// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. * Author: Marc Zyngier */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "irq-gic-common.h" #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0) #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1) #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2) #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0) #define RDIST_FLAGS_RD_TABLES_PREALLOCATED (1 << 1) static u32 lpi_id_bits; /* * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to * deal with (one configuration byte per interrupt). PENDBASE has to * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI). */ #define LPI_NRBITS lpi_id_bits #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K) #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K) #define LPI_PROP_DEFAULT_PRIO GICD_INT_DEF_PRI /* * Collection structure - just an ID, and a redistributor address to * ping. We use one per CPU as a bag of interrupts assigned to this * CPU. */ struct its_collection { u64 target_address; u16 col_id; }; /* * The ITS_BASER structure - contains memory information, cached * value of BASER register configuration and ITS page size. */ struct its_baser { void *base; u64 val; u32 order; u32 psz; }; struct its_device; /* * The ITS structure - contains most of the infrastructure, with the * top-level MSI domain, the command queue, the collections, and the * list of devices writing to it. * * dev_alloc_lock has to be taken for device allocations, while the * spinlock must be taken to parse data structures such as the device * list. */ struct its_node { raw_spinlock_t lock; struct mutex dev_alloc_lock; struct list_head entry; void __iomem *base; void __iomem *sgir_base; phys_addr_t phys_base; struct its_cmd_block *cmd_base; struct its_cmd_block *cmd_write; struct its_baser tables[GITS_BASER_NR_REGS]; struct its_collection *collections; struct fwnode_handle *fwnode_handle; u64 (*get_msi_base)(struct its_device *its_dev); u64 typer; u64 cbaser_save; u32 ctlr_save; u32 mpidr; struct list_head its_device_list; u64 flags; unsigned long list_nr; int numa_node; unsigned int msi_domain_flags; u32 pre_its_base; /* for Socionext Synquacer */ int vlpi_redist_offset; }; #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS)) #define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP)) #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1) #define ITS_ITT_ALIGN SZ_256 /* The maximum number of VPEID bits supported by VLPI commands */ #define ITS_MAX_VPEID_BITS \ ({ \ int nvpeid = 16; \ if (gic_rdists->has_rvpeid && \ gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \ nvpeid = 1 + (gic_rdists->gicd_typer2 & \ GICD_TYPER2_VID); \ \ nvpeid; \ }) #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS)) /* Convert page order to size in bytes */ #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o)) struct event_lpi_map { unsigned long *lpi_map; u16 *col_map; irq_hw_number_t lpi_base; int nr_lpis; raw_spinlock_t vlpi_lock; struct its_vm *vm; struct its_vlpi_map *vlpi_maps; int nr_vlpis; }; /* * The ITS view of a device - belongs to an ITS, owns an interrupt * translation table, and a list of interrupts. If it some of its * LPIs are injected into a guest (GICv4), the event_map.vm field * indicates which one. */ struct its_device { struct list_head entry; struct its_node *its; struct event_lpi_map event_map; void *itt; u32 nr_ites; u32 device_id; bool shared; }; static struct { raw_spinlock_t lock; struct its_device *dev; struct its_vpe **vpes; int next_victim; } vpe_proxy; struct cpu_lpi_count { atomic_t managed; atomic_t unmanaged; }; static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count); static LIST_HEAD(its_nodes); static DEFINE_RAW_SPINLOCK(its_lock); static struct rdists *gic_rdists; static struct irq_domain *its_parent; static unsigned long its_list_map; static u16 vmovp_seq_num; static DEFINE_RAW_SPINLOCK(vmovp_lock); static DEFINE_IDA(its_vpeid_ida); #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist)) #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu)) #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K) /* * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we * always have vSGIs mapped. */ static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its) { return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]); } static u16 get_its_list(struct its_vm *vm) { struct its_node *its; unsigned long its_list = 0; list_for_each_entry(its, &its_nodes, entry) { if (!is_v4(its)) continue; if (require_its_list_vmovp(vm, its)) __set_bit(its->list_nr, &its_list); } return (u16)its_list; } static inline u32 its_get_event_id(struct irq_data *d) { struct its_device *its_dev = irq_data_get_irq_chip_data(d); return d->hwirq - its_dev->event_map.lpi_base; } static struct its_collection *dev_event_to_col(struct its_device *its_dev, u32 event) { struct its_node *its = its_dev->its; return its->collections + its_dev->event_map.col_map[event]; } static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev, u32 event) { if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis)) return NULL; return &its_dev->event_map.vlpi_maps[event]; } static struct its_vlpi_map *get_vlpi_map(struct irq_data *d) { if (irqd_is_forwarded_to_vcpu(d)) { struct