* ngr %dst,%src */ EMIT4(0xb9800000, dst_reg, src_reg); break; case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */ /* nilf %dst,imm */ EMIT6_IMM(0xc00b0000, dst_reg, imm); EMIT_ZERO(dst_reg); break; case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */ if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) { /* ng %dst,<d(imm)>(%l) */ EMIT6_DISP_LH(0xe3000000, 0x0080, dst_reg, REG_0, REG_L, EMIT_CONST_U64(imm)); } else { /* lgrl %w0,imm */ EMIT6_PCREL_RILB(0xc4080000, REG_W0, _EMIT_CONST_U64(imm)); jit->seen |= SEEN_LITERAL; /* ngr %dst,%w0 */ EMIT4(0xb9800000, dst_reg, REG_W0); } break; /* * BPF_OR */ case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */ /* or %dst,%src */ EMIT2(0x1600, dst_reg, src_reg); EMIT_ZERO(dst_reg); break; case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */ /* ogr %dst,%src */ EMIT4(0xb9810000, dst_reg, src_reg); break; case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */ /* oilf %dst,imm */ EMIT6_IMM(0xc00d0000, dst_reg, imm); EMIT_ZERO(dst_reg); break; case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */ if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) { /* og %dst,<d(imm)>(%l) */ EMIT6_DISP_LH(0xe3000000, 0x0081, dst_reg, REG_0, REG_L, EMIT_CONST_U64(imm)); } else { /* lgrl %w0,imm */ EMIT6_PCREL_RILB(0xc4080000, REG_W0, _EMIT_CONST_U64(imm)); jit->seen |= SEEN_LITERAL; /* ogr %dst,%w0 */ EMIT4(0xb9810000, dst_reg, REG_W0); } break; /* * BPF_XOR */ case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */ /* xr %dst,%src */ EMIT2(0x1700, dst_reg, src_reg); EMIT_ZERO(dst_reg); break; case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */ /* xgr %dst,%src */ EMIT4(0xb9820000, dst_reg, src_reg); break; case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */ if (imm != 0) { /* xilf %dst,imm */ EMIT6_IMM(0xc0070000, dst_reg, imm); } EMIT_ZERO(dst_reg); break; case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */ if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) { /* xg %dst,<d(imm)>(%l) */ EMIT6_DISP_LH(0xe3000000, 0x0082, dst_reg, REG_0, REG_L, EMIT_CONST_U64(imm)); } else { /* lgrl %w0,imm */ EMIT6_PCREL_RILB(0xc4080000, REG_W0, _EMIT_CONST_U64(imm)); jit->seen |= SEEN_LITERAL; /* xgr %dst,%w0 */ EMIT4(0xb9820000, dst_reg, REG_W0); } break; /* * BPF_LSH */ case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */ /* sll %dst,0(%src) */ EMIT4_DISP(0x89000000, dst_reg, src_reg, 0); EMIT_ZERO(dst_reg); break; case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */ /* sllg %dst,%dst,0(%src) */ EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0); break; case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */ if (imm != 0) { /* sll %dst,imm(%r0) */ EMIT4_DISP(0x89000000, dst_reg, REG_0, imm); } EMIT_ZERO(dst_reg); break; case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */ if (imm == 0) break; /* sllg %dst,%dst,imm(%r0) */ EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm); break; /* * BPF_RSH */ case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */ /* srl %dst,0(%src) */ EMIT4_DISP(0x88000000, dst_reg, src_reg, 0); EMIT_ZERO(dst_reg); break; case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */ /* srlg %dst,%dst,0(%src) */ EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0); break; case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */ if (imm != 0) { /* srl %dst,imm(%r0) */ EMIT4_DISP(0x88000000, dst_reg, REG_0, imm); } EMIT_ZERO(dst_reg); break; case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */ if (imm == 0) break; /* srlg %dst,%dst,imm(%r0) */ EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm); break; /* * BPF_ARSH */ case BPF_ALU | BPF_ARSH | BPF_X: /* ((s32) dst) >>= src */ /* sra %dst,%dst,0(%src) */ EMIT4_DISP(0x8a000000, dst_reg, src_reg, 0); EMIT_ZERO(dst_reg); break; case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */ /* srag %dst,%dst,0(%src) */ EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0); break; case BPF_ALU | BPF_ARSH | BPF_K: /* ((s32) dst >> imm */ if (imm != 0) { /* sra %dst,imm(%r0) */ EMIT4_DISP(0x8a000000, dst_reg, REG_0, imm); } EMIT_ZERO(dst_reg); break; case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */ if (imm == 0) break; /* srag %dst,%dst,imm(%r0) */ EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm); break; /* * BPF_NEG */ case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */ /* lcr %dst,%dst */ EMIT2(0x1300, dst_reg, dst_reg); EMIT_ZERO(dst_reg); break; case BPF_ALU64 | BPF_NEG: /* dst = -dst */ /* lcgr %dst,%dst */ EMIT4(0xb9030000, dst_reg, dst_reg); break; /* * BPF_FROM_BE/LE */ case BPF_ALU | BPF_END | BPF_FROM_BE: /* s390 is big endian, therefore only clear high order bytes */ switch (imm) { case 16: /* dst = (u16) cpu_to_be16(dst) */ /* llghr %dst,%dst */ EMIT4(0xb9850000, dst_reg, dst_reg); if (insn_is_zext(&insn[1])) insn_count = 2; break; case 32: /* dst = (u32) cpu_to_be32(dst) */ if (!fp->aux->verifier_zext) /* llgfr %dst,%dst */ EMIT4(0xb9160000, dst_reg, dst_reg); break; case 64: /* dst = (u64) cpu_to_be64(dst) */ break; } break; case BPF_ALU | BPF_END | BPF_FROM_LE: switch (imm) { case 16: /* dst = (u16) cpu_to_le16(dst) */ /* lrvr %dst,%dst */ EMIT4(0xb91f0000, dst_reg, dst_reg); /* srl %dst,16(%r0) */ EMIT4_DISP(0x88000000, dst_reg, REG_0, 16); /* llghr %dst,%dst */ EMIT4(0xb9850000, dst_reg, dst_reg); if (insn_is_zext(&insn[1])) insn_count = 2; break; case 32: /* dst = (u32) cpu_to_le32(dst) */ /* lrvr %dst,%dst */ EMIT4(0xb91f0000, dst_reg, dst_reg); if (!fp->aux->verifier_zext) /* llgfr %dst,%dst */ EMIT4(0xb9160000, dst_reg, dst_reg); break; case 64: /* dst = (u64) cpu_to_le64(dst) */ /* lrvgr %dst,%dst */ EMIT4(0xb90f0000, dst_reg, dst_reg); break; } break; /* * BPF_NOSPEC (speculation barrier) */ case BPF_ST | BPF_NOSPEC: break; /* * BPF_ST(X) */ case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */ /* stcy %src,off(%dst) */ EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off); jit->seen |= SEEN_MEM; break; case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */ /* sthy %src,off(%dst) */ EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off); jit->seen |= SEEN_MEM; break; case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */ /* sty %src,off(%dst) */ EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off); jit->seen |= SEEN_MEM; break; case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */ /* stg %src,off(%dst) */ EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off); jit->seen |= SEEN_MEM; break; case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */ /* lhi %w0,imm */ EMIT4_IMM(0xa7080000, REG_W0, (u8) imm); /* stcy %w0,off(dst) */ EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off); jit->seen |= SEEN_MEM; break; case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */ /* lhi %w0,imm */ EMIT4_IMM(0xa7080000, REG_W0, (u16) imm); /* sthy %w0,off(dst) */ EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off); jit->seen |= SEEN_MEM; break; case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */ /* llilf %w0,imm */ EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm); /* sty %w0,off(%dst) */ EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off); jit->seen |= SEEN_MEM; break; case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */ /* lgfi %w0,imm */ EMIT6_IMM(0xc0010000, REG_W0, imm); /* stg %w0,off(%dst) */ EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off); jit->seen |= SEEN_MEM; break; /* * BPF_ATOMIC */ case BPF_STX | BPF_ATOMIC | BPF_DW: case BPF_STX | BPF_ATOMIC | BPF_W: { bool is32 = BPF_SIZE(insn->code) == BPF_W; switch (insn->imm) { /* {op32|op64} {%w0|%src},%src,off(%dst) */ #define EMIT_ATOMIC(op32, op64) do { \ EMIT6_DISP_LH(0xeb000000, is32 ? (op32) : (op64), \ (insn->imm & BPF_FETCH) ? src_reg : REG_W0, \ src_reg, dst_reg, off); \ if (is32 && (insn->imm & BPF_FETCH)) \ EMIT_ZERO(src_reg); \ } while (0) case BPF_ADD: case BPF_ADD | BPF_FETCH: /* {laal|laalg} */ EMIT_ATOMIC(0x00fa, 0x00ea); break; case BPF_AND: case BPF_AND | BPF_FETCH: /* {lan|lang} */ EMIT_ATOMIC(0x00f4, 0x00e4); break; case BPF_OR: case BPF_OR | BPF_FETCH: /* {lao|laog} */ EMIT_ATOMIC(0x00f6, 0x00e6); break; case BPF_XOR: case BPF_XOR | BPF_FETCH: /* {lax|laxg} */ EMIT_ATOMIC(0x00f7, 0x00e7); break; #undef EMIT_ATOMIC case BPF_XCHG: /* {ly|lg} %w0,off(%dst) */ EMIT6_DISP_LH(0xe3000000, is32 ? 0x0058 : 0x0004, REG_W0, REG_0, dst_reg, off); /* 0: {csy|csg} %w0,%src,off(%dst) */ EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030, REG_W0, src_reg, dst_reg, off); /* brc 4,0b */ EMIT4_PCREL_RIC(0xa7040000, 4, jit->prg - 6); /* {llgfr|lgr} %src,%w0 */ EMIT4(is32 ? 0xb9160000 : 0xb9040000, src_reg, REG_W0); if (is32 && insn_is_zext(&insn[1])) insn_count = 2; break; case BPF_CMPXCHG: /* 0: {csy|csg} %b0,%src,off(%dst) */ EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030, BPF_REG_0, src_reg, dst_reg, off); break; default: pr_err("Unknown atomic operation %02x\n", insn->imm); return -1; } jit->seen |= SEEN_MEM; break; } /* * BPF_LDX */ case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */ case BPF_LDX | BPF_PROBE_MEM | BPF_B: /* llgc %dst,0(off,%src) */ EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off); jit->seen |= SEEN_MEM; if (insn_is_zext(&insn[1])) insn_count = 2; break; case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */ case BPF_LDX | BPF_PROBE_MEM | BPF_H: /* llgh %dst,0(off,%src) */ EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off); jit->seen |= SEEN_MEM; if (insn_is_zext(&insn[1])) insn_count = 2; break; case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */ case BPF_LDX | BPF_PROBE_MEM | BPF_W: /* llgf %dst,off(%src) */ jit->seen |= SEEN_MEM; EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off); if (insn_is_zext(&insn[1])) insn_count = 2; break; case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */ case BPF_LDX | BPF_PROBE_MEM | BPF_DW: /* lg %dst,0(off,%src) */ jit->seen |= SEEN_MEM; EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off); break; /* * BPF_JMP / CALL */ case BPF_JMP | BPF_CALL: { u64 func; bool func_addr_fixed; int ret; ret = bpf_jit_get_func_addr(fp, insn, extra_pass, &func, &func_addr_fixed); if (ret < 0) return -1; REG_SET_SEEN(BPF_REG_5); jit->seen |= SEEN_FUNC; /* lgrl %w1,func */ EMIT6_PCREL_RILB(0xc4080000, REG_W1, _EMIT_CONST_U64(func)); if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable) { /* brasl %r14,__s390_indirect_jump_r1 */ EMIT6_PCREL_RILB(0xc0050000, REG_14, jit->r1_thunk_ip); } else { /* basr %r14,%w1 */ EMIT2(0x0d00, REG_14, REG_W1); } /* lgr %b0,%r2: load return value into %b0 */ EMIT4(0xb9040000, BPF_REG_0, REG_2); break; } case BPF_JMP | BPF_TAIL_CALL: { int patch_1_clrj, patch_2_clij, patch_3_brc; /* * Implicit input: * B1: pointer to ctx * B2: pointer to bpf_array * B3: index in bpf_array */ jit->seen |= SEEN_TAIL_CALL; /* * if (index >= array->map.max_entries) * goto out; */ /* llgf %w1,map.max_entries(%b2) */ EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2, offsetof(struct bpf_array, map.max_entries)); /* if ((u32)%b3 >= (u32)%w1) goto out; */ /* clrj %b3,%w1,0xa,out */ patch_1_clrj = jit->prg; EMIT6_PCREL_RIEB(0xec000000, 0x0077, BPF_REG_3, REG_W1, 0xa, jit->prg); /* * if (tail_call_cnt++ > MAX_TAIL_CALL_CNT) * goto out; */ if (jit->seen & SEEN_STACK) off = STK_OFF_TCCNT + STK_OFF + stack_depth; else off = STK_OFF_TCCNT; /* lhi %w0,1 */ EMIT4_IMM(0xa7080000, REG_W0, 1); /* laal %w1,%w0,off(%r15) */ EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off); /* clij %w1,MAX_TAIL_CALL_CNT,0x2,out */ patch_2_clij = jit->prg; EMIT6_PCREL_RIEC(0xec000000, 0x007f, REG_W1, MAX_TAIL_CALL_CNT, 2, jit->prg); /* * prog = array->ptrs[index]; * if (prog == NULL) * goto out; */ /* llgfr %r1,%b3: %r1 = (u32) index */ EMIT4(0xb9160000, REG_1, BPF_REG_3); /* sllg %r1,%r1,3: %r1 *= 8 */ EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, REG_1, REG_0, 3); /* ltg %r1,prog(%b2,%r1) */ EMIT6_DISP_LH(0xe3000000, 0x0002, REG_1, BPF_REG_2, REG_1, offsetof(struct bpf_array, ptrs)); /* brc 0x8,out */ patch_3_brc = jit->prg; EMIT4_PCREL_RIC(0xa7040000, 8, jit->prg); /* * Restore registers before calling function */ save_restore_regs(jit, REGS_RESTORE, stack_depth); /* * goto *(prog->bpf_func + tail_call_start); */ /* lg %r1,bpf_func(%r1) */ EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0, offsetof(struct bpf_prog, bpf_func)); /* bc 0xf,tail_call_start(%r1) */ _EMIT4(0x47f01000 + jit->tail_call_start); /* out: */ if (jit->prg_buf) { *(u16 *)(jit->prg_buf + patch_1_clrj + 2) = (jit->prg - patch_1_clrj) >> 1; *(u16 *)(jit->prg_buf + patch_2_clij + 2) = (jit->prg - patch_2_clij) >> 1; *(u16 *)(jit->prg_buf + patch_3_brc + 2) = (jit->prg - patch_3_brc) >> 1; } break; } case BPF_JMP | BPF_EXIT: /* return b0 */ last = (i == fp->len - 1) ? 1 : 0; if (last) break; if (!is_first_pass(jit) && can_use_rel(jit, jit->exit_ip)) /* brc 0xf, <exit> */ EMIT4_PCREL_RIC(0xa7040000, 0xf, jit->exit_ip); else /* brcl 0xf, <exit> */ EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->exit_ip); break; /* * Branch relative (number of skipped instructions) to offset on * condition. * * Condition code to mask mapping: * * CC | Description | Mask * ------------------------------ * 0 | Operands equal | 8 * 1 | First operand low | 4 * 2 | First operand high | 2 * 3 | Unused | 1 * * For s390x relative branches: ip = ip + off_bytes * For BPF relative branches: insn = insn + off_insns + 1 * * For example for s390x with offset 0 we jump to the branch * instruction itself (loop) and for BPF with offset 0 we * branch to the instruction behind the branch. */ case BPF_JMP | BPF_JA: /* if (true) */ mask = 0xf000; /* j */ goto branch_oc; case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */ case BPF_JMP32 | BPF_JSGT | BPF_K: /* ((s32) dst > (s32) imm) */ mask = 0x2000; /* jh */ goto branch_ks; case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */ case BPF_JMP32 | BPF_JSLT | BPF_K: /* ((s32) dst < (s32) imm) */ mask = 0x4000; /* jl */ goto branch_ks; case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */ case BPF_JMP32 | BPF_JSGE | BPF_K: /* ((s32) dst >= (s32) imm) */ mask = 0xa000; /* jhe */ goto branch_ks; case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */ case BPF_JMP32 | BPF_JSLE | BPF_K: /* ((s32) dst <= (s32) imm) */ mask = 0xc000; /* jle */ goto branch_ks; case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */ case BPF_JMP32 | BPF_JGT | BPF_K: /* ((u32) dst_reg > (u32) imm) */ mask = 0x2000; /* jh */ goto branch_ku; case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */ case BPF_JMP32 | BPF_JLT | BPF_K: /* ((u32) dst_reg < (u32) imm) */ mask = 0x4000; /* jl */ goto branch_ku; case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */ case BPF_JMP32 | BPF_JGE | BPF_K: /* ((u32) dst_reg >= (u32) imm) */ mask = 0xa000; /* jhe */ goto branch_ku; case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */ case BPF_JMP32 | BPF_JLE | BPF_K: /* ((u32) dst_reg <= (u32) imm) */ mask = 0xc000; /* jle */ goto branch_ku; case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */ case BPF_JMP32 | BPF_JNE | BPF_K: /* ((u32) dst_reg != (u32) imm) */ mask = 0x7000; /* jne */ goto branch_ku; case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */ case BPF_JMP32 | BPF_JEQ | BPF_K: /* ((u32) dst_reg == (u32) imm) */ mask = 0x8000; /* je */ goto branch_ku; case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */ case BPF_JMP32 | BPF_JSET | BPF_K: /* ((u32) dst_reg & (u32) imm) */ mask = 0x7000; /* jnz */ if (BPF_CLASS(insn->code) == BPF_JMP32) { /* llilf %w1,imm (load zero extend imm) */ EMIT6_IMM(0xc00f0000, REG_W1, imm); /* nr %w1,%dst */ EMIT2(0x1400, REG_W1, dst_reg); } else { /* lgfi %w1,imm (load sign extend imm) */ EMIT6_IMM(0xc0010000, REG_W1, imm); /* ngr %w1,%dst */ EMIT4(0xb9800000, REG_W1, dst_reg); } goto branch_oc; case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */ case BPF_JMP32 | BPF_JSGT | BPF_X: /* ((s32) dst > (s32) src) */ mask = 0x2000; /* jh */ goto branch_xs; case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */ case BPF_JMP32 | BPF_JSLT | BPF_X: /* ((s32) dst < (s32) src) */ mask = 0x4000; /* jl */ goto branch_xs; case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */ case BPF_JMP32 | BPF_JSGE | BPF_X: /* ((s32) dst >= (s32) src) */ mask = 0xa000; /* jhe */ goto branch_xs; case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */ case BPF_JMP32 | BPF_JSLE | BPF_X: /* ((s32) dst <= (s32) src) */ mask = 0xc000; /* jle */ goto branch_xs; case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */ case BPF_JMP32 | BPF_JGT | BPF_X: /* ((u32) dst > (u32) src) */ mask = 0x2000; /* jh */ goto branch_xu; case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */ case BPF_JMP32 | BPF_JLT | BPF_X: /* ((u32) dst < (u32) src) */ mask = 0x4000; /* jl */ goto branch_xu; case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */ case BPF_JMP32 | BPF_JGE | BPF_X: /* ((u32) dst >= (u32) src) */ mask = 0xa000; /* jhe */ goto branch_xu; case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */ case BPF_JMP32 | BPF_JLE | BPF_X: /* ((u32) dst <= (u32) src) */ mask = 0xc000; /* jle */ goto branch_xu; case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */ case BPF_JMP32 | BPF_JNE | BPF_X: /* ((u32) dst != (u32) src) */ mask = 0x7000; /* jne */ goto branch_xu; case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */ case BPF_JMP32 | BPF_JEQ | BPF_X: /* ((u32) dst == (u32) src) */ mask = 0x8000; /* je */ goto branch_xu; case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */ case BPF_JMP32 | BPF_JSET | BPF_X: /* ((u32) dst & (u32) src) */ { bool is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; mask = 0x7000; /* jnz */ /* nrk or ngrk %w1,%dst,%src */ EMIT4_RRF((is_jmp32 ? 