/* * Copyright 2020 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dcn302_init.h" #include "dcn302_resource.h" #include "dcn302_dccg.h" #include "irq/dcn302/irq_service_dcn302.h" #include "dcn30/dcn30_dio_link_encoder.h" #include "dcn30/dcn30_dio_stream_encoder.h" #include "dcn30/dcn30_dwb.h" #include "dcn30/dcn30_dpp.h" #include "dcn30/dcn30_hubbub.h" #include "dcn30/dcn30_hubp.h" #include "dcn30/dcn30_mmhubbub.h" #include "dcn30/dcn30_mpc.h" #include "dcn30/dcn30_opp.h" #include "dcn30/dcn30_optc.h" #include "dcn30/dcn30_resource.h" #include "dcn20/dcn20_dsc.h" #include "dcn20/dcn20_resource.h" #include "dcn10/dcn10_resource.h" #include "dce/dce_abm.h" #include "dce/dce_audio.h" #include "dce/dce_aux.h" #include "dce/dce_clock_source.h" #include "dce/dce_hwseq.h" #include "dce/dce_i2c_hw.h" #include "dce/dce_panel_cntl.h" #include "dce/dmub_abm.h" #include "dce/dmub_psr.h" #include "clk_mgr.h" #include "hw_sequencer_private.h" #include "reg_helper.h" #include "resource.h" #include "vm_helper.h" #include "dimgrey_cavefish_ip_offset.h" #include "dcn/dcn_3_0_2_offset.h" #include "dcn/dcn_3_0_2_sh_mask.h" #include "dcn/dpcs_3_0_0_offset.h" #include "dcn/dpcs_3_0_0_sh_mask.h" #include "nbio/nbio_7_4_offset.h" #include "amdgpu_socbb.h" #define DC_LOGGER_INIT(logger) struct _vcs_dpi_ip_params_st dcn3_02_ip = { .use_min_dcfclk = 0, .clamp_min_dcfclk = 0, .odm_capable = 1, .gpuvm_enable = 1, .hostvm_enable = 0, .gpuvm_max_page_table_levels = 4, .hostvm_max_page_table_levels = 4, .hostvm_cached_page_table_levels = 0, .pte_group_size_bytes = 2048, .num_dsc = 5, .rob_buffer_size_kbytes = 184, .det_buffer_size_kbytes = 184, .dpte_buffer_size_in_pte_reqs_luma = 64, .dpte_buffer_size_in_pte_reqs_chroma = 34, .pde_proc_buffer_size_64k_reqs = 48, .dpp_output_buffer_pixels = 2560, .opp_output_buffer_lines = 1, .pixel_chunk_size_kbytes = 8, .pte_enable = 1, .max_page_table_levels = 2, .pte_chunk_size_kbytes = 2, // ? .meta_chunk_size_kbytes = 2, .writeback_chunk_size_kbytes = 8, .line_buffer_size_bits = 789504, .is_line_buffer_bpp_fixed = 0, // ? .line_buffer_fixed_bpp = 0, // ? .dcc_supported = true, .writeback_interface_buffer_size_kbytes = 90, .writeback_line_buffer_buffer_size = 0, .max_line_buffer_lines = 12, .writeback_luma_buffer_size_kbytes = 12, // writeback_line_buffer_buffer_size = 656640 .writeback_chroma_buffer_size_kbytes = 8, .writeback_chroma_line_buffer_width_pixels = 4, .writeback_max_hscl_ratio = 1, .writeback_max_vscl_ratio = 1, .writeback_min_hscl_ratio = 1, .writeback_min_vscl_ratio = 1, .writeback_max_hscl_taps = 1, .writeback_max_vscl_taps = 1, .writeback_line_buffer_luma_buffer_size = 0, .writeback_line_buffer_chroma_buffer_size = 14643, .cursor_buffer_size = 8, .cursor_chunk_size = 2, .max_num_otg = 5, .max_num_dpp = 5, .max_num_wb = 1, .max_dchub_pscl_bw_pix_per_clk = 4, .max_pscl_lb_bw_pix_per_clk = 2, .max_lb_vscl_bw_pix_per_clk = 4, .max_vscl_hscl_bw_pix_per_clk = 4, .max_hscl_ratio = 6, .max_vscl_ratio = 6, .hscl_mults = 4, .vscl_mults = 4, .max_hscl_taps = 8, .max_vscl_taps = 8, .dispclk_ramp_margin_percent = 1, .underscan_factor = 1.11, .min_vblank_lines = 32, .dppclk_delay_subtotal = 46, .dynamic_metadata_vm_enabled = true, .dppclk_delay_scl_lb_only = 16, .dppclk_delay_scl = 50, .dppclk_delay_cnvc_formatter = 27, .dppclk_delay_cnvc_cursor = 6, .dispclk_delay_subtotal = 119, .dcfclk_cstate_latency = 5.2, // SRExitTime .max_inter_dcn_tile_repeaters = 8, .max_num_hdmi_frl_outputs = 1, .odm_combine_4to1_supported = true, .xfc_supported = false, .xfc_fill_bw_overhead_percent = 10.0, .xfc_fill_constant_bytes = 0, .gfx7_compat_tiling_supported = 0, .number_of_cursors = 1, }; struct _vcs_dpi_soc_bounding_box_st dcn3_02_soc = { .clock_limits = { { .state = 0, .dispclk_mhz = 562.0, .dppclk_mhz = 300.0, .phyclk_mhz = 300.0, .phyclk_d18_mhz = 667.0, .dscclk_mhz = 405.6, }, }, .min_dcfclk = 500.0, /* TODO: set this to actual min DCFCLK */ .num_states = 1, .sr_exit_time_us = 26.5, .sr_enter_plus_exit_time_us = 31, .urgent_latency_us = 4.0, .urgent_latency_pixel_data_only_us = 4.0, .urgent_latency_pixel_mixed_with_vm_data_us = 4.0, .urgent_latency_vm_data_only_us = 4.0, .urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096, .urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096, .urgent_out_of_order_return_per_channel_vm_only_bytes = 4096, .pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 80.0, .pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0, .pct_ideal_dram_sdp_bw_after_urgent_vm_only = 40.0, .max_avg_sdp_bw_use_normal_percent = 60.0, .max_avg_dram_bw_use_normal_percent = 40.0, .writeback_latency_us = 12.0, .max_request_size_bytes = 256, .fabric_datapath_to_dcn_data_return_bytes = 64, .dcn_downspread_percent = 0.5, .downspread_percent = 0.38, .dram_page_open_time_ns = 50.0, .dram_rw_turnaround_time_ns = 17.5, .dram_return_buffer_per_channel_bytes = 8192, .round_trip_ping_latency_dcfclk_cycles = 156, .urgent_out_of_order_return_per_channel_bytes = 4096, .channel_interleave_bytes = 256, .num_banks = 8, .gpuvm_min_page_size_bytes = 4096, .hostvm_min_page_size_bytes = 4096, .dram_clock_change_latency_us = 404, .dummy_pstate_latency_us = 5, .writeback_dram_clock_change_latency_us = 23.0, .return_bus_width_bytes = 64, .dispclk_dppclk_vco_speed_mhz = 3650, .xfc_bus_transport_time_us = 20, // ? .xfc_xbuf_latency_tolerance_us = 4, // ? .use_urgent_burst_bw = 1, // ? .do_urgent_latency_adjustment = true, .urgent_latency_adjustment_fabric_clock_component_us = 1.0, .urgent_latency_adjustment_fabric_clock_reference_mhz = 1000, }; static const struct dc_debug_options debug_defaults_drv = { .disable_dmcu = true, .force_abm_enable = false, .timing_trace = false, .clock_trace = true, .disable_pplib_clock_request = true, .pipe_split_policy = MPC_SPLIT_DYNAMIC, .force_single_disp_pipe_split = false, .disable_dcc = DCC_ENABLE, .vsr_support = true, .performance_trace = false, .max_downscale_src_width = 7680,/*upto 8K*/ .disable_pplib_wm_range = false, .scl_reset_length10 = true, .sanity_checks = false, .underflow_assert_delay_us = 0xFFFFFFFF, .dwb_fi_phase = -1, // -1 = disable, .dmub_command_table = true, .use_max_lb = true }; static const struct dc_debug_options debug_defaults_diags = { .disable_dmcu = true, .force_abm_enable = false, .timing_trace = true, .clock_trace = true, .disable_dpp_power_gate = true, .disable_hubp_power_gate = true, .disable_clock_gate = true, .disable_pplib_clock_request = true, .disable_pplib_wm_range = true, .disable_stutter = false, .scl_reset_length10 = true, .dwb_fi_phase = -1, // -1 = disable .dmub_command_table = true, .enable_tri_buf = true, .disable_psr = true, .use_max_lb = true }; enum dcn302_clk_src_array_id { DCN302_CLK_SRC_PLL0, DCN302_CLK_SRC_PLL1, DCN302_CLK_SRC_PLL2, DCN302_CLK_SRC_PLL3, DCN302_CLK_SRC_PLL4, DCN302_CLK_SRC_TOTAL }; static const struct resource_caps res_cap_dcn302 = { .num_timing_generator = 5, .num_opp = 5, .num_video_plane = 5, .num_audio = 5, .num_stream_encoder = 5, .num_dwb = 1, .num_ddc = 5, .num_vmid = 16, .num_mpc_3dlut = 2, .num_dsc = 5, }; static const struct dc_plane_cap plane_cap = { .type = DC_PLANE_TYPE_DCN_UNIVERSAL, .blends_with_above = true, .blends_with_below = true, .per_pixel_alpha = true, .pixel_format_support = { .argb8888 = true, .nv12 = true, .fp16 = true, .p010 = false, .ayuv = false, }, .max_upscale_factor = { .argb8888 = 16000, .nv12 = 16000, .fp16 = 16000 }, /* 6:1 downscaling ratio: 1000/6 = 166.666 */ .max_downscale_factor = { .argb8888 = 167, .nv12 = 167, .fp16 = 167 }, 16, 16 }; /* NBIO */ #define NBIO_BASE_INNER(seg) \ NBIO_BASE__INST0_SEG ## seg #define NBIO_BASE(seg) \ NBIO_BASE_INNER(seg) #define NBIO_SR(reg_name)\ .reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \ mm ## reg_name /* DCN */ #undef BASE_INNER #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg #define BASE(seg) BASE_INNER(seg) #define SR(reg_name)\ .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + mm ## reg_name #define SF(reg_name, field_name, post_fix)\ .field_name = reg_name ## __ ## field_name ## post_fix #define SRI(reg_name, block, id)\ .reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + mm ## block ## id ## _ ## reg_name #define SRI2(reg_name, block, id)\ .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + mm ## reg_name #define SRII(reg_name, block, id)\ .reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ mm ## block ## id ## _ ## reg_name #define DCCG_SRII(reg_name, block, id)\ .block ## _ ## reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ mm ## block ## id ## _ ## reg_name #define VUPDATE_SRII(reg_name, block, id)\ .reg_name[id] = BASE(mm ## reg_name ## _ ## block ## id ## _BASE_IDX) + \ mm ## reg_name ## _ ## block ## id #define SRII_DWB(reg_name, temp_name, block, id)\ .reg_name[id] = BASE(mm ## block ## id ## _ ## temp_name ## _BASE_IDX) + \ mm ## block ## id ## _ ## temp_name #define SRII_MPC_RMU(reg_name, block, id)\ .RMU##_##reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ mm ## block ## id ## _ ## reg_name static const struct dcn_hubbub_registers hubbub_reg = { HUBBUB_REG_LIST_DCN30(0) }; static const struct dcn_hubbub_shift hubbub_shift = { HUBBUB_MASK_SH_LIST_DCN30(__SHIFT) }; static const struct dcn_hubbub_mask hubbub_mask = { HUBBUB_MASK_SH_LIST_DCN30(_MASK) }; #define vmid_regs(id)\ [id] = { DCN20_VMID_REG_LIST(id) } static const struct dcn_vmid_registers vmid_regs[] = { vmid_regs(0), vmid_regs(1), vmid_regs(2), vmid_regs(3), vmid_regs(4), vmid_regs(5), vmid_regs(6), vmid_regs(7), vmid_regs(8), vmid_regs(9), vmid_regs(10), vmid_regs(11), vmid_regs(12), vmid_regs(13), vmid_regs(14), vmid_regs(15) }; static const struct dcn20_vmid_shift vmid_shifts = { DCN20_VMID_MASK_SH_LIST(__SHIFT) }; static const struct dcn20_vmid_mask vmid_masks = { DCN20_VMID_MASK_SH_LIST(_MASK) }; static struct hubbub *dcn302_hubbub_create(struct dc_context *ctx) { int i; struct dcn20_hubbub *hubbub3 = kzalloc(sizeof(struct dcn20_hubbub), GFP_KERNEL); if (!hubbub3) return NULL; hubbub3_construct(hubbub3, ctx, &hubbub_reg, &hubbub_shift, &hubbub_mask); for (i = 0; i < res_cap_dcn302.num_vmid; i++) { struct dcn20_vmid *vmid = &hubbub3->vmid[i]; vmid->ctx = ctx; vmid->regs = &vmid_regs[i]; vmid->shifts = &vmid_shifts; vmid->masks = &vmid_masks; } return &hubbub3->base; } #define vpg_regs(id)\ [id] = { VPG_DCN3_REG_LIST(id) } static const struct dcn30_vpg_registers vpg_regs[] = { vpg_regs(0), vpg_regs(1), vpg_regs(2), vpg_regs(3), vpg_regs(4), vpg_regs(5) }; static const struct dcn30_vpg_shift vpg_shift = { DCN3_VPG_MASK_SH_LIST(__SHIFT) }; static const struct dcn30_vpg_mask vpg_mask = { DCN3_VPG_MASK_SH_LIST(_MASK) }; static struct vpg *dcn302_vpg_create(struct dc_context *ctx, uint32_t inst) { struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL); if (!vpg3) return NULL; vpg3_construct(vpg3, ctx, inst, &vpg_regs[inst], &vpg_shift, &vpg_mask); return &vpg3->base; } #define afmt_regs(id)\ [id] = { AFMT_DCN3_REG_LIST(id) } static const struct dcn30_afmt_registers afmt_regs[] = { afmt_regs(0), afmt_regs(1), afmt_regs(2), afmt_regs(3), afmt_regs(4), afmt_regs(5) }; static const struct dcn30_afmt_shift afmt_shift = { DCN3_AFMT_MASK_SH_LIST(__SHIFT) }; static const struct dcn30_afmt_mask afmt_mask = { DCN3_AFMT_MASK_SH_LIST(_MASK) }; static struct afmt *dcn302_afmt_create(struct dc_context *ctx, uint32_t inst) { struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL); if (!afmt3) return NULL; afmt3_construct(afmt3, ctx, inst, &afmt_regs[inst], &afmt_shift, &afmt_mask); return &afmt3->base; } #define audio_regs(id)\ [id] = { AUD_COMMON_REG_LIST(id) } static