its_device *its_dev = irq_data_get_irq_chip_data(d); u32 event = its_get_event_id(d); return dev_event_to_vlpi_map(its_dev, event); } return NULL; } static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags) { raw_spin_lock_irqsave(&vpe->vpe_lock, *flags); return vpe->col_idx; } static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags) { raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); } static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags) { struct its_vlpi_map *map = get_vlpi_map(d); int cpu; if (map) { cpu = vpe_to_cpuid_lock(map->vpe, flags); } else { /* Physical LPIs are already locked via the irq_desc lock */ struct its_device *its_dev = irq_data_get_irq_chip_data(d); cpu = its_dev->event_map.col_map[its_get_event_id(d)]; /* Keep GCC quiet... */ *flags = 0; } return cpu; } static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags) { struct its_vlpi_map *map = get_vlpi_map(d); if (map) vpe_to_cpuid_unlock(map->vpe, flags); } static struct its_collection *valid_col(struct its_collection *col) { if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0))) return NULL; return col; } static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe) { if (valid_col(its->collections + vpe->col_idx)) return vpe; return NULL; } /* * ITS command descriptors - parameters to be encoded in a command * block. */ struct its_cmd_desc { union { struct { struct its_device *dev; u32 event_id; } its_inv_cmd; struct { struct its_device *dev; u32 event_id; } its_clear_cmd; struct { struct its_device *dev; u32 event_id; } its_int_cmd; struct { struct its_device *dev; int valid; } its_mapd_cmd; struct { struct its_collection *col; int valid; } its_mapc_cmd; struct { struct its_device *dev; u32 phys_id; u32 event_id; } its_mapti_cmd; struct { struct its_device *dev; struct its_collection *col; u32 event_id; } its_movi_cmd; struct { struct its_device *dev; u32 event_id; } its_discard_cmd; struct { struct its_collection *col; } its_invall_cmd; struct { struct its_vpe *vpe; } its_vinvall_cmd; struct { struct its_vpe *vpe; struct its_collection *col; bool valid; } its_vmapp_cmd; struct { struct its_vpe *vpe; struct its_device *dev; u32 virt_id; u32 event_id; bool db_enabled; } its_vmapti_cmd; struct { struct its_vpe *vpe; struct its_device *dev; u32 event_id; bool db_enabled; } its_vmovi_cmd; struct { struct its_vpe *vpe; struct its_collection *col; u16 seq_num; u16 its_list; } its_vmovp_cmd; struct { struct its_vpe *vpe; } its_invdb_cmd; struct { struct its_vpe *vpe; u8 sgi; u8 priority; bool enable; bool group; bool clear; } its_vsgi_cmd; }; }; /* * The ITS command block, which is what the ITS actually parses. */ struct its_cmd_block { union { u64 raw_cmd[4]; __le64 raw_cmd_le[4]; }; }; #define ITS_CMD_QUEUE_SZ SZ_64K #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block)) typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *, struct its_cmd_block *, struct its_cmd_desc *); typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *, struct its_cmd_block *, struct its_cmd_desc *); static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l) { u64 mask = GENMASK_ULL(h, l); *raw_cmd &= ~mask; *raw_cmd |= (val << l) & mask; } static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr) { its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0); } static void its_encode_devid(struct its_cmd_block *cmd, u32 devid) { its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32); } static void its_encode_event_id(struct its_cmd_block *cmd, u32 id) { its_mask_encode(&cmd->raw_cmd[1], id, 31, 0); } static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id) { its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32); } static void its_encode_size(struct its_cmd_block *cmd, u8 size) { its_mask_encode(&cmd->raw_cmd[1], size, 4, 0); } static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr) { its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8); } static void its_encode_valid(struct its_cmd_block *cmd, int valid) { its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63); } static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr) { its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16); } static void its_encode_collection(struct its_cmd_block *cmd, u16 col) { its_mask_encode(&cmd->raw_cmd[2], col, 15, 0); } static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid) { its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32); } static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id) { its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0); } static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id) { its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32); } static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid) { its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0); } static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num) { its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32); } static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list) { its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0); } static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa) { its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16); } static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size) { its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0); } static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa) { its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16); } static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc) { its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8); } static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz) { its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9); } static