0xb9f40000 : 0xb9e40000), REG_W1, dst_reg, src_reg); goto branch_oc; branch_ks: is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; /* cfi or cgfi %dst,imm */ EMIT6_IMM(is_jmp32 ? 0xc20d0000 : 0xc20c0000, dst_reg, imm); if (!is_first_pass(jit) && can_use_rel(jit, addrs[i + off + 1])) { /* brc mask,off */ EMIT4_PCREL_RIC(0xa7040000, mask >> 12, addrs[i + off + 1]); } else { /* brcl mask,off */ EMIT6_PCREL_RILC(0xc0040000, mask >> 12, addrs[i + off + 1]); } break; branch_ku: /* lgfi %w1,imm (load sign extend imm) */ src_reg = REG_1; EMIT6_IMM(0xc0010000, src_reg, imm); goto branch_xu; branch_xs: is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; if (!is_first_pass(jit) && can_use_rel(jit, addrs[i + off + 1])) { /* crj or cgrj %dst,%src,mask,off */ EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064), dst_reg, src_reg, i, off, mask); } else { /* cr or cgr %dst,%src */ if (is_jmp32) EMIT2(0x1900, dst_reg, src_reg); else EMIT4(0xb9200000, dst_reg, src_reg); /* brcl mask,off */ EMIT6_PCREL_RILC(0xc0040000, mask >> 12, addrs[i + off + 1]); } break; branch_xu: is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; if (!is_first_pass(jit) && can_use_rel(jit, addrs[i + off + 1])) { /* clrj or clgrj %dst,%src,mask,off */ EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065), dst_reg, src_reg, i, off, mask); } else { /* clr or clgr %dst,%src */ if (is_jmp32) EMIT2(0x1500, dst_reg, src_reg); else EMIT4(0xb9210000, dst_reg, src_reg); /* brcl mask,off */ EMIT6_PCREL_RILC(0xc0040000, mask >> 12, addrs[i + off + 1]); } break; branch_oc: if (!is_first_pass(jit) && can_use_rel(jit, addrs[i + off + 1])) { /* brc mask,off */ EMIT4_PCREL_RIC(0xa7040000, mask >> 12, addrs[i + off + 1]); } else { /* brcl mask,off */ EMIT6_PCREL_RILC(0xc0040000, mask >> 12, addrs[i + off + 1]); } break; } default: /* too complex, give up */ pr_err("Unknown opcode %02x\n", insn->code); return -1; } if (probe_prg != -1) { /* * Handlers of certain exceptions leave psw.addr pointing to * the instruction directly after the failing one. Therefore, * create two exception table entries and also add a nop in * case two probing instructions come directly after each * other. */ nop_prg = jit->prg; /* bcr 0,%0 */ _EMIT2(0x0700); err = bpf_jit_probe_mem(jit, fp, probe_prg, nop_prg); if (err < 0) return err; } return insn_count; } /* * Return whether new i-th instruction address does not violate any invariant */ static bool bpf_is_new_addr_sane(struct bpf_jit *jit, int i) { /* On the first pass anything goes */ if (is_first_pass(jit)) return true; /* The codegen pass must not change anything */ if (is_codegen_pass(jit)) return jit->addrs[i] == jit->prg; /* Passes in between must not increase code size */ return jit->addrs[i] >= jit->prg; } /* * Update the address of i-th instruction */ static int bpf_set_addr(struct bpf_jit *jit, int i) { int delta; if (is_codegen_pass(jit)) { delta = jit->prg - jit->addrs[i]; if (delta < 0) bpf_skip(jit, -delta); } if (WARN_ON_ONCE(!bpf_is_new_addr_sane(jit, i))) return -1; jit->addrs[i] = jit->prg; return 0; } /* * Compile eBPF program into s390x code */ static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp, bool extra_pass, u32 stack_depth) { int i, insn_count, lit32_size, lit64_size; jit->lit32 = jit->lit32_start; jit->lit64 = jit->lit64_start; jit->prg = 0; jit->excnt = 0; bpf_jit_prologue(jit, stack_depth); if (bpf_set_addr(jit, 0) < 0) return -1; for (i = 0; i < fp->len; i += insn_count) { insn_count = bpf_jit_insn(jit, fp, i, extra_pass, stack_depth); if (insn_count < 0) return -1; /* Next instruction address */ if (bpf_set_addr(jit, i + insn_count) < 0) return -1; } bpf_jit_epilogue(jit, stack_depth); lit32_size = jit->lit32 - jit->lit32_start; lit64_size = jit->lit64 - jit->lit64_start; jit->lit32_start = jit->prg; if (lit32_size) jit->lit32_start = ALIGN(jit->lit32_start, 4); jit->lit64_start = jit->lit32_start + lit32_size; if (lit64_size) jit->lit64_start = ALIGN(jit->lit64_start, 8); jit->size = jit->lit64_start + lit64_size; jit->size_prg = jit->prg; if (WARN_ON_ONCE(fp->aux->extable && jit->excnt != fp->aux->num_exentries)) /* Verifier bug - too many entries. */ return -1; return 0; } bool bpf_jit_needs_zext(void) { return true; } struct s390_jit_data { struct bpf_binary_header *header; struct bpf_jit ctx; int pass; }; static struct bpf_binary_header *bpf_jit_alloc(struct bpf_jit *jit, struct bpf_prog *fp) { struct bpf_binary_header *header; u32 extable_size; u32 code_size; /* We need two entries per insn. */ fp->aux->num_exentries *= 2; code_size = roundup(jit->size, __alignof__(struct exception_table_entry)); extable_size = fp->aux->num_exentries * sizeof(struct exception_table_entry); header = bpf_jit_binary_alloc(code_size + extable_size, &jit->prg_buf, 8, jit_fill_hole); if (!header) return NULL; fp->aux->extable = (struct exception_table_entry *) (jit->prg_buf + code_size); return header; } /* * Compile eBPF program "fp" */ struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp) { u32 stack_depth = round_up(fp->aux->stack_depth, 8); struct bpf_prog *tmp, *orig_fp = fp; struct bpf_binary_header *header; struct s390_jit_data *jit_data; bool tmp_blinded = false; bool extra_pass = false; struct bpf_jit jit; int pass; if (!fp->jit_requested) return orig_fp; tmp = bpf_jit_blind_constants(fp); /* * If blinding was requested and we failed during blinding, * we must fall back to the interpreter. */ if (IS_ERR(tmp)) return orig_fp; if (tmp != fp) { tmp_blinded = true; fp = tmp; } jit_data = fp->aux->jit_data; if (!jit_data) { jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL); if (!jit_data) { fp = orig_fp; goto out; } fp->aux->jit_data = jit_data; } if (jit_data->ctx.addrs) { jit = jit_data->ctx; header = jit_data->header; extra_pass = true; pass = jit_data->pass + 1; goto skip_init_ctx; } memset(&jit, 0, sizeof(jit)); jit.addrs = kvcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL); if (jit.addrs == NULL) { fp = orig_fp; goto free_addrs; } /* * Three initial passes: * - 1/2: Determine clobbered registers * - 3: Calculate program size and addrs arrray */ for (pass = 1; pass <= 3; pass++) { if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) { fp = orig_fp; goto free_addrs; } } /* * Final pass: Allocate and generate program */ header = bpf_jit_alloc(&jit, fp); if (!header) { fp = orig_fp; goto free_addrs; } skip_init_ctx: if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) { bpf_jit_binary_free(header); fp = orig_fp; goto free_addrs; } if (bpf_jit_enable > 1) { bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf); print_fn_code(jit.prg_buf, jit.size_prg); } if (!fp->is_func || extra_pass) { bpf_jit_binary_lock_ro(header); } else { jit_data->header = header; jit_data->ctx = jit; jit_data->pass = pass; } fp->bpf_func = (void *) jit.prg_buf; fp->jited = 1; fp->jited_len = jit.size; if (!fp->is_func || extra_pass) { bpf_prog_fill_jited_linfo(fp, jit.addrs + 1); free_addrs: kvfree(jit.addrs); kfree(jit_data); fp->aux->jit_data = NULL; } out: if (tmp_blinded) bpf_jit_prog_release_other(fp, fp == orig_fp ? tmp : orig_fp); return fp; }