// SPDX-License-Identifier: GPL-2.0-or-later /* * tc358767 eDP bridge driver * * Copyright (C) 2016 CogentEmbedded Inc * Author: Andrey Gusakov * * Copyright (C) 2016 Pengutronix, Philipp Zabel * * Copyright (C) 2016 Zodiac Inflight Innovations * * Initially based on: drivers/gpu/drm/i2c/tda998x_drv.c * * Copyright (C) 2012 Texas Instruments * Author: Rob Clark */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Registers */ /* Display Parallel Interface */ #define DPIPXLFMT 0x0440 #define VS_POL_ACTIVE_LOW (1 << 10) #define HS_POL_ACTIVE_LOW (1 << 9) #define DE_POL_ACTIVE_HIGH (0 << 8) #define SUB_CFG_TYPE_CONFIG1 (0 << 2) /* LSB aligned */ #define SUB_CFG_TYPE_CONFIG2 (1 << 2) /* Loosely Packed */ #define SUB_CFG_TYPE_CONFIG3 (2 << 2) /* LSB aligned 8-bit */ #define DPI_BPP_RGB888 (0 << 0) #define DPI_BPP_RGB666 (1 << 0) #define DPI_BPP_RGB565 (2 << 0) /* Video Path */ #define VPCTRL0 0x0450 #define VSDELAY GENMASK(31, 20) #define OPXLFMT_RGB666 (0 << 8) #define OPXLFMT_RGB888 (1 << 8) #define FRMSYNC_DISABLED (0 << 4) /* Video Timing Gen Disabled */ #define FRMSYNC_ENABLED (1 << 4) /* Video Timing Gen Enabled */ #define MSF_DISABLED (0 << 0) /* Magic Square FRC disabled */ #define MSF_ENABLED (1 << 0) /* Magic Square FRC enabled */ #define HTIM01 0x0454 #define HPW GENMASK(8, 0) #define HBPR GENMASK(24, 16) #define HTIM02 0x0458 #define HDISPR GENMASK(10, 0) #define HFPR GENMASK(24, 16) #define VTIM01 0x045c #define VSPR GENMASK(7, 0) #define VBPR GENMASK(23, 16) #define VTIM02 0x0460 #define VFPR GENMASK(23, 16) #define VDISPR GENMASK(10, 0) #define VFUEN0 0x0464 #define VFUEN BIT(0) /* Video Frame Timing Upload */ /* System */ #define TC_IDREG 0x0500 #define SYSSTAT 0x0508 #define SYSCTRL 0x0510 #define DP0_AUDSRC_NO_INPUT (0 << 3) #define DP0_AUDSRC_I2S_RX (1 << 3) #define DP0_VIDSRC_NO_INPUT (0 << 0) #define DP0_VIDSRC_DSI_RX (1 << 0) #define DP0_VIDSRC_DPI_RX (2 << 0) #define DP0_VIDSRC_COLOR_BAR (3 << 0) #define SYSRSTENB 0x050c #define ENBI2C (1 << 0) #define ENBLCD0 (1 << 2) #define ENBBM (1 << 3) #define ENBDSIRX (1 << 4) #define ENBREG (1 << 5) #define ENBHDCP (1 << 8) #define GPIOM 0x0540 #define GPIOC 0x0544 #define GPIOO 0x0548 #define GPIOI 0x054c #define INTCTL_G 0x0560 #define INTSTS_G 0x0564 #define INT_SYSERR BIT(16) #define INT_GPIO_H(x) (1 << (x == 0 ? 2 : 10)) #define INT_GPIO_LC(x) (1 << (x == 0 ? 3 : 11)) #define INT_GP0_LCNT 0x0584 #define INT_GP1_LCNT 0x0588 /* Control */ #define DP0CTL 0x0600 #define VID_MN_GEN BIT(6) /* Auto-generate M/N values */ #define EF_EN BIT(5) /* Enable Enhanced Framing */ #define VID_EN BIT(1) /* Video transmission enable */ #define DP_EN BIT(0) /* Enable DPTX function */ /* Clocks */ #define DP0_VIDMNGEN0 0x0610 #define DP0_VIDMNGEN1 0x0614 #define DP0_VMNGENSTATUS 0x0618 /* Main Channel */ #define DP0_SECSAMPLE 0x0640 #define DP0_VIDSYNCDELAY 0x0644 #define VID_SYNC_DLY GENMASK(15, 0) #define THRESH_DLY GENMASK(31, 16) #define DP0_TOTALVAL 0x0648 #define H_TOTAL GENMASK(15, 0) #define V_TOTAL GENMASK(31, 16) #define DP0_STARTVAL 0x064c #define H_START GENMASK(15, 0) #define V_START GENMASK(31, 16) #define DP0_ACTIVEVAL 0x0650 #define H_ACT GENMASK(15, 0) #define V_ACT GENMASK(31, 16) #define DP0_SYNCVAL 0x0654 #define VS_WIDTH GENMASK(30, 16) #define HS_WIDTH GENMASK(14, 0) #define SYNCVAL_HS_POL_ACTIVE_LOW (1 << 15) #define SYNCVAL_VS_POL_ACTIVE_LOW (1 << 31) #define DP0_MISC 0x0658 #define TU_SIZE_RECOMMENDED (63) /* LSCLK cycles per TU */ #define MAX_TU_SYMBOL GENMASK(28, 23) #define TU_SIZE GENMASK(21, 16) #define BPC_6 (0 << 5) #define BPC_8 (1 << 5) /* AUX channel */ #define DP0_AUXCFG0 0x0660 #define DP0_AUXCFG0_BSIZE GENMASK(11, 8) #define DP0_AUXCFG0_ADDR_ONLY BIT(4) #define DP0_AUXCFG1 0x0664 #define AUX_RX_FILTER_EN BIT(16) #define DP0_AUXADDR 0x0668 #define DP0_AUXWDATA(i) (0x066c + (i) * 4) #define DP0_AUXRDATA(i) (0x067c + (i) * 4) #define DP0_AUXSTATUS 0x068c #define AUX_BYTES GENMASK(15, 8) #define AUX_STATUS GENMASK(7, 4) #define AUX_TIMEOUT BIT(1) #define AUX_BUSY BIT(0) #define DP0_AUXI2CADR 0x0698 /* Link Training */ #define DP0_SRCCTRL 0x06a0 #define DP0_SRCCTRL_SCRMBLDIS BIT(13) #define DP0_SRCCTRL_EN810B BIT(12) #define DP0_SRCCTRL_NOTP (0 << 8) #define DP0_SRCCTRL_TP1 (1 << 8) #define DP0_SRCCTRL_TP2 (2 << 8) #define DP0_SRCCTRL_LANESKEW BIT(7) #define DP0_SRCCTRL_SSCG BIT(3) #define DP0_SRCCTRL_LANES_1 (0 << 2) #define DP0_SRCCTRL_LANES_2 (1 << 2) #define DP0_SRCCTRL_BW27 (1 << 1) #define DP0_SRCCTRL_BW162 (0 << 1) #define DP0_SRCCTRL_AUTOCORRECT BIT(0) #define DP0_LTSTAT 0x06d0 #define LT_LOOPDONE BIT(13) #define LT_STATUS_MASK (0x1f << 8) #define LT_CHANNEL1_EQ_BITS (DP_CHANNEL_EQ_BITS << 4) #define LT_INTERLANE_ALIGN_DONE BIT(3) #define LT_CHANNEL0_EQ_BITS (DP_CHANNEL_EQ_BITS) #define DP0_SNKLTCHGREQ 0x06d4 #define DP0_LTLOOPCTRL 0x06d8 #define DP0_SNKLTCTRL 0x06e4 #define DP1_SRCCTRL 0x07a0 /* PHY */ #define DP_PHY_CTRL 0x0800 #define DP_PHY_RST BIT(28) /* DP PHY Global Soft Reset */ #define BGREN BIT(25) /* AUX PHY BGR Enable */ #define PWR_SW_EN BIT(24) /* PHY Power Switch Enable */ #define PHY_M1_RST BIT(12) /* Reset PHY1 Main Channel */ #define PHY_RDY BIT(16) /* PHY Main Channels Ready */ #define PHY_M0_RST BIT(8) /* Reset PHY0 Main Channel */ #define PHY_2LANE BIT(2) /* PHY Enable 2 lanes */ #define PHY_A0_EN BIT(1) /* PHY Aux Channel0 Enable */ #define PHY_M0_EN BIT(0) /* PHY Main Channel0 Enable */ /* PLL */ #define DP0_PLLCTRL 0x0900 #define DP1_PLLCTRL 0x0904 /* not defined in DS */ #define PXL_PLLCTRL 0x0908 #define PLLUPDATE BIT(2) #define PLLBYP BIT(1) #define PLLEN BIT(0) #define PXL_PLLPARAM 0x0914 #define IN_SEL_REFCLK (0 << 14) #define SYS_PLLPARAM 0x0918 #define REF_FREQ_38M4 (0 << 8) /* 38.4 MHz */ #define REF_FREQ_19M2 (1 << 8) /* 19.2 MHz */ #define REF_FREQ_26M (2 << 8) /* 26 MHz */ #define REF_FREQ_13M (3 << 8) /* 13 MHz */ #define SYSCLK_SEL_LSCLK (0 << 4) #define LSCLK_DIV_1 (0 << 0) #define LSCLK_DIV_2 (1 << 0) /* Test & Debug */ #define TSTCTL 0x0a00 #define COLOR_R GENMASK(31, 24) #define COLOR_G GENMASK(23, 16) #define COLOR_B GENMASK(15, 8) #define ENI2CFILTER BIT(4) #define COLOR_BAR_MODE GENMASK(1, 0) #define COLOR_BAR_MODE_BARS 2 #define PLL_DBG 0x0a04 static bool tc_test_pattern; module_param_named(test, tc_test_pattern, bool, 0644); struct tc_edp_link { u8 dpcd[DP_RECEIVER_CAP_SIZE]; unsigned int rate; u8 num_lanes; u8 assr; bool scrambler_dis; bool spread; }; struct tc_data { struct device *dev; struct regmap *regmap; struct drm_dp_aux aux; struct drm_bridge bridge; struct drm_bridge *panel_bridge; struct drm_connector connector; /* link settings */ struct tc_edp_link link; /* current mode */ struct drm_display_mode mode; u32 rev; u8 assr; struct gpio_desc *sd_gpio; struct gpio_desc *reset_gpio; struct clk *refclk; /* do we have IRQ */ bool have_irq; /* HPD pin number (0 or 1) or -ENODEV */ int hpd_pin; }; static inline struct tc_data *aux_to_tc(struct drm_dp_aux *a) { return container_of(a, struct tc_data, aux); } static inline struct tc_data *bridge_to_tc(struct drm_bridge *b) { return container_of(b, struct tc_data, bridge); } static inline struct tc_data *connector_to_tc(struct drm_connector *c) { return container_of(c, struct tc_data, connector); } static inline int tc_poll_timeout(struct tc_data *tc, unsigned int addr, unsigned int cond_mask, unsigned int cond_value, unsigned long sleep_us, u64 timeout_us) { unsigned int val; return regmap_read_poll_timeout(tc->regmap, addr, val, (val & cond_mask) == cond_value, sleep_us, timeout_us); } static int tc_aux_wait_busy(struct tc_data *tc) { return tc_poll_timeout(tc, DP0_AUXSTATUS, AUX_BUSY, 0, 100, 100000); } static int tc_aux_write_data(struct tc_data *tc, const void *data, size_t size) { u32 auxwdata[DP_AUX_MAX_PAYLOAD_BYTES / sizeof(u32)] = { 0 }; int ret, count = ALIGN(size, sizeof(u32)); memcpy(auxwdata, data, size); ret = regmap_raw_write(tc->regmap, DP0_AUXWDATA(0), auxwdata, count); if (ret) return ret; return size; } static int tc_aux_read_data(struct tc_data *tc, void *data, size_t size) { u32 auxrdata[DP_AUX_MAX_PAYLOAD_BYTES / sizeof(u32)]; int ret, count = ALIGN(size, sizeof(u32)); ret = regmap_raw_read(tc->regmap, DP0_AUXRDATA(0), auxrdata, count); if (ret) return ret; memcpy(data, auxrdata, size); return size; } static u32 tc_auxcfg0(struct drm_dp_aux_msg *msg, size_t size) { u32 auxcfg0 = msg->request; if (size) auxcfg0 |= FIELD_PREP(DP0_AUXCFG0_BSIZE, size - 1); else auxcfg0 |= DP0_AUXCFG0_ADDR_ONLY; return auxcfg0; } static ssize_t tc_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg) { struct tc_data *tc = aux_to_tc(aux); size_t size = min_t(size_t, DP_AUX_MAX_PAYLOAD_BYTES - 1, msg->size); u8 request = msg->request & ~DP_AUX_I2C_MOT; u32 auxstatus; int ret; ret = tc_aux_wait_busy(tc); if (ret) return ret; switch (request) { case DP_AUX_NATIVE_READ: case DP_AUX_I2C_READ: break; case DP_AUX_NATIVE_WRITE: case DP_AUX_I2C_WRITE: if (size) { ret = tc_aux_write_data(tc, msg->buffer, size); if (ret < 0) return ret; } break; default: return -EINVAL; } /* Store address */ ret = regmap_write(tc->regmap, DP0_AUXADDR, msg->address); if (ret) return ret; /* Start transfer */ ret = regmap_write(tc->regmap, DP0_AUXCFG0, tc_auxcfg0(msg, size)); if (ret) return ret; ret = tc_aux_wait_busy(tc); if (ret) return ret; ret = regmap_read(tc->regmap, DP0_AUXSTATUS, &auxstatus); if (ret) return ret; if (auxstatus & AUX_TIMEOUT) return -ETIMEDOUT; /* * For some reason address-only DP_AUX_I2C_WRITE (MOT), still * reports 1 byte transferred in its status. To deal we that * we ignore aux_bytes field if we know that this was an * address-only transfer */ if (size) size = FIELD_GET(AUX_BYTES, auxstatus); msg->reply = FIELD_GET(AUX_STATUS, auxstatus); switch (request) { case DP_AUX_NATIVE_READ: case DP_AUX_I2C_READ: if (size) return tc_aux_read_data(tc, msg->buffer, size); break; } return size; } static const char * const training_pattern1_errors[] = { "No errors", "Aux write error", "Aux read error", "Max voltage reached error", "Loop counter expired error", "res", "res", "res" }; static const char * const training_pattern2_errors[] = { "No errors", "Aux write error", "Aux read error", "Clock recovery failed error", "Loop counter expired error", "res", "res", "res" }; static u32 tc_srcctrl(struct tc_data *tc) { /* * No training pattern, skew lane 1 data by two LSCLK cycles with * respect to lane 0 data, AutoCorrect Mode = 0 */ u32 reg = DP0_SRCCTRL_NOTP | DP0_SRCCTRL_LANESKEW | DP0_SRCCTRL_EN810B; if (tc->link.scrambler_dis) reg |= DP0_SRCCTRL_SCRMBLDIS; /* Scrambler Disabled */ if (tc->link.spread) reg |= DP0_SRCCTRL_SSCG; /* Spread Spectrum Enable */ if (tc->link.num_lanes == 2) reg |= DP0_SRCCTRL_LANES_2; /* Two Main Channel Lanes */ if (tc->link.rate != 162000) reg |= DP0_SRCCTRL_BW27; /* 2.7 Gbps link */ return reg; } static int tc_pllupdate(struct tc_data *tc, unsigned int pllctrl) { int ret; ret = regmap_write(tc->regmap, pllctrl, PLLUPDATE | PLLEN); if (ret) return ret; /* Wait for PLL to lock: up to 2.09 ms, depending on refclk */ usleep_range(3000, 6000); return 0; } static int tc_pxl_pll_en(struct tc_data *tc, u32 refclk, u32 pixelclock) { int ret; int i_pre, best_pre = 1; int i_post, best_post = 1; int div, best_div = 1; int mul, best_mul = 1; int delta, best_delta; int ext_div[] = {1, 2, 3, 5, 7}; int best_pixelclock = 0; int vco_hi = 0; u32 pxl_pllparam; dev_dbg(tc->dev, "PLL: requested %d pixelclock, ref %d\n", pixelclock, refclk); best_delta = pixelclock; /* Loop over all possible ext_divs, skipping invalid configurations */ for (i_pre = 0; i_pre < ARRAY_SIZE(ext_div); i_pre++) { /* * refclk / ext_pre_div should be in the 1 to 200 MHz range. * We don't allow any refclk > 200 MHz, only check lower bounds. */ if (refclk / ext_div[i_pre] < 1000000) continue; for (i_post = 0; i_post < ARRAY_SIZE(ext_div); i_post++) { for (div = 1; div <= 16; div++) { u32 clk; u64 tmp; tmp = pixelclock * ext_div[i_pre] * ext_div[i_post] * div; do_div(tmp, refclk); mul = tmp; /* Check limits */ if ((mul < 1) || (mul > 128)) continue; clk = (refclk / ext_div[i_pre] / div) * mul; /* * refclk * mul / (ext_pre_div * pre_div) * should be in the 150 to 650 MHz range */ if ((clk > 650000000) || (clk < 150000000)) continue; clk = clk / ext_div[i_post]; delta = clk - pixelclock; if (abs(delta) < abs(best_delta)) { best_pre = i_pre; best_post = i_post; best_div = div; best_mul = mul; best_delta = delta; best_pixelclock = clk; } } } } if (best_pixelclock == 0) { dev_err(tc->dev, "Failed to calc clock for %d pixelclock\n", pixelclock); return -EINVAL; } dev_dbg(tc->dev, "PLL: got %d, delta %d\n", best_pixelclock, best_delta); dev_dbg(tc->dev, "PLL: %d / %d / %d * %d / %d\n", refclk, ext_div[best_pre], best_div, best_mul, ext_div[best_post]); /* if VCO >= 300 MHz */ if (refclk / ext_div[best_pre] / best_div * best_mul >= 300000000) vco_hi = 1; /* see DS */ if (best_div == 16) best_div = 0; if (best_mul == 128) best_mul = 0; /* Power up PLL and switch to bypass */ ret = regmap_write(tc->regmap, PXL_PLLCTRL, PLLBYP | PLLEN); if (ret) return ret; pxl_pllparam = vco_hi << 24; /* For PLL VCO >= 300 MHz = 1 */ pxl_pllparam |= ext_div[best_pre] << 20; /* External Pre-divider */ pxl_pllparam |= ext_div[best_post] << 16; /* External Post-divider */ pxl_pllparam |= IN_SEL_REFCLK; /* Use RefClk as PLL input */ pxl_pllparam |= best_div << 8; /* Divider for PLL RefClk */ pxl_pllparam |= best_mul; /* Multiplier for PLL */ ret = regmap_write(tc->regmap, PXL_PLLPARAM, pxl_pllparam); if (ret) return ret; /* Force PLL parameter update and disable bypass */ return tc_pllupdate(tc, PXL_PLLCTRL); } static int tc_pxl_pll_dis(struct tc_data *tc) { /* Enable PLL bypass, power down PLL */ return regmap_write(tc->regmap, PXL_PLLCTRL, PLLBYP); } static int tc_stream_clock_calc(struct tc_data *tc) { /* * If the Stream clock and Link Symbol clock are * asynchronous with each other, the value of M changes over * time. This way of generating link clock and stream * clock is called Asynchronous Clock mode. The value M * must change while the value N stays constant. The * value of N in this Asynchronous Clock mode must be set * to 2^15 or 32,768. * * LSCLK = 1/10 of high speed link clock * * f_STRMCLK = M/N * f_LSCLK * M/N = f_STRMCLK / f_LSCLK * */ return regmap_write(tc->regmap, DP0_VIDMNGEN1, 32768); } static int tc_set_syspllparam(struct tc_data *tc) { unsigned long rate; u32 pllparam = SYSCLK_SEL_LSCLK | LSCLK_DIV_2; rate = clk_get_rate(tc->refclk); switch (rate) { case 38400000: pllparam |= REF_FREQ_38M4; break; case 26000000: pllparam |= REF_FREQ_26M; break; case 19200000: pllparam |= REF_FREQ_19M2; break; case 13000000: pllparam |= REF_FREQ_13M; break; default: dev_err(tc->dev, "Invalid refclk rate: %lu Hz\n", rate); return -EINVAL; } return regmap_write(tc->regmap, SYS_PLLPARAM, pllparam); } static int tc_aux_link_setup(struct tc_data *tc) { int ret; u32 dp0_auxcfg1; /* Setup DP-PHY / PLL */ ret = tc_set_syspllparam(tc); if (ret) goto err; ret = regmap_write(tc->regmap, DP_PHY_CTRL, BGREN | PWR_SW_EN | PHY_A0_EN); if (ret) goto err; /* * Initially PLLs are in bypass. Force PLL parameter update, * disable PLL bypass, enable PLL */ ret = tc_pllupdate(tc, DP0_PLLCTRL); if (ret) goto err; ret = tc_pllupdate(tc, DP1_PLLCTRL); if (ret) goto err; ret = tc_poll_timeout(tc, DP_PHY_CTRL, PHY_RDY, PHY_RDY, 100, 100000); if (ret == -ETIMEDOUT) { dev_err(tc->dev, "Timeout waiting for PHY to become ready"); return ret; } else if (ret) { goto err; } /* Setup AUX link */ dp0_auxcfg1 = AUX_RX_FILTER_EN; dp0_auxcfg1 |= 0x06 << 8; /* Aux Bit Period Calculator Threshold */ dp0_auxcfg1 |= 0x3f << 0; /* Aux Response Timeout Timer */ ret = regmap_write(tc->regmap, DP0_AUXCFG1, dp0_auxcfg1); if (ret) goto err; return 0; err: dev_err(tc->dev, "tc_aux_link_setup failed: %d\n", ret); return ret; } static int tc_get_display_props(struct tc_data *tc) { u8 revision, num_lanes; unsigned int rate; int ret; u8 reg; /* Read DP Rx Link Capability */ ret = drm_dp_dpcd_read(&tc->aux, DP_DPCD_REV, tc->link.dpcd, DP_RECEIVER_CAP_SIZE); if (ret < 0) goto err_dpcd_read; revision = tc->link.dpcd[DP_DPCD_REV]; rate = drm_dp_max_link_rate(tc->link.dpcd); num_lanes = drm_dp_max_lane_count(tc->link.dpcd); if (rate != 162000 && rate != 270000) { dev_dbg(tc->dev, "Falling to 2.7 Gbps rate\n"); rate = 270000; } tc->link.rate = rate; if (num_lanes > 2) { dev_dbg(tc->dev, "Falling to 2 lanes\n"); num_lanes = 2; } tc->link.num_lanes = num_lanes; ret = drm_dp_dpcd_readb(&tc->aux, DP_MAX_DOWNSPREAD, ®); if (ret < 0) goto err_dpcd_read; tc->link.spread = reg & DP_MAX_DOWNSPREAD_0_5; ret = drm_dp_dpcd_readb(&tc->aux, DP_MAIN_LINK_CHANNEL_CODING, ®); if (ret < 0) goto err_dpcd_read; tc->link.scrambler_dis = false; /* read assr */ ret = drm_dp_dpcd_readb(&tc->aux, DP_EDP_CONFIGURATION_SET, ®); if (ret < 0) goto err_dpcd_read; tc->link.assr = reg & DP_ALTERNATE_SCRAMBLER_RESET_ENABLE; dev_dbg(tc->dev, "DPCD rev: %d.%d, rate: %s, lanes: %d, framing: %s\n", revision >> 4, revision & 0x0f, (tc->link.rate == 162000) ? "1.62Gbps" : "2.7Gbps", tc->link.num_lanes, drm_dp_enhanced_frame_cap(tc->link.dpcd) ? "enhanced" : "default"); dev_dbg(tc->dev, "Downspread: %s, scrambler: %s\n", tc->link.spread ? "0.5%" : "0.0%", tc->link.scrambler_dis ? "disabled" : "enabled"); dev_dbg(tc->dev, "Display ASSR: %d, TC358767 ASSR: %d\n", tc->link.assr, tc->assr); return 0; err_dpcd_read: dev_err(tc->dev, "failed to read DPCD: %d\n", ret); return ret; } static int tc_set_video_mode(struct tc_data *tc, const struct drm_display_mode *mode) { int ret; int vid_sync_dly; int max_tu_symbol; int left_margin = mode->htotal - mode->hsync_end; int right_margin = mode->hsync_start - mode->hdisplay; int hsync_len = mode->hsync_end - mode->hsync_start; int upper_margin = mode->vtotal - mode->vsync_end; int lower_margin = mode->vsync_start - mode->vdisplay; int vsync_len = mode->vsync_end - mode->vsync_start; u32 dp0_syncval; u32 bits_per_pixel = 24; u32 in_bw, out_bw; /* * Recommended maximum number of symbols transferred in a transfer unit: * DIV_ROUND_UP((input active video bandwidth in bytes) * tu_size, * (output active video bandwidth in bytes)) * Must be less than tu_size. */ in_bw = mode->clock * bits_per_pixel / 8; out_bw = tc->link.num_lanes * tc->link.rate; max_tu_symbol = DIV_ROUND_UP(in_bw * TU_SIZE_RECOMMENDED, out_bw); dev_dbg(tc->dev, "set mode %dx%d\n", mode->hdisplay, mode->vdisplay); dev_dbg(tc->dev, "H margin %d,%d sync %d\n", left_margin, right_margin, hsync_len); dev_dbg(tc->dev, "V margin %d,%d sync %d\n", upper_margin, lower_margin, vsync_len); dev_dbg(tc->dev, "total: %dx%d\n", mode->htotal, mode->vtotal); /* * LCD Ctl Frame Size * datasheet is not clear of vsdelay in case of DPI * assume we do not need any delay when DPI is a source of * sync signals */ ret = regmap_write(tc->regmap, VPCTRL0, FIELD_PREP(VSDELAY, 0) | OPXLFMT_RGB888 | FRMSYNC_DISABLED | MSF_DISABLED); if (ret) return ret; ret = regmap_write(tc->regmap, HTIM01, FIELD_PREP(HBPR, ALIGN(left_margin, 2)) | FIELD_PREP(HPW, ALIGN(hsync_len, 2))); if (ret) return ret; ret = regmap_write(tc->regmap, HTIM02, FIELD_PREP(HDISPR, ALIGN(mode->hdisplay, 2)) | FIELD_PREP(HFPR, ALIGN(right_margin, 2))); if (ret) return ret; ret = regmap_write(tc->regmap, VTIM01, FIELD_PREP(VBPR, upper_margin) | FIELD_PREP(VSPR, vsync_len)); if (ret) return ret; ret = regmap_write(tc->regmap, VTIM02, FIELD_PREP(VFPR, lower_margin) | FIELD_PREP(VDISPR, mode->vdisplay)); if (ret) return ret; ret = regmap_write(tc->regmap, VFUEN0, VFUEN); /* update settings */ if (ret) return ret; /* Test pattern settings */ ret = regmap_write(tc->regmap, TSTCTL, FIELD_PREP(COLOR_R, 120) | FIELD_PREP(COLOR_G, 20) | FIELD_PREP(COLOR_B, 99) | ENI2CFILTER | FIELD_PREP(COLOR_BAR_MODE, COLOR_BAR_MODE_BARS)); if (ret) return ret; /* DP Main Stream Attributes */ vid_sync_dly = hsync_len + left_margin + mode->hdisplay; ret = regmap_write(tc->regmap, DP0_VIDSYNCDELAY, FIELD_PREP(THRESH_DLY, max_tu_symbol) | FIELD_PREP(VID_SYNC_DLY, vid_sync_dly)); ret = regmap_write(tc->regmap, DP0_TOTALVAL, FIELD_PREP(H_TOTAL, mode->htotal) | FIELD_PREP(V_TOTAL, mode->vtotal)); if (ret) return ret; ret = regmap_write(tc->regmap, DP0_STARTVAL, FIELD_PREP(H_START, left_margin + hsync_len) | FIELD_PREP(V_START, upper_margin + vsync_len)); if (ret) return ret; ret = regmap_write(tc->regmap, DP0_ACTIVEVAL, FIELD_PREP(V_ACT, mode->vdisplay) | FIELD_PREP(H_ACT, mode->hdisplay)); if (ret) return ret; dp0_syncval = FIELD_PREP(VS_WIDTH, vsync_len) | FIELD_PREP(HS_WIDTH, hsync_len); if (mode->flags & DRM_MODE_FLAG_NVSYNC) dp0_syncval |= SYNCVAL_VS_POL_ACTIVE_LOW; if (mode->flags & DRM_MODE_FLAG_NHSYNC) dp0_syncval |= SYNCVAL_HS_POL_ACTIVE_LOW; ret = regmap_write(tc->regmap, DP0_SYNCVAL, dp0_syncval); if (ret) return ret; ret = regmap_write(tc->regmap, DPIPXLFMT, VS_POL_ACTIVE_LOW | HS_POL_ACTIVE_LOW | DE_POL_ACTIVE_HIGH | SUB_CFG_TYPE_CONFIG1 | DPI_BPP_RGB888); if (ret) return ret; ret = regmap_write(tc->regmap, DP0_MISC, FIELD_PREP(MAX_TU_SYMBOL, max_tu_symbol) | FIELD_PREP(TU_SIZE, TU_SIZE_RECOMMENDED) | BPC_8); if (ret) return ret; return 0; } static int tc_wait_link_training(struct tc_data *tc) { u32 value; int ret; ret = tc_poll_timeout(tc, DP0_LTSTAT, LT_LOOPDONE, LT_LOOPDONE, 500, 100000); if (ret) { dev_err(tc->dev, "Link training timeout waiting for LT_LOOPDONE!