void its_encode_vmapp_default_db(struct its_cmd_block *cmd, u32 vpe_db_lpi) { its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0); } static void its_encode_vmovp_default_db(struct its_cmd_block *cmd, u32 vpe_db_lpi) { its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0); } static void its_encode_db(struct its_cmd_block *cmd, bool db) { its_mask_encode(&cmd->raw_cmd[2], db, 63, 63); } static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi) { its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32); } static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio) { its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20); } static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp) { its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10); } static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr) { its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9); } static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en) { its_mask_encode(&cmd->raw_cmd[0], en, 8, 8); } static inline void its_fixup_cmd(struct its_cmd_block *cmd) { /* Let's fixup BE commands */ cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]); cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]); cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]); cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]); } static struct its_collection *its_build_mapd_cmd(struct its_node *its, struct its_cmd_block *cmd, struct its_cmd_desc *desc) { unsigned long itt_addr; u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites); itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt); itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN); its_encode_cmd(cmd, GITS_CMD_MAPD); its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id); its_encode_size(cmd, size - 1); its_encode_itt(cmd, itt_addr); its_encode_valid(cmd, desc->its_mapd_cmd.valid); its_fixup_cmd(cmd); return NULL; } static struct its_collection *its_build_mapc_cmd(struct its_node *its, struct its_cmd_block *cmd, struct its_cmd_desc *desc) { its_encode_cmd(cmd, GITS_CMD_MAPC); its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id); its_encode_target(cmd, desc->its_mapc_cmd.col->target_address); its_encode_valid(cmd, desc->its_mapc_cmd.valid); its_fixup_cmd(cmd); return desc->its_mapc_cmd.col; } static struct its_collection *its_build_mapti_cmd(struct its_node *its, struct its_cmd_block *cmd, struct its_cmd_desc *desc) { struct its_collection *col; col = dev_event_to_col(desc->its_mapti_cmd.dev, desc->its_mapti_cmd.event_id); its_encode_cmd(cmd, GITS_CMD_MAPTI); its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id); its_encode_event_id(cmd, desc->its_mapti_cmd.event_id); its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id); its_encode_collection(cmd, col->col_id); its_fixup_cmd(cmd); return valid_col(col); } static struct its_collection *its_build_movi_cmd(struct its_node *its, struct its_cmd_block *cmd, struct its_cmd_desc *desc) { struct its_collection *col; col = dev_event_to_col(desc->its_movi_cmd.dev, desc->its_movi_cmd.event_id); its_encode_cmd(cmd, GITS_CMD_MOVI); its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id); its_encode_event_id(cmd, desc->its_movi_cmd.event_id); its_encode_collection(cmd, desc->its_movi_cmd.col->col_id); its_fixup_cmd(cmd); return valid_col(col); } static struct its_collection *its_build_discard_cmd(struct its_node *its, struct its_cmd_block *cmd, struct its_cmd_desc *desc) { struct its_collection *col; col = dev_event_to_col(desc->its_discard_cmd.dev, desc->its_discard_cmd.event_id); its_encode_cmd(cmd, GITS_CMD_DISCARD); its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id); its_encode_event_id(cmd, desc->its_discard_cmd.event_id); its_fixup_cmd(cmd); return valid_col(col); } static struct its_collection *its_build_inv_cmd(struct its_node *its, struct its_cmd_block *cmd, struct its_cmd_desc *desc) { struct its_collection *col; col = dev_event_to_col(desc->its_inv_cmd.dev, desc->its_inv_cmd.event_id); its_encode_cmd(cmd, GITS_CMD_INV); its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); its_encode_event_id(cmd, desc->its_inv_cmd.event_id); its_fixup_cmd(cmd); return valid_col(col); } static struct its_collection *its_build_int_cmd(struct its_node *its, struct its_cmd_block *cmd, struct its_cmd_desc *desc) { struct its_collection *col; col = dev_event_to_col(desc->its_int_cmd.dev, desc->its_int_cmd.event_id); its_encode_cmd(cmd, GITS_CMD_INT); its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); its_encode_event_id(cmd, desc->its_int_cmd.event_id); its_fixup_cmd(cmd); return valid_col(col); } static struct its_collection *its_build_clear_cmd(struct its_node *its, struct its_cmd_block *cmd, struct its_cmd_desc *desc) { struct its_collection *col; col = dev_event_to_col(desc->its_clear_cmd.dev, desc->its_clear_cmd.event_id); its_encode_cmd(cmd, GITS_CMD_CLEAR); its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); its_encode_event_id(cmd, desc->its_clear_cmd.event_id); its_fixup_cmd(cmd); return valid_col(col); } static struct its_collection *its_build_invall_cmd(struct its_node *its, struct its_cmd_block *cmd, struct its_cmd_desc *desc) { its_encode_cmd(cmd, GITS_CMD_INVALL); its_encode_collection(cmd, desc->its_invall_cmd.col->col_id); its_fixup_cmd(cmd); return desc->its_invall_cmd.col; } static struct its_vpe *its_build_vinvall_cmd(struct its_node *its, struct its_cmd_block *cmd, struct its_cmd_desc *desc) { its_encode_cmd(cmd, GITS_CMD_VINVALL); its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id); its_fixup_cmd(cmd); return valid_vpe(its, desc->its_vinvall_cmd.vpe); } static struct its_vpe *its_build_vmapp_cmd(struct its_node *its, struct its_cmd_block *cmd, struct its_cmd_desc *desc) { unsigned long vpt_addr, vconf_addr; u64 target; bool alloc; its_encode_cmd(cmd, GITS_CMD_VMAPP); its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id); its_encode_valid(cmd, desc->its_vmapp_cmd.valid); if (!desc->its_vmapp_cmd.valid) { if (is_v4_1(its)) { alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count); its_encode_alloc(cmd, alloc); } goto out; } vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page)); target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset; its_encode_target(cmd, target); its_encode_vpt_addr(cmd, vpt_addr); its_encode_vpt_size(cmd, LPI_NRBITS - 1); if (!is_v4_1(its)) goto out; vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page)); alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count); its_encode_alloc(cmd, alloc); /* * GICv4.1 provides a way to get the VLPI state, which needs the vPE * to be unmapped first, and in this case, we may remap the vPE * back while the VPT is not empty. So we can't assume that the * VPT is empty on map. This is why we never advertise PTZ. */ its_encode_ptz(cmd, false); its_encode_vconf_addr(cmd, vconf_addr); its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi); out: its_fixup_cmd(cmd); return valid_vpe(its, desc->its_vmapp_cmd.vpe); } static struct its_vpe *its_build_vmapti_cmd(struct its_node *its, struct its_cmd_block *cmd, struct its_cmd_desc *desc) { u32 db; if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled) db = desc->its_vmapti_cmd.vpe->vpe_db_lpi; else db = 1023; its_encode_cmd(cmd, GITS_CMD_VMAPTI); its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id); its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id); its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id); its_encode_db_phys_id(cmd, db); its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id); its_fixup_cmd(cmd); return valid_vpe(its, desc->its_vmapti_cmd.vpe); } static struct its_vpe *its_build_vmovi_cmd(struct its_node *its, struct its_cmd_block *cmd, struct its_cmd_desc *desc) { u32 db; if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled) db = desc->its_vmovi_cmd.vpe->vpe_db_lpi; else db = 1023; its_encode_cmd(cmd, GITS_CMD_VMOVI); its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id); its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id); its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id); its_encode_db_phys_id(cmd, db); its_encode_db_valid(cmd, true); its_fixup_cmd(cmd); return valid_vpe(its, desc->its_vmovi_cmd.vpe); } static struct its_vpe *its_build_vmovp_cmd(struct its_node *its, struct its_cmd_block *cmd, struct its_cmd_desc *desc) { u64 target; target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset; its_encode_cmd(cmd, GITS_CMD_VMOVP); its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num); its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list); its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id); its_encode_target(cmd, target); if (is_v4_1(its)) { its_encode_db(cmd, true); its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi); } its_fixup_cmd(cmd); return valid_vpe(its, desc->its_vmovp_cmd.vpe); } static struct its_vpe *its_build_vinv_cmd(struct its_node *its, struct its_cmd_block *cmd, struct its_cmd_desc *desc) { struct its_vlpi_map *map; map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev, desc->its_inv_cmd.event_id); its_encode_cmd(cmd, GITS_CMD_INV); its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id); its_encode_event_id(cmd, desc->its_inv_cmd.event_id); its_fixup_cmd(cmd); return valid_vpe(its, map->vpe); } static struct its_vpe *its_build_vint_cmd(struct its_node *its, struct its_cmd_block *cmd, struct its_cmd_desc *desc) { struct its_vlpi_map *map; map = dev_event_to_vlpi_map(desc->its_int_cmd.dev, desc->its_int_cmd.event_id); its_encode_cmd(cmd, GITS_CMD_INT); its_encode_devid(cmd, desc->its_int_cmd.dev->device_id); its_encode_event_id(cmd, desc->its_int_cmd.event_id); its_fixup_cmd(cmd); return valid_vpe(its, map->vpe); } static struct its_vpe *its_build_vclear_cmd(struct its_node *its, struct its_cmd_block *cmd, struct its_cmd_desc *desc) { struct its_vlpi_map *map; map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev, desc->its_clear_cmd.event_id); its_encode_cmd(cmd, GITS_CMD_CLEAR); its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id); its_encode_event_id(cmd, desc->its_clear_cmd.event_id); its_fixup_cmd(cmd); return