const struct dce_audio_registers audio_regs[] = { audio_regs(0), audio_regs(1), audio_regs(2), audio_regs(3), audio_regs(4), audio_regs(5), audio_regs(6) }; #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\ SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\ SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\ AUD_COMMON_MASK_SH_LIST_BASE(mask_sh) static const struct dce_audio_shift audio_shift = { DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT) }; static const struct dce_audio_mask audio_mask = { DCE120_AUD_COMMON_MASK_SH_LIST(_MASK) }; static struct audio *dcn302_create_audio(struct dc_context *ctx, unsigned int inst) { return dce_audio_create(ctx, inst, &audio_regs[inst], &audio_shift, &audio_mask); } #define stream_enc_regs(id)\ [id] = { SE_DCN3_REG_LIST(id) } static const struct dcn10_stream_enc_registers stream_enc_regs[] = { stream_enc_regs(0), stream_enc_regs(1), stream_enc_regs(2), stream_enc_regs(3), stream_enc_regs(4) }; static const struct dcn10_stream_encoder_shift se_shift = { SE_COMMON_MASK_SH_LIST_DCN30(__SHIFT) }; static const struct dcn10_stream_encoder_mask se_mask = { SE_COMMON_MASK_SH_LIST_DCN30(_MASK) }; static struct stream_encoder *dcn302_stream_encoder_create(enum engine_id eng_id, struct dc_context *ctx) { struct dcn10_stream_encoder *enc1; struct vpg *vpg; struct afmt *afmt; int vpg_inst; int afmt_inst; /* Mapping of VPG, AFMT, DME register blocks to DIO block instance */ if (eng_id <= ENGINE_ID_DIGE) { vpg_inst = eng_id; afmt_inst = eng_id; } else return NULL; enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL); vpg = dcn302_vpg_create(ctx, vpg_inst); afmt = dcn302_afmt_create(ctx, afmt_inst); if (!enc1 || !vpg || !afmt) return NULL; dcn30_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios, eng_id, vpg, afmt, &stream_enc_regs[eng_id], &se_shift, &se_mask); return &enc1->base; } #define clk_src_regs(index, pllid)\ [index] = { CS_COMMON_REG_LIST_DCN3_02(index, pllid) } static const struct dce110_clk_src_regs clk_src_regs[] = { clk_src_regs(0, A), clk_src_regs(1, B), clk_src_regs(2, C), clk_src_regs(3, D), clk_src_regs(4, E) }; static const struct dce110_clk_src_shift cs_shift = { CS_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT) }; static const struct dce110_clk_src_mask cs_mask = { CS_COMMON_MASK_SH_LIST_DCN2_0(_MASK) }; static struct clock_source *dcn302_clock_source_create(struct dc_context *ctx, struct dc_bios *bios, enum clock_source_id id, const struct dce110_clk_src_regs *regs, bool dp_clk_src) { struct dce110_clk_src *clk_src = kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL); if (!clk_src) return NULL; if (dcn3_clk_src_construct(clk_src, ctx, bios, id, regs, &cs_shift, &cs_mask)) { clk_src->base.dp_clk_src = dp_clk_src; return &clk_src->base; } BREAK_TO_DEBUGGER(); return NULL; } static const struct dce_hwseq_registers hwseq_reg = { HWSEQ_DCN302_REG_LIST() }; static const struct dce_hwseq_shift hwseq_shift = { HWSEQ_DCN302_MASK_SH_LIST(__SHIFT) }; static const struct dce_hwseq_mask hwseq_mask = { HWSEQ_DCN302_MASK_SH_LIST(_MASK) }; static struct dce_hwseq *dcn302_hwseq_create(struct dc_context *ctx) { struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL); if (hws) { hws->ctx = ctx; hws->regs = &hwseq_reg; hws->shifts = &hwseq_shift; hws->masks = &hwseq_mask; } return hws; } #define hubp_regs(id)\ [id] = { HUBP_REG_LIST_DCN30(id) } static const struct dcn_hubp2_registers hubp_regs[] = { hubp_regs(0), hubp_regs(1), hubp_regs(2), hubp_regs(3), hubp_regs(4) }; static const struct dcn_hubp2_shift hubp_shift = { HUBP_MASK_SH_LIST_DCN30(__SHIFT) }; static const struct dcn_hubp2_mask hubp_mask = { HUBP_MASK_SH_LIST_DCN30(_MASK) }; static struct hubp *dcn302_hubp_create(struct dc_context *ctx, uint32_t inst) { struct dcn20_hubp *hubp2 = kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL); if (!hubp2) return NULL; if (hubp3_construct(hubp2, ctx, inst, &hubp_regs[inst], &hubp_shift, &hubp_mask)) return &hubp2->base; BREAK_TO_DEBUGGER(); kfree(hubp2); return NULL; } #define dpp_regs(id)\ [id] = { DPP_REG_LIST_DCN30(id) } static const struct dcn3_dpp_registers dpp_regs[] = { dpp_regs(0), dpp_regs(1), dpp_regs(2), dpp_regs(3), dpp_regs(4) }; static const struct dcn3_dpp_shift tf_shift = { DPP_REG_LIST_SH_MASK_DCN30(__SHIFT) }; static const struct dcn3_dpp_mask tf_mask = { DPP_REG_LIST_SH_MASK_DCN30(_MASK) }; static struct dpp *dcn302_dpp_create(struct dc_context *ctx, uint32_t inst) { struct dcn3_dpp *dpp = kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL); if (!dpp) return NULL; if (dpp3_construct(dpp, ctx, inst, &dpp_regs[inst], &tf_shift, &tf_mask)) return &dpp->base; BREAK_TO_DEBUGGER(); kfree(dpp); return NULL; } #define opp_regs(id)\ [id] = { OPP_REG_LIST_DCN30(id) } static const struct dcn20_opp_registers opp_regs[] = { opp_regs(0), opp_regs(1), opp_regs(2), opp_regs(3), opp_regs(4) }; static const struct dcn20_opp_shift opp_shift = { OPP_MASK_SH_LIST_DCN20(__SHIFT) }; static const struct dcn20_opp_mask opp_mask = { OPP_MASK_SH_LIST_DCN20(_MASK) }; static struct output_pixel_processor *dcn302_opp_create(struct dc_context *ctx, uint32_t inst) { struct dcn20_opp *opp = kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL); if (!opp) { BREAK_TO_DEBUGGER(); return NULL; } dcn20_opp_construct(opp, ctx, inst, &opp_regs[inst], &opp_shift, &opp_mask); return &opp->base; } #define optc_regs(id)\ [id] = { OPTC_COMMON_REG_LIST_DCN3_0(id) } static const struct dcn_optc_registers optc_regs[] = { optc_regs(0), optc_regs(1), optc_regs(2), optc_regs(3), optc_regs(4) }; static const struct dcn_optc_shift optc_shift = { OPTC_COMMON_MASK_SH_LIST_DCN30(__SHIFT) }; static const struct dcn_optc_mask optc_mask = { OPTC_COMMON_MASK_SH_LIST_DCN30(_MASK) }; static struct timing_generator *dcn302_timing_generator_create(struct