\n"); return ret; } ret = regmap_read(tc->regmap, DP0_LTSTAT, &value); if (ret) return ret; return (value >> 8) & 0x7; } static int tc_main_link_enable(struct tc_data *tc) { struct drm_dp_aux *aux = &tc->aux; struct device *dev = tc->dev; u32 dp_phy_ctrl; u32 value; int ret; u8 tmp[DP_LINK_STATUS_SIZE]; dev_dbg(tc->dev, "link enable\n"); ret = regmap_read(tc->regmap, DP0CTL, &value); if (ret) return ret; if (WARN_ON(value & DP_EN)) { ret = regmap_write(tc->regmap, DP0CTL, 0); if (ret) return ret; } ret = regmap_write(tc->regmap, DP0_SRCCTRL, tc_srcctrl(tc)); if (ret) return ret; /* SSCG and BW27 on DP1 must be set to the same as on DP0 */ ret = regmap_write(tc->regmap, DP1_SRCCTRL, (tc->link.spread ? DP0_SRCCTRL_SSCG : 0) | ((tc->link.rate != 162000) ? DP0_SRCCTRL_BW27 : 0)); if (ret) return ret; ret = tc_set_syspllparam(tc); if (ret) return ret; /* Setup Main Link */ dp_phy_ctrl = BGREN | PWR_SW_EN | PHY_A0_EN | PHY_M0_EN; if (tc->link.num_lanes == 2) dp_phy_ctrl |= PHY_2LANE; ret = regmap_write(tc->regmap, DP_PHY_CTRL, dp_phy_ctrl); if (ret) return ret; /* PLL setup */ ret = tc_pllupdate(tc, DP0_PLLCTRL); if (ret) return ret; ret = tc_pllupdate(tc, DP1_PLLCTRL); if (ret) return ret; /* Reset/Enable Main Links */ dp_phy_ctrl |= DP_PHY_RST | PHY_M1_RST | PHY_M0_RST; ret = regmap_write(tc->regmap, DP_PHY_CTRL, dp_phy_ctrl); usleep_range(100, 200); dp_phy_ctrl &= ~(DP_PHY_RST | PHY_M1_RST | PHY_M0_RST); ret = regmap_write(tc->regmap, DP_PHY_CTRL, dp_phy_ctrl); ret = tc_poll_timeout(tc, DP_PHY_CTRL, PHY_RDY, PHY_RDY, 500, 100000); if (ret) { dev_err(dev, "timeout waiting for phy become ready"); return ret; } /* Set misc: 8 bits per color */ ret = regmap_update_bits(tc->regmap, DP0_MISC, BPC_8, BPC_8); if (ret) return ret; /* * ASSR mode * on TC358767 side ASSR configured through strap pin * seems there is no way to change this setting from SW * * check is tc configured for same mode */ if (tc->assr != tc->link.assr) { dev_dbg(dev, "Trying to set display to ASSR: %d\n", tc->assr); /* try to set ASSR on display side */ tmp[0] = tc->assr; ret = drm_dp_dpcd_writeb(aux, DP_EDP_CONFIGURATION_SET, tmp[0]); if (ret < 0) goto err_dpcd_read; /* read back */ ret = drm_dp_dpcd_readb(aux, DP_EDP_CONFIGURATION_SET, tmp); if (ret < 0) goto err_dpcd_read; if (tmp[0] != tc->assr) { dev_dbg(dev, "Failed to switch display ASSR to %d, falling back to unscrambled mode\n", tc->assr); /* trying with disabled scrambler */ tc->link.scrambler_dis = true; } } /* Setup Link & DPRx Config for Training */ tmp[0] = drm_dp_link_rate_to_bw_code(tc->link.rate); tmp[1] = tc->link.num_lanes; if (drm_dp_enhanced_frame_cap(tc->link.dpcd)) tmp[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN; ret = drm_dp_dpcd_write(aux, DP_LINK_BW_SET, tmp, 2); if (ret < 0) goto err_dpcd_write; /* DOWNSPREAD_CTRL */ tmp[0] = tc->link.spread ? DP_SPREAD_AMP_0_5 : 0x00; /* MAIN_LINK_CHANNEL_CODING_SET */ tmp[1] = DP_SET_ANSI_8B10B; ret = drm_dp_dpcd_write(aux, DP_DOWNSPREAD_CTRL, tmp, 2); if (ret < 0) goto err_dpcd_write; /* Reset voltage-swing & pre-emphasis */ tmp[0] = tmp[1] = DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0; ret = drm_dp_dpcd_write(aux, DP_TRAINING_LANE0_SET, tmp, 2); if (ret < 0) goto err_dpcd_write; /* Clock-Recovery */ /* Set DPCD 0x102 for Training Pattern 1 */ ret = regmap_write(tc->regmap, DP0_SNKLTCTRL, DP_LINK_SCRAMBLING_DISABLE | DP_TRAINING_PATTERN_1); if (ret) return ret; ret = regmap_write(tc->regmap, DP0_LTLOOPCTRL, (15 << 28) | /* Defer Iteration Count */ (15 << 24) | /* Loop Iteration Count */ (0xd << 0)); /* Loop Timer Delay */ if (ret) return ret; ret = regmap_write(tc->regmap, DP0_SRCCTRL, tc_srcctrl(tc) | DP0_SRCCTRL_SCRMBLDIS | DP0_SRCCTRL_AUTOCORRECT | DP0_SRCCTRL_TP1); if (ret) return ret; /* Enable DP0 to start Link Training */ ret = regmap_write(tc->regmap, DP0CTL, (drm_dp_enhanced_frame_cap(tc->link.dpcd) ? EF_EN : 0) | DP_EN); if (ret) return ret; /* wait */ ret = tc_wait_link_training(tc); if (ret < 0) return ret; if (ret) { dev_err(tc->dev, "Link training phase 1 failed: %s\n", training_pattern1_errors[ret]); return -ENODEV; } /* Channel Equalization */ /* Set DPCD 0x102 for Training Pattern 2 */ ret = regmap_write(tc->regmap, DP0_SNKLTCTRL, DP_LINK_SCRAMBLING_DISABLE | DP_TRAINING_PATTERN_2); if (ret) return ret; ret = regmap_write(tc->regmap, DP0_SRCCTRL, tc_srcctrl(tc) | DP0_SRCCTRL_SCRMBLDIS | DP0_SRCCTRL_AUTOCORRECT | DP0_SRCCTRL_TP2); if (ret) return ret; /* wait */ ret = tc_wait_link_training(tc); if (ret < 0) return ret; if (ret) { dev_err(tc->dev, "Link training