valid_vpe(its, map->vpe); } static struct its_vpe *its_build_invdb_cmd(struct its_node *its, struct its_cmd_block *cmd, struct its_cmd_desc *desc) { if (WARN_ON(!is_v4_1(its))) return NULL; its_encode_cmd(cmd, GITS_CMD_INVDB); its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id); its_fixup_cmd(cmd); return valid_vpe(its, desc->its_invdb_cmd.vpe); } static struct its_vpe *its_build_vsgi_cmd(struct its_node *its, struct its_cmd_block *cmd, struct its_cmd_desc *desc) { if (WARN_ON(!is_v4_1(its))) return NULL; its_encode_cmd(cmd, GITS_CMD_VSGI); its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id); its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi); its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority); its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group); its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear); its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable); its_fixup_cmd(cmd); return valid_vpe(its, desc->its_vsgi_cmd.vpe); } static u64 its_cmd_ptr_to_offset(struct its_node *its, struct its_cmd_block *ptr) { return (ptr - its->cmd_base) * sizeof(*ptr); } static int its_queue_full(struct its_node *its) { int widx; int ridx; widx = its->cmd_write - its->cmd_base; ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block); /* This is incredibly unlikely to happen, unless the ITS locks up. */ if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx) return 1; return 0; } static struct its_cmd_block *its_allocate_entry(struct its_node *its) { struct its_cmd_block *cmd; u32 count = 1000000; /* 1s! */ while (its_queue_full(its)) { count--; if (!count) { pr_err_ratelimited("ITS queue not draining\n"); return NULL; } cpu_relax(); udelay(1); } cmd = its->cmd_write++; /* Handle queue wrapping */ if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES)) its->cmd_write = its->cmd_base; /* Clear command */ cmd->raw_cmd[0] = 0; cmd->raw_cmd[1] = 0; cmd->raw_cmd[2] = 0; cmd->raw_cmd[3] = 0; return cmd; } static struct its_cmd_block *its_post_commands(struct its_node *its) { u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write); writel_relaxed(wr, its->base + GITS_CWRITER); return its->cmd_write; } static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd) { /* * Make sure the commands written to memory are observable by * the ITS. */ if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING) gic_flush_dcache_to_poc(cmd, sizeof(*cmd)); else dsb(ishst); } static int its_wait_for_range_completion(struct its_node *its, u64 prev_idx, struct its_cmd_block *to) { u64 rd_idx, to_idx, linear_idx; u32 count = 1000000; /* 1s! */ /* Linearize to_idx if the command set has wrapped around */ to_idx = its_cmd_ptr_to_offset(its, to); if (to_idx < prev_idx) to_idx += ITS_CMD_QUEUE_SZ; linear_idx = prev_idx; while (1) { s64 delta; rd_idx = readl_relaxed(its->base + GITS_CREADR); /* * Compute the read pointer progress, taking the * potential wrap-around into account. */ delta = rd_idx - prev_idx; if (rd_idx < prev_idx) delta += ITS_CMD_QUEUE_SZ; linear_idx += delta; if (linear_idx >= to_idx) break; count--; if (!count) { pr_err_ratelimited("ITS queue timeout (%llu %llu)\n", to_idx, linear_idx); return -1; } prev_idx = rd_idx; cpu_relax(); udelay(1); } return 0; } /* Warning, macro hell follows */ #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \ void name(struct its_node *its, \ buildtype builder, \ struct its_cmd_desc *desc) \ { \ struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \ synctype *sync_obj; \ unsigned long flags; \ u64 rd_idx; \ \ raw_spin_lock_irqsave(&its->lock, flags); \ \ cmd = its_allocate_entry(its); \ if (!cmd) { /* We're soooooo screewed... */ \ raw_spin_unlock_irqrestore(&its->lock, flags); \ return; \ } \ sync_obj = builder(its, cmd, desc); \ its_flush_cmd(its, cmd); \ \ if (sync_obj) { \ sync_cmd = its_allocate_entry(its); \ if (!sync_cmd) \ goto post; \ \ buildfn(its, sync_cmd, sync_obj); \ its_flush_cmd(its, sync_cmd); \ } \ \ post: \ rd_idx = readl_relaxed(its->base + GITS_CREADR); \ next_cmd = its_post_commands(its); \ raw_spin_unlock_irqrestore(&its->lock, flags); \ \ if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \ pr_err_ratelimited("ITS cmd %ps failed\n", builder); \ } static void its_build_sync_cmd(struct its_node *its, struct its_cmd_block *sync_cmd, struct its_collection *sync_col) { its_encode_cmd(sync_cmd, GITS_CMD_SYNC); its_encode_target(sync_cmd, sync_col->target_address); its_fixup_cmd(sync_cmd); } static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t, struct its_collection, its_build_sync_cmd) static void its_build_vsync_cmd(struct its_node *its, struct its_cmd_block *sync_cmd, struct its_vpe *sync_vpe) { its_encode_cmd(sync_cmd, GITS_CMD_VSYNC); its_encode_vpeid(sync_cmd, sync_vpe->vpe_id); its_fixup_cmd(sync_cmd); } static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t, struct its_vpe, its_build_vsync_cmd) static void its_send_int(struct its_device *dev, u32 event_id) { struct its_cmd_desc desc; desc.its_int_cmd.dev = dev; desc.its_int_cmd.event_id = event_id; its_send_single_command(dev->its, its_build_int_cmd, &desc); } static void its_send_clear(struct its_device *dev, u32 event_id) { struct