dc_context *ctx, uint32_t instance) { struct optc *tgn10 = kzalloc(sizeof(struct optc), GFP_KERNEL); if (!tgn10) return NULL; tgn10->base.inst = instance; tgn10->base.ctx = ctx; tgn10->tg_regs = &optc_regs[instance]; tgn10->tg_shift = &optc_shift; tgn10->tg_mask = &optc_mask; dcn30_timing_generator_init(tgn10); return &tgn10->base; } static const struct dcn30_mpc_registers mpc_regs = { MPC_REG_LIST_DCN3_0(0), MPC_REG_LIST_DCN3_0(1), MPC_REG_LIST_DCN3_0(2), MPC_REG_LIST_DCN3_0(3), MPC_REG_LIST_DCN3_0(4), MPC_OUT_MUX_REG_LIST_DCN3_0(0), MPC_OUT_MUX_REG_LIST_DCN3_0(1), MPC_OUT_MUX_REG_LIST_DCN3_0(2), MPC_OUT_MUX_REG_LIST_DCN3_0(3), MPC_OUT_MUX_REG_LIST_DCN3_0(4), MPC_RMU_GLOBAL_REG_LIST_DCN3AG, MPC_RMU_REG_LIST_DCN3AG(0), MPC_RMU_REG_LIST_DCN3AG(1), MPC_RMU_REG_LIST_DCN3AG(2), MPC_DWB_MUX_REG_LIST_DCN3_0(0), }; static const struct dcn30_mpc_shift mpc_shift = { MPC_COMMON_MASK_SH_LIST_DCN30(__SHIFT) }; static const struct dcn30_mpc_mask mpc_mask = { MPC_COMMON_MASK_SH_LIST_DCN30(_MASK) }; static struct mpc *dcn302_mpc_create(struct dc_context *ctx, int num_mpcc, int num_rmu) { struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc), GFP_KERNEL); if (!mpc30) return NULL; dcn30_mpc_construct(mpc30, ctx, &mpc_regs, &mpc_shift, &mpc_mask, num_mpcc, num_rmu); return &mpc30->base; } #define dsc_regsDCN20(id)\ [id] = { DSC_REG_LIST_DCN20(id) } static const struct dcn20_dsc_registers dsc_regs[] = { dsc_regsDCN20(0), dsc_regsDCN20(1), dsc_regsDCN20(2), dsc_regsDCN20(3), dsc_regsDCN20(4) }; static const struct dcn20_dsc_shift dsc_shift = { DSC_REG_LIST_SH_MASK_DCN20(__SHIFT) }; static const struct dcn20_dsc_mask dsc_mask = { DSC_REG_LIST_SH_MASK_DCN20(_MASK) }; static struct display_stream_compressor *dcn302_dsc_create(struct dc_context *ctx, uint32_t inst) { struct dcn20_dsc *dsc = kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL); if (!dsc) { BREAK_TO_DEBUGGER(); return NULL; } dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask); return &dsc->base; } #define dwbc_regs_dcn3(id)\ [id] = { DWBC_COMMON_REG_LIST_DCN30(id) } static const struct dcn30_dwbc_registers dwbc30_regs[] = { dwbc_regs_dcn3(0) }; static const struct dcn30_dwbc_shift dwbc30_shift = { DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT) }; static const struct dcn30_dwbc_mask dwbc30_mask = { DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK) }; static bool dcn302_dwbc_create(struct dc_context *ctx, struct resource_pool *pool) { int i; uint32_t pipe_count = pool->res_cap->num_dwb; for (i = 0; i < pipe_count; i++) { struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc), GFP_KERNEL); if (!dwbc30) { dm_error("DC: failed to create dwbc30!\n"); return false; } dcn30_dwbc_construct(dwbc30, ctx, &dwbc30_regs[i], &dwbc30_shift, &dwbc30_mask, i); pool->dwbc[i] = &dwbc30->base; } return true; } #define mcif_wb_regs_dcn3(id)\ [id] = { MCIF_WB_COMMON_REG_LIST_DCN30(id) } static const struct dcn30_mmhubbub_registers mcif_wb30_regs[] = { mcif_wb_regs_dcn3(0) }; static const struct dcn30_mmhubbub_shift mcif_wb30_shift = { MCIF_WB_COMMON_MASK_SH_LIST_DCN30(__SHIFT) }; static const struct dcn30_mmhubbub_mask mcif_wb30_mask = { MCIF_WB_COMMON_MASK_SH_LIST_DCN30(_MASK) }; static bool dcn302_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool) { int i; uint32_t pipe_count = pool->res_cap->num_dwb; for (i = 0; i < pipe_count; i++) { struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub), GFP_KERNEL); if (!mcif_wb30) { dm_error("DC: failed to create mcif_wb30!\n"); return false; } dcn30_mmhubbub_construct(mcif_wb30, ctx, &mcif_wb30_regs[i], &mcif_wb30_shift, &mcif_wb30_mask, i); pool->mcif_wb[i] = &mcif_wb30->base; } return true; } #define aux_engine_regs(id)\ [id] = {\ AUX_COMMON_REG_LIST0(id), \ .AUXN_IMPCAL = 0, \ .AUXP_IMPCAL = 0, \ .AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \ } static const struct dce110_aux_registers aux_engine_regs[] = { aux_engine_regs(0), aux_engine_regs(1), aux_engine_regs(2), aux_engine_regs(3), aux_engine_regs(4) }; static const struct dce110_aux_registers_shift aux_shift = { DCN_AUX_MASK_SH_LIST(__SHIFT) }; static const struct dce110_aux_registers_mask aux_mask = { DCN_AUX_MASK_SH_LIST(_MASK) }; static struct dce_aux *dcn302_aux_engine_create(struct dc_context *ctx, uint32_t inst) { struct aux_engine_dce110 *aux_engine = kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL); if (!aux_engine) return NULL; dce110_aux_engine_construct(aux_engine, ctx, inst, SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD, &aux_engine_regs[inst], &aux_mask, &aux_shift, ctx->dc->caps.extended_aux_timeout_support); return &aux_engine->base; } #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST(id) } static const struct dce_i2c_registers i2c_hw_regs[] = { i2c_inst_regs(1), i2c_inst_regs(2), i2c_inst_regs(3), i2c_inst_regs(4), i2c_inst_regs(5) }; static const struct dce_i2c_shift i2c_shifts = { I2C_COMMON_MASK_SH_LIST_DCN2(__SHIFT) }; static const struct dce_i2c_mask i2c_masks = { I2C_COMMON_MASK_SH_LIST_DCN2(_MASK) }; static struct dce_i2c_hw *dcn302_i2c_hw_create(struct dc_context *ctx, uint32_t inst) { struct dce_i2c_hw *dce_i2c_hw = kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL); if (!dce_i2c_hw) return NULL; dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst, &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks); return dce_i2c_hw; } static const struct encoder_feature_support link_enc_feature = { .max_hdmi_deep_color = COLOR_DEPTH_121212, .max_hdmi_pixel_clock = 600000, .hdmi_ycbcr420_supported = true, .dp_ycbcr420_supported = true, .fec_supported = true, .flags.bits.IS_HBR2_CAPABLE = true, .flags.bits.IS_HBR3_CAPABLE = true, .flags.bits.IS_TPS3_CAPABLE = true, .flags.bits.IS_TPS4_CAPABLE = true }; #define link_regs(id, phyid)\ [id] = {\ LE_DCN3_REG_LIST(id), \ UNIPHY_DCN2_REG_LIST(phyid), \ DPCS_DCN2_REG_LIST(id), \ SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \ } static const struct dcn10_link_enc_registers link_enc_regs[] = { link_regs(0, A), link_regs(1, B), link_regs(2, C), link_regs(3, D), link_regs(4, E) }; static const struct dcn10_link_enc_shift le_shift = { LINK_ENCODER_MASK_SH_LIST_DCN30(__SHIFT), DPCS_DCN2_MASK_SH_LIST(__SHIFT) }; static const struct dcn10_link_enc_mask le_mask = { LINK_ENCODER_MASK_SH_LIST_DCN30(_MASK), DPCS_DCN2_MASK_SH_LIST(_MASK) }; #define aux_regs(id)\ [id] = { DCN2_AUX_REG_LIST(id) } static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = { aux_regs(0), aux_regs(1), aux_regs(2), aux_regs(3), aux_regs(4) }; #define hpd_regs(id)\ [id] = { HPD_REG_LIST(id) } static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = { hpd_regs(0), hpd_regs(1), hpd_regs(2), hpd_regs(3), hpd_regs(4) }; static struct link_encoder *dcn302_link_encoder_create(const struct encoder_init_data *enc_init_data) { struct dcn20_link_encoder *enc20 = kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL); if (!enc20) return NULL; dcn30_link_encoder_construct(enc20, enc_init_data, &link_enc_feature, &link_enc_regs[enc_init_data->transmitter], &link_enc_aux_regs[enc_init_data->channel - 1], &link_enc_hpd_regs[enc_init_data->hpd_source], &le_shift, &le_mask); return &enc20->enc10.base; } static const struct dce_panel_cntl_registers panel_cntl_regs[] = { { DCN_PANEL_CNTL_REG_LIST() } }; static const struct dce_panel_cntl_shift panel_cntl_shift = { DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT) }; static const struct dce_panel_cntl_mask panel_cntl_mask = { DCE_PANEL_CNTL_MASK_SH_LIST(_MASK) }; static struct panel_cntl *dcn302_panel_cntl_create(const struct panel_cntl_init_data *init_data) { struct dce_panel_cntl *panel_cntl = kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL); if (!panel_cntl) return NULL; dce_panel_cntl_construct(panel_cntl, init_data, &panel_cntl_regs[init_data->inst], &panel_cntl_shift, &panel_cntl_mask); return &panel_cntl->base; } static void read_dce_straps(struct dc_context *ctx, struct resource_straps *straps) { generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX), FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio); } static const struct resource_create_funcs res_create_funcs = { .read_dce_straps = read_dce_straps, .create_audio = dcn302_create_audio, .create_stream_encoder = dcn302_stream_encoder_create, .create_hwseq = dcn302_hwseq_create, }; static const struct resource_create_funcs res_create_maximus_funcs = { .read_dce_straps = NULL, .create_audio = NULL, .create_stream_encoder = NULL, .create_hwseq = dcn302_hwseq_create, }; static bool is_soc_bounding_box_valid(struct dc *dc) { uint32_t hw_internal_rev = dc->ctx->asic_id.hw_internal_rev; if (ASICREV_IS_DIMGREY_CAVEFISH_P(hw_internal_rev)) return true; return false; } static bool init_soc_bounding_box(struct dc *dc, struct resource_pool *pool) { struct _vcs_dpi_soc_bounding_box_st *loaded_bb = &dcn3_02_soc; struct _vcs_dpi_ip_params_st *loaded_ip = &dcn3_02_ip; DC_LOGGER_INIT(dc->ctx->logger); if (!is_soc_bounding_box_valid(dc)) { DC_LOG_ERROR("%s: not valid soc bounding box\n", __func__); return false; } loaded_ip->max_num_otg = pool->pipe_count; loaded_ip->max_num_dpp = pool->pipe_count; loaded_ip->clamp_min_dcfclk = dc->config.clamp_min_dcfclk; dcn20_patch_bounding_box(dc, loaded_bb); if (dc->ctx->dc_bios->funcs->get_soc_bb_info) { struct bp_soc_bb_info bb_info = { 0 }; if (dc->ctx->dc_bios->funcs->get_soc_bb_info( dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) { if (bb_info.dram_clock_change_latency_100ns > 0) dcn3_02_soc.dram_clock_change_latency_us = bb_info.dram_clock_change_latency_100ns * 10; if (bb_info.dram_sr_enter_exit_latency_100ns > 0) dcn3_02_soc.sr_enter_plus_exit_time_us = bb_info.dram_sr_enter_exit_latency_100ns * 10; if (bb_info.dram_sr_exit_latency_100ns > 0) dcn3_02_soc.sr_exit_time_us = bb_info.dram_sr_exit_latency_100ns * 10; } } return true; } static void dcn302_resource_destruct(struct resource_pool *pool) { unsigned int i; for (i = 0; i < pool->stream_enc_count; i++) { if (pool->stream_enc[i] != NULL) { if (pool->stream_enc[i]->vpg != NULL) { kfree(DCN30_VPG_FROM_VPG(pool->stream_enc[i]->vpg)); pool->stream_enc[i]->vpg = NULL; } if (pool->stream_enc[i]->afmt != NULL) { kfree(DCN30_AFMT_FROM_AFMT(pool->stream_enc[i]->afmt)); pool->stream_enc[i]->afmt = NULL; } kfree(DCN10STRENC_FROM_STRENC(pool->stream_enc[i])); pool->stream_enc[i] = NULL; } } for (i = 0; i < pool->res_cap->num_dsc; i++) { if (pool->dscs[i] != NULL) dcn20_dsc_destroy(&pool->dscs[i]); } if (pool->mpc != NULL) { kfree(TO_DCN20_MPC(pool->mpc)); pool->mpc = NULL; } if (pool->hubbub != NULL) { kfree(pool->hubbub); pool->hubbub = NULL; } for (i = 0; i < pool->pipe_count; i++) { if (pool->dpps[i] != NULL) { kfree(TO_DCN20_DPP(pool->dpps[i])); pool->dpps[i] = NULL; } if (pool->hubps[i] != NULL) { kfree(TO_DCN20_HUBP(pool->hubps[i])); pool->hubps[i] = NULL; } if (pool->irqs != NULL) dal_irq_service_destroy(&pool->irqs); } for (i = 0; i < pool->res_cap->num_ddc; i++) { if (pool->engines[i] != NULL) dce110_engine_destroy(&pool->engines[i]); if (pool->hw_i2cs[i] != NULL) { kfree(pool->hw_i2cs[i]); pool->hw_i2cs[i] = NULL; } if (pool->sw_i2cs[i] != NULL) { kfree(pool->sw_i2cs[i]); pool->sw_i2cs[i] = NULL; } } for (i = 0; i < pool->res_cap->num_opp; i++) { if (pool->opps[i] != NULL) pool->opps[i]->funcs->opp_destroy(&pool->opps[i]); } for (i = 0; i < pool->res_cap->num_timing_generator; i++) { if (pool->timing_generators[i] != NULL) { kfree(DCN10TG_FROM_TG(pool->timing_generators[i])); pool->timing_generators[i] = NULL; } } for (i = 0; i < pool->res_cap->num_dwb; i++) { if (pool->dwbc[i] != NULL) { kfree(TO_DCN30_DWBC(pool->dwbc[i])); pool->dwbc[i] = NULL; } if (pool->mcif_wb[i] != NULL) { kfree(TO_DCN30_MMHUBBUB(pool->mcif_wb[i])); pool->mcif_wb[i] = NULL; } } for (i = 0; i < pool->audio_count; i++) { if (pool->audios[i]) dce_aud_destroy(&pool->audios[i]); } for (i = 0; i < pool->clk_src_count; i++) { if (pool->clock_sources[i] != NULL) dcn20_clock_source_destroy(&pool->clock_sources[i]); } if (pool->dp_clock_source != NULL) dcn20_clock_source_destroy(&pool->dp_clock_source); for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) { if (pool->mpc_lut[i] != NULL) { dc_3dlut_func_release(pool->mpc_lut[i]); pool->mpc_lut[i] = NULL; } if (pool->mpc_shaper[i] != NULL) { dc_transfer_func_release(pool->mpc_shaper[i]); pool->mpc_shaper[i] = NULL; } } for (i = 0; i < pool->pipe_count; i++) { if (pool->multiple_abms[i] != NULL) dce_abm_destroy(&pool->multiple_abms[i]); } if (pool->psr != NULL) dmub_psr_destroy(&pool->psr); if (pool->dccg != NULL) dcn_dccg_destroy(&pool->dccg); } static void dcn302_destroy_resource_pool(struct resource_pool **pool) { dcn302_resource_destruct(*pool); kfree(*pool); *pool = NULL; } static void dcn302_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts, unsigned int *optimal_dcfclk, unsigned int *optimal_fclk) { double bw_from_dram, bw_from_dram1, bw_from_dram2; bw_from_dram1 = uclk_mts * dcn3_02_soc.num_chans * dcn3_02_soc.dram_channel_width_bytes * (dcn3_02_soc.max_avg_dram_bw_use_normal_percent / 100); bw_from_dram2 = uclk_mts * dcn3_02_soc.num_chans * dcn3_02_soc.dram_channel_width_bytes * (dcn3_02_soc.max_avg_sdp_bw_use_normal_percent / 100); bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2; if (optimal_fclk) *optimal_fclk = bw_from_dram / (dcn3_02_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_02_soc.max_avg_sdp_bw_use_normal_percent / 100)); if (optimal_dcfclk) *optimal_dcfclk = bw_from_dram / (dcn3_02_soc.return_bus_width_bytes * (dcn3_02_soc.max_avg_sdp_bw_use_normal_percent / 100)); } void dcn302_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params) { unsigned int i, j; unsigned int num_states = 0; unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0}; unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0}; unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0}; unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0}; unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {694, 875, 1000, 1200}; unsigned int num_dcfclk_sta_targets = 4; unsigned int num_uclk_states; if (dc->ctx->dc_bios->vram_info.num_chans) dcn3_02_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans; if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes) dcn3_02_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes; dcn3_02_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0; dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0; if (bw_params->clk_table.entries[0].memclk_mhz) { int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0; for (i = 0; i < MAX_NUM_DPM_LVL; i++) { if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz) max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz; if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz) max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz; if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz) max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz; if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz) max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz; } if (!max_dcfclk_mhz) max_dcfclk_mhz = dcn3_02_soc.clock_limits[0].dcfclk_mhz; if (!max_dispclk_mhz) max_dispclk_mhz = dcn3_02_soc.clock_limits[0].dispclk_mhz; if (!max_dppclk_mhz) max_dppclk_mhz = dcn3_02_soc.clock_limits[0].dppclk_mhz; if (!max_phyclk_mhz) max_phyclk_mhz = dcn3_02_soc.clock_limits[0].phyclk_mhz; if (max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) { /* If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array */ dcfclk_sta_targets[num_dcfclk_sta_targets] = max_dcfclk_mhz; num_dcfclk_sta_targets++; } else if (max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) { /* If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates */ for (i = 0; i < num_dcfclk_sta_targets; i++) { if (dcfclk_sta_targets[i] > max_dcfclk_mhz) { dcfclk_sta_targets[i] = max_dcfclk_mhz; break; } } /* Update size of array since we "removed" duplicates */ num_dcfclk_sta_targets = i + 1; } num_uclk_states = bw_params->clk_table.num_entries; /* Calculate optimal dcfclk for each uclk */ for (i = 0; i < num_uclk_states; i++) { dcn302_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16, &optimal_dcfclk_for_uclk[i], NULL); if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) { optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz; } } /* Calculate optimal uclk for each dcfclk sta target */ for (i = 0; i < num_dcfclk_sta_targets; i++) { for (j = 0; j < num_uclk_states; j++) { if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) { optimal_uclk_for_dcfclk_sta_targets[i] = bw_params->clk_table.entries[j].memclk_mhz * 16; break; } } } i = 0; j = 0; /* create the final dcfclk and uclk table */ while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) { if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) { dcfclk_mhz[num_states] = dcfclk_sta_targets[i]; dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++]; } else { if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) { dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j]; dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16; } else { j = num_uclk_states; } } } while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) { dcfclk_mhz[num_states] = dcfclk_sta_targets[i]; dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++]; } while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) { dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j]; dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16; } dcn3_02_soc.num_states = num_states; for (i = 0; i < dcn3_02_soc.num_states; i++) { dcn3_02_soc.clock_limits[i].state = i; dcn3_02_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i]; dcn3_02_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i]; dcn3_02_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i]; /* Fill all states with max values of all other clocks */ dcn3_02_soc.clock_limits[i].dispclk_mhz = max_dispclk_mhz; dcn3_02_soc.clock_limits[i].dppclk_mhz = max_dppclk_mhz; dcn3_02_soc.clock_limits[i].phyclk_mhz = max_phyclk_mhz; /* Populate from bw_params for DTBCLK, SOCCLK */ if (!bw_params->clk_table.entries[i].dtbclk_mhz && i > 0) dcn3_02_soc.clock_limits[i].dtbclk_mhz = dcn3_02_soc.clock_limits[i-1].dtbclk_mhz; else dcn3_02_soc.clock_limits[i].dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz; if (!bw_params->clk_table.entries[i].socclk_mhz && i > 0) dcn3_02_soc.clock_limits[i].socclk_mhz = dcn3_02_soc.clock_limits[i-1].socclk_mhz; else dcn3_02_soc.clock_limits[i].socclk_mhz = bw_params->clk_table.entries[i].socclk_mhz; /* These clocks cannot come from bw_params, always fill from dcn3_02_soc[1] */ /* FCLK, PHYCLK_D18, DSCCLK */ dcn3_02_soc.clock_limits[i].phyclk_d18_mhz = dcn3_02_soc.clock_limits[0].phyclk_d18_mhz; dcn3_02_soc.clock_limits[i].dscclk_mhz = dcn3_02_soc.clock_limits[0].dscclk_mhz; } /* re-init DML with updated bb */ dml_init_instance(&dc->dml, &dcn3_02_soc, &dcn3_02_ip, DML_PROJECT_DCN30); if (dc->current_state) dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_02_soc, &dcn3_02_ip, DML_PROJECT_DCN30); } } static struct resource_funcs dcn302_res_pool_funcs = { .destroy = dcn302_destroy_resource_pool, .link_enc_create = dcn302_link_encoder_create, .panel_cntl_create = dcn302_panel_cntl_create, .validate_bandwidth = dcn30_validate_bandwidth, .calculate_wm_and_dlg = dcn30_calculate_wm_and_dlg, .update_soc_for_wm_a = dcn30_update_soc_for_wm_a, .populate_dml_pipes = dcn30_populate_dml_pipes_from_context, .acquire_idle_pipe_for_layer = dcn20_acquire_idle_pipe_for_layer, .add_stream_to_ctx = dcn30_add_stream_to_ctx, .add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource, .remove_stream_from_ctx = dcn20_remove_stream_from_ctx, .populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context, .set_mcif_arb_params = dcn30_set_mcif_arb_params, .find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link, .acquire_post_bldn_3dlut = dcn30_acquire_post_bldn_3dlut, .release_post_bldn_3dlut = dcn30_release_post_bldn_3dlut, .update_bw_bounding_box = dcn302_update_bw_bounding_box, .patch_unknown_plane_state = dcn20_patch_unknown_plane_state, }; static struct dc_cap_funcs cap_funcs = { .get_dcc_compression_cap = dcn20_get_dcc_compression_cap }; static const struct bios_registers bios_regs = { NBIO_SR(BIOS_SCRATCH_3), NBIO_SR(BIOS_SCRATCH_6) }; static const struct dccg_registers dccg_regs = { DCCG_REG_LIST_DCN3_02() }; static const struct dccg_shift dccg_shift = { DCCG_MASK_SH_LIST_DCN3_02(__SHIFT) }; static const struct dccg_mask dccg_mask = { DCCG_MASK_SH_LIST_DCN3_02(_MASK) }; #define abm_regs(id)\ [id] = { ABM_DCN301_REG_LIST(id) } static const struct dce_abm_registers abm_regs[] = { abm_regs(0), abm_regs(1), abm_regs(2), abm_regs(3), abm_regs(4) }; static const struct dce_abm_shift abm_shift = { ABM_MASK_SH_LIST_DCN30(__SHIFT) }; static const struct dce_abm_mask abm_mask = { ABM_MASK_SH_LIST_DCN30(_MASK) }; static bool dcn302_resource_construct( uint8_t num_virtual_links, struct dc *dc, struct resource_pool *pool) { int i; struct dc_context *ctx = dc->ctx; struct irq_service_init_data init_data; ctx->dc_bios->regs = &bios_regs; pool->res_cap = &res_cap_dcn302; pool->funcs = &dcn302_res_pool_funcs; /************************************************* * Resource + asic cap harcoding * *************************************************/ pool->underlay_pipe_index = NO_UNDERLAY_PIPE; pool->pipe_count = pool->res_cap->num_timing_generator; pool->mpcc_count = pool->res_cap->num_timing_generator; dc->caps.max_downscale_ratio = 600; dc->caps.i2c_speed_in_khz = 100; dc->caps.i2c_speed_in_khz_hdcp = 5; /*1.4 w/a applied by derfault*/ dc->caps.max_cursor_size = 256; dc->caps.min_horizontal_blanking_period = 80; dc->caps.dmdata_alloc_size = 2048; dc->caps.mall_size_per_mem_channel = 4; /* total size = mall per channel * num channels * 1024 * 1024 */ dc->caps.mall_size_total = dc->caps.mall_size_per_mem_channel * dc->ctx->dc_bios->vram_info.num_chans * 1048576; dc->caps.cursor_cache_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size * 8; dc->caps.max_slave_planes = 1; dc->caps.max_slave_yuv_planes = 1; dc->caps.max_slave_rgb_planes = 1; dc->caps.post_blend_color_processing = true; dc->caps.force_dp_tps4_for_cp2520 = true; dc->caps.extended_aux_timeout_support = true; dc->caps.dmcub_support = true; /* Color pipeline capabilities */ dc->caps.color.dpp.dcn_arch = 1; dc->caps.color.dpp.input_lut_shared = 0; dc->caps.color.dpp.icsc = 1; dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr dc->caps.color.dpp.dgam_rom_caps.srgb = 1; dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1; dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1; dc->caps.color.dpp.dgam_rom_caps.pq = 1; dc->caps.color.dpp.dgam_rom_caps.hlg = 1; dc->caps.color.dpp.post_csc = 1; dc->caps.color.dpp.gamma_corr = 1; dc->caps.color.dpp.dgam_rom_for_yuv = 0; dc->caps.color.dpp.hw_3d_lut = 1; dc->caps.color.dpp.ogam_ram = 1; // no OGAM ROM on DCN3 dc->caps.color.dpp.ogam_rom_caps.srgb = 0; dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0; dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0; dc->caps.color.dpp.ogam_rom_caps.pq = 0; dc->caps.color.dpp.ogam_rom_caps.hlg = 0; dc->caps.color.dpp.ocsc = 