phase 2 failed: %s\n", training_pattern2_errors[ret]); return -ENODEV; } /* * Toshiba's documentation suggests to first clear DPCD 0x102, then * clear the training pattern bit in DP0_SRCCTRL. Testing shows * that the link sometimes drops if those steps are done in that order, * but if the steps are done in reverse order, the link stays up. * * So we do the steps differently than documented here. */ /* Clear Training Pattern, set AutoCorrect Mode = 1 */ ret = regmap_write(tc->regmap, DP0_SRCCTRL, tc_srcctrl(tc) | DP0_SRCCTRL_AUTOCORRECT); if (ret) return ret; /* Clear DPCD 0x102 */ /* Note: Can Not use DP0_SNKLTCTRL (0x06E4) short cut */ tmp[0] = tc->link.scrambler_dis ? DP_LINK_SCRAMBLING_DISABLE : 0x00; ret = drm_dp_dpcd_writeb(aux, DP_TRAINING_PATTERN_SET, tmp[0]); if (ret < 0) goto err_dpcd_write; /* Check link status */ ret = drm_dp_dpcd_read_link_status(aux, tmp); if (ret < 0) goto err_dpcd_read; ret = 0; value = tmp[0] & DP_CHANNEL_EQ_BITS; if (value != DP_CHANNEL_EQ_BITS) { dev_err(tc->dev, "Lane 0 failed: %x\n", value); ret = -ENODEV; } if (tc->link.num_lanes == 2) { value = (tmp[0] >> 4) & DP_CHANNEL_EQ_BITS; if (value != DP_CHANNEL_EQ_BITS) { dev_err(tc->dev, "Lane 1 failed: %x\n", value); ret = -ENODEV; } if (!(tmp[2] & DP_INTERLANE_ALIGN_DONE)) { dev_err(tc->dev, "Interlane align failed\n"); ret = -ENODEV; } } if (ret) { dev_err(dev, "0x0202 LANE0_1_STATUS: 0x%02x\n", tmp[0]); dev_err(dev, "0x0203 LANE2_3_STATUS 0x%02x\n", tmp[1]); dev_err(dev, "0x0204 LANE_ALIGN_STATUS_UPDATED: 0x%02x\n", tmp[2]); dev_err(dev, "0x0205 SINK_STATUS: 0x%02x\n", tmp[3]); dev_err(dev, "0x0206 ADJUST_REQUEST_LANE0_1: 0x%02x\n", tmp[4]); dev_err(dev, "0x0207 ADJUST_REQUEST_LANE2_3: 0x%02x\n", tmp[5]); return ret; } return 0; err_dpcd_read: dev_err(tc->dev, "Failed to read DPCD: %d\n", ret); return ret; err_dpcd_write: dev_err(tc->dev, "Failed to write DPCD: %d\n", ret); return ret; } static int tc_main_link_disable(struct tc_data *tc) { int ret; dev_dbg(tc->dev, "link disable\n"); ret = regmap_write(tc->regmap, DP0_SRCCTRL, 0); if (ret) return ret; return regmap_write(tc->regmap, DP0CTL, 0); } static int tc_stream_enable(struct tc_data *tc) { int ret; u32 value; dev_dbg(tc->dev, "enable video stream\n"); /* PXL PLL setup */ if (tc_test_pattern) { ret = tc_pxl_pll_en(tc, clk_get_rate(tc->refclk), 1000 * tc->mode.clock); if (ret) return ret; } ret = tc_set_video_mode(tc, &tc->mode); if (ret) return ret; /* Set M/N */ ret = tc_stream_clock_calc(tc); if (ret) return ret; value = VID_MN_GEN | DP_EN; if (drm_dp_enhanced_frame_cap(tc->link.dpcd)) value |= EF_EN; ret = regmap_write(tc->regmap, DP0CTL, value); if (ret) return ret; /* * VID_EN assertion should be delayed by at least N * LSCLK * cycles from the time VID_MN_GEN is enabled in order to * generate stable values for VID_M. LSCLK is 270 MHz or * 162 MHz, VID_N is set to 32768 in tc_stream_clock_calc(), * so a delay of at least 203 us should suffice. */ usleep_range(500, 1000); value |= VID_EN; ret = regmap_write(tc->regmap, DP0CTL, value); if (ret) return ret; /* Set input interface */ value = DP0_AUDSRC_NO_INPUT; if (tc_test_pattern) value |= DP0_VIDSRC_COLOR_BAR; else value |= DP0_VIDSRC_DPI_RX; ret = regmap_write(tc->regmap, SYSCTRL, value); if (ret) return ret; return 0; } static int tc_stream_disable(struct tc_data *tc) { int ret; dev_dbg(tc->dev, "disable video stream\n"); ret = regmap_update_bits(tc->regmap, DP0CTL, VID_EN, 0); if (ret) return ret; tc_pxl_pll_dis(tc); return 0; } static void tc_bridge_enable(struct drm_bridge *bridge) { struct tc_data *tc = bridge_to_tc(bridge); int ret; ret = tc_get_display_props(tc); if (ret < 0) { dev_err(tc->dev, "failed to read display props: %d\n", ret); return; } ret = tc_main_link_enable(tc); if (ret < 0) { dev_err(tc->dev, "main link enable error: %d\n", ret); return; } ret = tc_stream_enable(tc); if (ret < 0) { dev_err(tc->dev, "main link stream start error: %d\n", ret); tc_main_link_disable(tc); return; } } static void tc_bridge_disable(struct drm_bridge *bridge) { struct tc_data *tc = bridge_to_tc(bridge); int ret; ret = tc_stream_disable(tc); if (ret < 0) dev_err(tc->dev, "main link stream stop error: %d\n", ret); ret = tc_main_link_disable(tc); if (ret < 0) dev_err(tc->dev, "main link disable error: %d\n", ret); } static bool tc_bridge_mode_fixup(struct drm_bridge *bridge, const struct drm_display_mode *mode, struct drm_display_mode *adj) { /* Fixup sync polarities, both hsync and vsync are active low */ adj->flags = mode->flags; adj->flags |= (DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC); adj->flags &= ~(DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC); return true; } static enum drm_mode_status tc_mode_valid(struct drm_bridge *bridge, const struct drm_display_info *info, const struct drm_display_mode *mode) { struct tc_data *tc = bridge_to_tc(bridge); u32 req, avail; u32 bits_per_pixel = 24; /* DPI interface clock limitation: upto 154 MHz */ if (mode->clock > 154000) return MODE_CLOCK_HIGH; req = mode->clock * bits_per_pixel / 8; avail = tc->link.num_lanes * tc->link.rate; if (req > avail) return MODE_BAD; return MODE_OK; } static void tc_bridge_mode_set(struct