its_cmd_desc desc; desc.its_clear_cmd.dev = dev; desc.its_clear_cmd.event_id = event_id; its_send_single_command(dev->its, its_build_clear_cmd, &desc); } static void its_send_inv(struct its_device *dev, u32 event_id) { struct its_cmd_desc desc; desc.its_inv_cmd.dev = dev; desc.its_inv_cmd.event_id = event_id; its_send_single_command(dev->its, its_build_inv_cmd, &desc); } static void its_send_mapd(struct its_device *dev, int valid) { struct its_cmd_desc desc; desc.its_mapd_cmd.dev = dev; desc.its_mapd_cmd.valid = !!valid; its_send_single_command(dev->its, its_build_mapd_cmd, &desc); } static void its_send_mapc(struct its_node *its, struct its_collection *col, int valid) { struct its_cmd_desc desc; desc.its_mapc_cmd.col = col; desc.its_mapc_cmd.valid = !!valid; its_send_single_command(its, its_build_mapc_cmd, &desc); } static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id) { struct its_cmd_desc desc; desc.its_mapti_cmd.dev = dev; desc.its_mapti_cmd.phys_id = irq_id; desc.its_mapti_cmd.event_id = id; its_send_single_command(dev->its, its_build_mapti_cmd, &desc); } static void its_send_movi(struct its_device *dev, struct its_collection *col, u32 id) { struct its_cmd_desc desc; desc.its_movi_cmd.dev = dev; desc.its_movi_cmd.col = col; desc.its_movi_cmd.event_id = id; its_send_single_command(dev->its, its_build_movi_cmd, &desc); } static void its_send_discard(struct its_device *dev, u32 id) { struct its_cmd_desc desc; desc.its_discard_cmd.dev = dev; desc.its_discard_cmd.event_id = id; its_send_single_command(dev->its, its_build_discard_cmd, &desc); } static void its_send_invall(struct its_node *its, struct its_collection *col) { struct its_cmd_desc desc; desc.its_invall_cmd.col = col; its_send_single_command(its, its_build_invall_cmd, &desc); } static void its_send_vmapti(struct its_device *dev, u32 id) { struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); struct its_cmd_desc desc; desc.its_vmapti_cmd.vpe = map->vpe; desc.its_vmapti_cmd.dev = dev; desc.its_vmapti_cmd.virt_id = map->vintid; desc.its_vmapti_cmd.event_id = id; desc.its_vmapti_cmd.db_enabled = map->db_enabled; its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc); } static void its_send_vmovi(struct its_device *dev, u32 id) { struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id); struct its_cmd_desc desc; desc.its_vmovi_cmd.vpe = map->vpe; desc.its_vmovi_cmd.dev = dev; desc.its_vmovi_cmd.event_id = id; desc.its_vmovi_cmd.db_enabled = map->db_enabled; its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc); } static void its_send_vmapp(struct its_node *its, struct its_vpe *vpe, bool valid) { struct its_cmd_desc desc; desc.its_vmapp_cmd.vpe = vpe; desc.its_vmapp_cmd.valid = valid; desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx]; its_send_single_vcommand(its, its_build_vmapp_cmd, &desc); } static void its_send_vmovp(struct its_vpe *vpe) { struct its_cmd_desc desc = {}; struct its_node *its; unsigned long flags; int col_id = vpe->col_idx; desc.its_vmovp_cmd.vpe = vpe; if (!its_list_map) { its = list_first_entry(&its_nodes, struct its_node, entry); desc.its_vmovp_cmd.col = &its->collections[col_id]; its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); return; } /* * Yet another marvel of the architecture. If using the * its_list "feature", we need to make sure that all ITSs * receive all VMOVP commands in the same order. The only way * to guarantee this is to make vmovp a serialization point. * * Wall <-- Head. */ raw_spin_lock_irqsave(&vmovp_lock, flags); desc.its_vmovp_cmd.seq_num = vmovp_seq_num++; desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm); /* Emit VMOVPs */ list_for_each_entry(its, &its_nodes, entry) { if (!is_v4(its)) continue; if (!require_its_list_vmovp(vpe->its_vm, its)) continue; desc.its_vmovp_cmd.col = &its->collections[col_id]; its_send_single_vcommand(its, its_build_vmovp_cmd, &desc); } raw_spin_unlock_irqrestore(&vmovp_lock, flags); } static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe) { struct its_cmd_desc desc; desc.its_vinvall_cmd.vpe = vpe; its_send_single_vcommand(its, its_build_vinvall_cmd, &desc); } static void its_send_vinv(struct its_device *dev, u32 event_id) { struct its_cmd_desc desc; /* * There is no real VINV command. This is just a normal INV, * with a VSYNC instead of a SYNC. */ desc.its_inv_cmd.dev = dev; desc.its_inv_cmd.event_id = event_id; its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc); } static void its_send_vint(struct its_device *dev, u32 event_id) { struct its_cmd_desc desc; /* * There is no real VINT command. This is just a normal INT, * with a VSYNC instead of a SYNC. */ desc.its_int_cmd.dev = dev; desc.its_int_cmd.event_id = event_id; its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc); } static void its_send_vclear(struct its_device *dev, u32 event_id) { struct its_cmd_desc desc; /* * There is no real VCLEAR command. This is just a normal CLEAR, * with a VSYNC instead of a SYNC. */ desc.its_clear_cmd.dev = dev; desc.its_clear_cmd.event_id = event_id; its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc); } static void its_send_invdb(struct its_node *its, struct its_vpe *vpe) { struct its_cmd_desc desc; desc.its_invdb_cmd.vpe = vpe; its_send_single_vcommand(its, its_build_invdb_cmd, &desc); } /* * irqchip