0; dc->caps.color.mpc.gamut_remap = 1; dc->caps.color.mpc.num_3dluts = pool->res_cap->num_mpc_3dlut; //3 dc->caps.color.mpc.ogam_ram = 1; dc->caps.color.mpc.ogam_rom_caps.srgb = 0; dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0; dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0; dc->caps.color.mpc.ogam_rom_caps.pq = 0; dc->caps.color.mpc.ogam_rom_caps.hlg = 0; dc->caps.color.mpc.ocsc = 1; if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV) dc->debug = debug_defaults_drv; else dc->debug = debug_defaults_diags; // Init the vm_helper if (dc->vm_helper) vm_helper_init(dc->vm_helper, 16); /************************************************* * Create resources * *************************************************/ /* Clock Sources for Pixel Clock*/ pool->clock_sources[DCN302_CLK_SRC_PLL0] = dcn302_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL0, &clk_src_regs[0], false); pool->clock_sources[DCN302_CLK_SRC_PLL1] = dcn302_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL1, &clk_src_regs[1], false); pool->clock_sources[DCN302_CLK_SRC_PLL2] = dcn302_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL2, &clk_src_regs[2], false); pool->clock_sources[DCN302_CLK_SRC_PLL3] = dcn302_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL3, &clk_src_regs[3], false); pool->clock_sources[DCN302_CLK_SRC_PLL4] = dcn302_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_COMBO_PHY_PLL4, &clk_src_regs[4], false); pool->clk_src_count = DCN302_CLK_SRC_TOTAL; /* todo: not reuse phy_pll registers */ pool->dp_clock_source = dcn302_clock_source_create(ctx, ctx->dc_bios, CLOCK_SOURCE_ID_DP_DTO, &clk_src_regs[0], true); for (i = 0; i < pool->clk_src_count; i++) { if (pool->clock_sources[i] == NULL) { dm_error("DC: failed to create clock sources!\n"); BREAK_TO_DEBUGGER(); goto create_fail; } } /* DCCG */ pool->dccg = dccg30_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask); if (pool->dccg == NULL) { dm_error("DC: failed to create dccg!\n"); BREAK_TO_DEBUGGER(); goto create_fail; } /* PP Lib and SMU interfaces */ init_soc_bounding_box(dc, pool); /* DML */ dml_init_instance(&dc->dml, &dcn3_02_soc, &dcn3_02_ip, DML_PROJECT_DCN30); /* IRQ */ init_data.ctx = dc->ctx; pool->irqs = dal_irq_service_dcn302_create(&init_data); if (!pool->irqs) goto create_fail; /* HUBBUB */ pool->hubbub = dcn302_hubbub_create(ctx); if (pool->hubbub == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create hubbub!\n"); goto create_fail; } /* HUBPs, DPPs, OPPs and TGs */ for (i = 0; i < pool->pipe_count; i++) { pool->hubps[i] = dcn302_hubp_create(ctx, i); if (pool->hubps[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create hubps!\n"); goto create_fail; } pool->dpps[i] = dcn302_dpp_create(ctx, i); if (pool->dpps[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create dpps!\n"); goto create_fail; } } for (i = 0; i < pool->res_cap->num_opp; i++) { pool->opps[i] = dcn302_opp_create(ctx, i); if (pool->opps[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create output pixel processor!\n"); goto create_fail; } } for (i = 0; i < pool->res_cap->num_timing_generator; i++) { pool->timing_generators[i] = dcn302_timing_generator_create(ctx, i); if (pool->timing_generators[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create tg!\n"); goto create_fail; } } pool->timing_generator_count = i; /* PSR */ pool->psr = dmub_psr_create(ctx); if (pool->psr == NULL) { dm_error("DC: failed to create psr!\n"); BREAK_TO_DEBUGGER(); goto create_fail; } /* ABMs */ for (i = 0; i < pool->res_cap->num_timing_generator; i++) { pool->multiple_abms[i] = dmub_abm_create(ctx, &abm_regs[i], &abm_shift, &abm_mask); if (pool->multiple_abms[i] == NULL) { dm_error("DC: failed to create abm for pipe %d!\n", i); BREAK_TO_DEBUGGER(); goto create_fail; } } /* MPC and DSC */ pool->mpc = dcn302_mpc_create(ctx, pool->mpcc_count, pool->res_cap->num_mpc_3dlut); if (pool->mpc == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create mpc!\n"); goto create_fail; } for (i = 0; i < pool->res_cap->num_dsc; i++) { pool->dscs[i] = dcn302_dsc_create(ctx, i); if (pool->dscs[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create display stream compressor %d!\n", i); goto create_fail; } } /* DWB and MMHUBBUB */ if (!dcn302_dwbc_create(ctx, pool)) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create dwbc!\n"); goto create_fail; } if (!dcn302_mmhubbub_create(ctx, pool)) { BREAK_TO_DEBUGGER(); dm_error("DC: failed to create mcif_wb!\n"); goto create_fail; } /* AUX and I2C */ for (i = 0; i < pool->res_cap->num_ddc; i++) { pool->engines[i] = dcn302_aux_engine_create(ctx, i); if (pool->engines[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC:failed to create aux engine!!\n"); goto create_fail; } pool->hw_i2cs[i] = dcn302_i2c_hw_create(ctx, i); if (pool->hw_i2cs[i] == NULL) { BREAK_TO_DEBUGGER(); dm_error("DC:failed to create hw i2c!!\n"); goto create_fail; } pool->sw_i2cs[i] = NULL; } /* Audio, Stream Encoders including HPO and virtual, MPC 3D LUTs */ if (!resource_construct(num_virtual_links, dc, pool, (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment) ? &res_create_funcs : &res_create_maximus_funcs))) goto create_fail; /* HW Sequencer and Plane caps */ dcn302_hw_sequencer_construct(dc); dc->caps.max_planes = pool->pipe_count; for (i = 0; i < dc->caps.max_planes; ++i) dc->caps.planes[i] = plane_cap; dc->cap_funcs = cap_funcs; return true; create_fail: dcn302_resource_destruct(pool); return false; } struct resource_pool *dcn302_create_resource_pool(const struct dc_init_data *init_data, struct dc *dc) { struct resource_pool *pool = kzalloc(sizeof(struct resource_pool), GFP_KERNEL); if (!pool) return NULL; if (dcn302_resource_construct(init_data->num_virtual_links, dc, pool)) return pool; BREAK_TO_DEBUGGER(); kfree(pool); return NULL; }