drm_bridge *bridge, const struct drm_display_mode *mode, const struct drm_display_mode *adj) { struct tc_data *tc = bridge_to_tc(bridge); tc->mode = *mode; } static struct edid *tc_get_edid(struct drm_bridge *bridge, struct drm_connector *connector) { struct tc_data *tc = bridge_to_tc(bridge); return drm_get_edid(connector, &tc->aux.ddc); } static int tc_connector_get_modes(struct drm_connector *connector) { struct tc_data *tc = connector_to_tc(connector); int num_modes; struct edid *edid; int ret; ret = tc_get_display_props(tc); if (ret < 0) { dev_err(tc->dev, "failed to read display props: %d\n", ret); return 0; } if (tc->panel_bridge) { num_modes = drm_bridge_get_modes(tc->panel_bridge, connector); if (num_modes > 0) return num_modes; } edid = tc_get_edid(&tc->bridge, connector); num_modes = drm_add_edid_modes(connector, edid); kfree(edid); return num_modes; } static const struct drm_connector_helper_funcs tc_connector_helper_funcs = { .get_modes = tc_connector_get_modes, }; static enum drm_connector_status tc_bridge_detect(struct drm_bridge *bridge) { struct tc_data *tc = bridge_to_tc(bridge); bool conn; u32 val; int ret; ret = regmap_read(tc->regmap, GPIOI, &val); if (ret) return connector_status_unknown; conn = val & BIT(tc->hpd_pin); if (conn) return connector_status_connected; else return connector_status_disconnected; } static enum drm_connector_status tc_connector_detect(struct drm_connector *connector, bool force) { struct tc_data *tc = connector_to_tc(connector); if (tc->hpd_pin >= 0) return tc_bridge_detect(&tc->bridge); if (tc->panel_bridge) return connector_status_connected; else return connector_status_unknown; } static const struct drm_connector_funcs tc_connector_funcs = { .detect = tc_connector_detect, .fill_modes = drm_helper_probe_single_connector_modes, .destroy = drm_connector_cleanup, .reset = drm_atomic_helper_connector_reset, .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, }; static int tc_bridge_attach(struct drm_bridge *bridge, enum drm_bridge_attach_flags flags) { u32 bus_format = MEDIA_BUS_FMT_RGB888_1X24; struct tc_data *tc = bridge_to_tc(bridge); struct drm_device *drm = bridge->dev; int ret; if (tc->panel_bridge) { /* If a connector is required then this driver shall create it */ ret = drm_bridge_attach(tc->bridge.encoder, tc->panel_bridge, &tc->bridge, flags | DRM_BRIDGE_ATTACH_NO_CONNECTOR); if (ret) return ret; } if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR) return 0; tc->aux.drm_dev = drm; ret = drm_dp_aux_register(&tc->aux); if (ret < 0) return ret; /* Create DP/eDP connector */ drm_connector_helper_add(&tc->connector, &tc_connector_helper_funcs); ret = drm_connector_init(drm, &tc->connector, &tc_connector_funcs, tc->bridge.type); if (ret) goto aux_unregister; /* Don't poll if don't have HPD connected */ if (tc->hpd_pin >= 0) { if (tc->have_irq) tc->connector.polled = DRM_CONNECTOR_POLL_HPD; else tc->connector.polled = DRM_CONNECTOR_POLL_CONNECT | DRM_CONNECTOR_POLL_DISCONNECT; } drm_display_info_set_bus_formats(&tc->connector.display_info, &bus_format, 1); tc->connector.display_info.bus_flags = DRM_BUS_FLAG_DE_HIGH | DRM_BUS_FLAG_PIXDATA_DRIVE_NEGEDGE | DRM_BUS_FLAG_SYNC_DRIVE_NEGEDGE; drm_connector_attach_encoder(&tc->connector, tc->bridge.encoder); return 0; aux_unregister: drm_dp_aux_unregister(&tc->aux); return ret; } static void tc_bridge_detach(struct drm_bridge *bridge) { drm_dp_aux_unregister(&bridge_to_tc(bridge)->aux); } static const struct drm_bridge_funcs tc_bridge_funcs = { .attach = tc_bridge_attach, .detach = tc_bridge_detach, .mode_valid = tc_mode_valid, .mode_set = tc_bridge_mode_set, .enable = tc_bridge_enable, .disable = tc_bridge_disable, .mode_fixup = tc_bridge_mode_fixup, .detect = tc_bridge_detect, .get_edid = tc_get_edid, }; static bool tc_readable_reg(struct device *dev, unsigned int reg) { return reg != SYSCTRL; } static const struct regmap_range tc_volatile_ranges[] = { regmap_reg_range(DP0_AUXWDATA(0), DP0_AUXSTATUS), regmap_reg_range(DP0_LTSTAT, DP0_SNKLTCHGREQ), regmap_reg_range(DP_PHY_CTRL, DP_PHY_CTRL), regmap_reg_range(DP0_PLLCTRL, PXL_PLLCTRL), regmap_reg_range(VFUEN0, VFUEN0), regmap_reg_range(INTSTS_G, INTSTS_G), regmap_reg_range(GPIOI, GPIOI), }; static const struct regmap_access_table tc_volatile_table = { .yes_ranges = tc_volatile_ranges, .n_yes_ranges = ARRAY_SIZE(tc_volatile_ranges), }; static bool tc_writeable_reg(struct device *dev, unsigned int reg) { return (reg != TC_IDREG) && (reg != DP0_LTSTAT) && (reg != DP0_SNKLTCHGREQ); } static const struct regmap_config tc_regmap_config = { .name = "tc358767", .reg_bits = 16, .val_bits = 32, .reg_stride = 4, .max_register = PLL_DBG, .cache_type = REGCACHE_RBTREE, .readable_reg = tc_readable_reg, .volatile_table = &tc_volatile_table, .writeable_reg = tc_writeable_reg, .reg_format_endian = REGMAP_ENDIAN_BIG, .val_format_endian = REGMAP_ENDIAN_LITTLE, }; static irqreturn_t tc_irq_handler(int irq, void *arg) { struct tc_data *tc = arg; u32 val; int r; r = regmap_read(tc->regmap, INTSTS_G, &val); if (r) return IRQ_NONE; if (!val) return IRQ_NONE; if (val & INT_SYSERR) { u32 stat = 0; regmap_read(tc->regmap, SYSSTAT, &stat); dev_err(tc->dev, "syserr %x\n", stat); } if (tc->hpd_pin >= 0 && tc->bridge.dev) { /* * H is triggered when the GPIO goes high. * * LC is triggered when the GPIO goes low and stays low for * the duration of LCNT */ bool h = val & INT_GPIO_H(tc->hpd_pin); bool lc = val & INT_GPIO_LC(tc->hpd_pin); dev_dbg(tc->dev, "GPIO%d: %s %s\n", tc->hpd_pin, h ? "H" : "", lc ? "LC" : ""); if (h || lc) drm_kms_helper_hotplug_event(tc->bridge.dev); } regmap_write(tc->regmap, INTSTS_G, val); return IRQ_HANDLED; } static int tc_probe_edp_bridge_endpoint(struct tc_data *tc) { struct device *dev = tc->dev; struct drm_panel *panel; int ret; /* port@2 is the output port */ ret = drm_of_find_panel_or_bridge(dev->of_node, 2, 0, &panel, NULL); if (ret && ret != -ENODEV) return ret; if (panel) { struct drm_bridge *panel_bridge; panel_bridge = devm_drm_panel_bridge_add(dev, panel); if (IS_ERR(panel_bridge)) return PTR_ERR(panel_bridge); tc->panel_bridge = panel_bridge; tc->bridge.type = DRM_MODE_CONNECTOR_eDP; } else { tc->bridge.type = DRM_MODE_CONNECTOR_DisplayPort; } return 0; } static int tc_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct device *dev = &client->dev; struct tc_data *tc; int ret; tc = devm_kzalloc(dev, sizeof(*tc), GFP_KERNEL); if (!tc) return -ENOMEM; tc->dev = dev; ret = tc_probe_edp_bridge_endpoint(tc); if (ret) return ret; /* Shut down GPIO is optional */ tc->sd_gpio = devm_gpiod_get_optional(dev, "shutdown", GPIOD_OUT_HIGH); if (IS_ERR(tc->sd_gpio)) return PTR_ERR(tc->sd_gpio); if (tc->sd_gpio) { gpiod_set_value_cansleep(tc->sd_gpio, 0); usleep_range(5000, 10000); } /* Reset GPIO is optional */ tc->reset_gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_LOW); if (IS_ERR(tc->reset_gpio)) return PTR_ERR(tc->reset_gpio); if (tc->reset_gpio) { gpiod_set_value_cansleep(tc->reset_gpio, 1); usleep_range(5000, 10000); } tc->refclk = devm_clk_get(dev, "ref"); if (IS_ERR(tc->refclk)) { ret = PTR_ERR(tc->refclk); dev_err(dev, "Failed to get refclk: %d\n", ret); return ret; } tc->regmap = devm_regmap_init_i2c(client, &tc_regmap_config); if (IS_ERR(tc->regmap)) { ret = PTR_ERR(tc->regmap); dev_err(dev, "Failed to initialize regmap: %d\n", ret); return ret; } ret = of_property_read_u32(dev->of_node, "toshiba,hpd-pin", &tc->hpd_pin); if (ret) { tc->hpd_pin = -ENODEV; } else { if (tc->hpd_pin < 0 || tc->hpd_pin > 1) { dev_err(dev, "failed to parse HPD number\n"); return ret; } } if (client->irq > 0) { /* enable SysErr */ regmap_write(tc->regmap, INTCTL_G, INT_SYSERR); ret = devm_request_threaded_irq(dev, client->irq, NULL, tc_irq_handler, IRQF_ONESHOT, "tc358767-irq", tc); if (ret) { dev_err(dev, "failed to register dp interrupt\n"); return ret; } tc->have_irq = true; } ret = regmap_read(tc->regmap, TC_IDREG, &tc->rev); if (ret) { dev_err(tc->dev, "can not read device ID: %d\n", ret); return ret; } if ((tc->rev != 0x6601) && (tc->rev != 0x6603)) { dev_err(tc->dev, "invalid device ID: 0x%08x\n", tc->rev); return -EINVAL; } tc->assr = (tc->rev == 0x6601); /* Enable ASSR for eDP panels */ if (!tc->reset_gpio) { /* * If the reset pin isn't present, do a software reset. It isn't * as thorough as the hardware reset, as we can't reset the I2C * communication block for obvious reasons, but it's getting the * chip into a defined state. */ regmap_update_bits(tc->regmap, SYSRSTENB, ENBLCD0 | ENBBM | ENBDSIRX | ENBREG | ENBHDCP, 0); regmap_update_bits(tc->regmap, SYSRSTENB, ENBLCD0 | ENBBM | ENBDSIRX | ENBREG | ENBHDCP, ENBLCD0 | ENBBM | ENBDSIRX | ENBREG | ENBHDCP); usleep_range(5000, 10000); } if (tc->hpd_pin >= 0) { u32 lcnt_reg = tc->hpd_pin == 0 ? INT_GP0_LCNT : INT_GP1_LCNT; u32 h_lc = INT_GPIO_H(tc->hpd_pin) | INT_GPIO_LC(tc->hpd_pin); /* Set LCNT to 2ms */ regmap_write(tc->regmap, lcnt_reg, clk_get_rate(tc->refclk) * 2 / 1000); /* We need the "alternate" mode for HPD */ regmap_write(tc->regmap, GPIOM, BIT(tc->hpd_pin)); if (tc->have_irq) { /* enable H & LC */ regmap_update_bits(tc->regmap, INTCTL_G, h_lc, h_lc); } } ret = tc_aux_link_setup(tc); if (ret) return ret; /* Register DP AUX channel */ tc->aux.name = "TC358767 AUX i2c adapter"; tc->aux.dev = tc->dev; tc->aux.transfer = tc_aux_transfer; drm_dp_aux_init(&tc->aux); tc->bridge.funcs = &tc_bridge_funcs; if (tc->hpd_pin >= 0) tc->bridge.ops |= DRM_BRIDGE_OP_DETECT; tc->bridge.ops |= DRM_BRIDGE_OP_EDID; tc->bridge.of_node = dev->of_node; drm_bridge_add(&tc->bridge); i2c_set_clientdata(client, tc); return 0; } static int tc_remove(struct i2c_client *client) { struct tc_data *tc = i2c_get_clientdata(client); drm_bridge_remove(&tc->bridge); return 0; } static const struct i2c_device_id tc358767_i2c_ids[] = { { "tc358767", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, tc358767_i2c_ids); static const struct of_device_id tc358767_of_ids[] = { { .compatible = "toshiba,tc358767", }, { } }; MODULE_DEVICE_TABLE(of, tc358767_of_ids); static struct i2c_driver tc358767_driver = { .driver = { .name = "tc358767", .of_match_table = tc358767_of_ids, }, .id_table = tc358767_i2c_ids, .probe = tc_probe, .remove = tc_remove, }; module_i2c_driver(tc358767_driver); MODULE_AUTHOR("Andrey Gusakov "); MODULE_DESCRIPTION("tc358767 eDP encoder driver"); MODULE_LICENSE("GPL");