functions - assumes MSI, mostly. */ static void lpi_write_config(struct irq_data *d, u8 clr, u8 set) { struct its_vlpi_map *map = get_vlpi_map(d); irq_hw_number_t hwirq; void *va; u8 *cfg; if (map) { va = page_address(map->vm->vprop_page); hwirq = map->vintid; /* Remember the updated property */ map->properties &= ~clr; map->properties |= set | LPI_PROP_GROUP1; } else { va = gic_rdists->prop_table_va; hwirq = d->hwirq; } cfg = va + hwirq - 8192; *cfg &= ~clr; *cfg |= set | LPI_PROP_GROUP1; /* * Make the above write visible to the redistributors. * And yes, we're flushing exactly: One. Single. Byte. * Humpf... */ if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING) gic_flush_dcache_to_poc(cfg, sizeof(*cfg)); else dsb(ishst); } static void wait_for_syncr(void __iomem *rdbase) { while (readl_relaxed(rdbase + GICR_SYNCR) & 1) cpu_relax(); } static void direct_lpi_inv(struct irq_data *d) { struct its_vlpi_map *map = get_vlpi_map(d); void __iomem *rdbase; unsigned long flags; u64 val; int cpu; if (map) { struct its_device *its_dev = irq_data_get_irq_chip_data(d); WARN_ON(!is_v4_1(its_dev->its)); val = GICR_INVLPIR_V; val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id); val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid); } else { val = d->hwirq; } /* Target the redistributor this LPI is currently routed to */ cpu = irq_to_cpuid_lock(d, &flags); raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; gic_write_lpir(val, rdbase + GICR_INVLPIR); wait_for_syncr(rdbase); raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); irq_to_cpuid_unlock(d, flags); } static void lpi_update_config(struct irq_data *d, u8 clr, u8 set) { struct its_device *its_dev = irq_data_get_irq_chip_data(d); lpi_write_config(d, clr, set); if (gic_rdists->has_direct_lpi && (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d))) direct_lpi_inv(d); else if (!irqd_is_forwarded_to_vcpu(d)) its_send_inv(its_dev, its_get_event_id(d)); else its_send_vinv(its_dev, its_get_event_id(d)); } static void its_vlpi_set_doorbell(struct irq_data *d, bool enable) { struct its_device *its_dev = irq_data_get_irq_chip_data(d); u32 event = its_get_event_id(d); struct its_vlpi_map *map; /* * GICv4.1 does away with the per-LPI nonsense, nothing to do * here. */ if (is_v4_1(its_dev->its)) return; map = dev_event_to_vlpi_map(its_dev, event); if (map->db_enabled == enable) return; map->db_enabled = enable; /* * More fun with the architecture: * * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI * value or to 1023, depending on the enable bit. But that * would be issuing a mapping for an /existing/ DevID+EventID * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI * to the /same/ vPE, using this opportunity to adjust the * doorbell. Mouahahahaha. We loves it, Precious. */ its_send_vmovi(its_dev, event); } static void its_mask_irq(struct irq_data *d) { if (irqd_is_forwarded_to_vcpu(d)) its_vlpi_set_doorbell(d, false); lpi_update_config(d, LPI_PROP_ENABLED, 0); } static void its_unmask_irq(struct irq_data *d) { if (irqd_is_forwarded_to_vcpu(d)) its_vlpi_set_doorbell(d, true); lpi_update_config(d, 0, LPI_PROP_ENABLED); } static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu) { if (irqd_affinity_is_managed(d)) return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); } static void its_inc_lpi_count(struct irq_data *d, int cpu) { if (irqd_affinity_is_managed(d)) atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); else atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); } static void its_dec_lpi_count(struct irq_data *d, int cpu) { if (irqd_affinity_is_managed(d)) atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed); else atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged); } static unsigned int cpumask_pick_least_loaded(struct irq_data *d, const struct cpumask *cpu_mask) { unsigned int cpu = nr_cpu_ids, tmp; int count = S32_MAX; for_each_cpu(tmp, cpu_mask) { int this_count = its_read_lpi_count(d, tmp); if (this_count < count) { cpu = tmp; count = this_count; } } return cpu; } /* * As suggested by Thomas Gleixner in: * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de */ static int its_select_cpu(struct irq_data *d, const struct cpumask *aff_mask) { struct its_device *its_dev = irq_data_get_irq_chip_data(d); cpumask_var_t tmpmask; int cpu, node; if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC)) return -ENOMEM; node = its_dev->its->numa_node; if (!irqd_affinity_is_managed(d)) { /* First try the NUMA node */ if (node != NUMA_NO_NODE) { /* * Try the intersection of the affinity mask and the * node mask (and the online mask, just to be safe). */ cpumask_and(tmpmask, cpumask_of_node(node), aff_mask); cpumask_and(tmpmask, tmpmask, cpu_online_mask); /* * Ideally, we would check if the mask is empty, and * try again on the full node here. * * But it turns out that the way ACPI describes the * affinity for ITSs only deals about memory, and * not target CPUs, so it cannot describe a single * ITS placed next to two NUMA nodes. * * Instead, just fallback on the online mask. This * diverges from Thomas' suggestion above. */ cpu = cpumask_pick_least_loaded(d, tmpmask); if (cpu < nr_cpu_ids) goto out; /* If we can't cross sockets, give up */ if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)) goto out; /* If the above failed, expand the search */ } /* Try the intersection of the affinity and online masks */ cpumask_and(tmpmask, aff_mask, cpu_online_mask); /* If that doesn't fly, the online mask is the last resort */ if (cpumask_empty(tmpmask)) cpumask_copy(tmpmask, cpu_online_mask); cpu = cpumask_pick_least_loaded(d, tmpmask); } else { cpumask_copy(tmpmask, aff_mask); /* If we cannot cross sockets, limit the search to that node */ if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) && node != NUMA_NO_NODE) cpumask_and(tmpmask, tmpmask, cpumask_of_node(node)); cpu = cpumask_pick_least_loaded(d, tmpmask); } out: free_cpumask_var(tmpmask); pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu); return cpu; } static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val, bool force) { struct its_device *its_dev = irq_data_get_irq_chip_data(d); struct its_collection *target_col; u32 id = its_get_event_id(d); int cpu, prev_cpu; /* A forwarded interrupt should use irq_set_vcpu_affinity */ if (irqd_is_forwarded_to_vcpu(d)) return -EINVAL; prev_cpu = its_dev->event_map.col_map[id]; its_dec_lpi_count(d, prev_cpu); if (!force) cpu = its_select_cpu(d, mask_val); else cpu = cpumask_pick_least_loaded(d, mask_val); if (cpu < 0 || cpu >= nr_cpu_ids) goto err; /* don't set the affinity when the target cpu is same as current one */ if (cpu != prev_cpu) { target_col = &its_dev->its->collections[cpu]; its_send_movi(its_dev, target_col, id); its_dev->event_map.col_map[id] = cpu; irq_data_update_effective_affinity(d, cpumask_of(cpu)); } its_inc_lpi_count(d, cpu); return IRQ_SET_MASK_OK_DONE; err: its_inc_lpi_count(d, prev_cpu); return -EINVAL; } static u64 its_irq_get_msi_base(struct its_device *its_dev) { struct its_node *its = its_dev->its; return its->phys_base + GITS_TRANSLATER; } static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg) { struct its_device *its_dev = irq_data_get_irq_chip_data(d); struct its_node *its; u64 addr; its = its_dev->its; addr = its->get_msi_base(its_dev); msg->address_lo = lower_32_bits(addr); msg->address_hi = upper_32_bits(addr); msg->data = its_get_event_id(d); iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg); } static int its_irq_set_irqchip_state(struct irq_data *d, enum irqchip_irq_state which, bool state) { struct its_device *its_dev = irq_data_get_irq_chip_data(d); u32 event = its_get_event_id(d); if (which != IRQCHIP_STATE_PENDING) return -EINVAL; if (irqd_is_forwarded_to_vcpu(d)) { if (state) its_send_vint(its_dev, event); else its_send_vclear(its_dev, event); } else { if (state) its_send_int(its_dev, event); else its_send_clear(its_dev, event); } return 0; } static int its_irq_retrigger(struct irq_data *d) { return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); } /* * Two favourable cases: * * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times * for vSGI delivery * * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough * and we're better off mapping all VPEs always * * If neither (a) nor (b) is true, then we map vPEs on demand. * */ static bool gic_requires_eager_mapping(void) { if (!its_list_map || gic_rdists->has_rvpeid) return true; return false; } static void its_map_vm(struct its_node *its, struct its_vm *vm) { unsigned long flags; if (gic_requires_eager_mapping()) return; raw_spin_lock_irqsave(&vmovp_lock, flags); /* * If the VM wasn't mapped yet, iterate over the vpes and get * them mapped now. */ vm->vlpi_count[its->list_nr]++; if (vm->vlpi_count[its->list_nr] == 1) { int i; for (i = 0; i < vm->nr_vpes; i++) { struct its_vpe *vpe = vm->vpes[i]; struct irq_data *d = irq_get_irq_data(vpe->irq); /* Map the VPE to the first possible CPU */ vpe->col_idx = cpumask_first(cpu_online_mask); its_send_vmapp(its, vpe, true); its_send_vinvall(its, vpe); irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); } } raw_spin_unlock_irqrestore(&vmovp_lock, flags); } static void its_unmap_vm(struct its_node *its, struct its_vm *vm) { unsigned long flags; /* Not using the ITS list? Everything is always mapped. */ if (gic_requires_eager_mapping()) return; raw_spin_lock_irqsave(&vmovp_lock, flags); if (!--vm->vlpi_count[its->list_nr]) { int i; for (i = 0; i < vm->nr_vpes; i++) its_send_vmapp(its, vm->vpes[i], false); } raw_spin_unlock_irqrestore(&vmovp_lock, flags); } static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info) { struct its_device *its_dev = irq_data_get_irq_chip_data(d); u32 event = its_get_event_id(d); int ret = 0; if (!info->map) return -EINVAL; raw_spin_lock(&its_dev->event_map.vlpi_lock); if (!its_dev->event_map.vm) { struct its_vlpi_map *maps; maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps), GFP_ATOMIC); if (!maps) { ret = -ENOMEM; goto out; } its_dev->event_map.vm = info->map->vm; its_dev->event_map.vlpi_maps = maps; } else if (its_dev->event_map.vm != info->map->vm) { ret = -EINVAL; goto out; } /* Get our private copy of the mapping information */ its_dev->event_map.vlpi_maps[event] = *info->map; if (irqd_is_forwarded_to_vcpu(d)) { /* Already mapped, move it around */ its_send_vmovi(its_dev, event); } else { /* Ensure all the VPEs are mapped on this ITS */ its_map_vm(its_dev->its, info->map->vm); /* * Flag the interrupt as forwarded so that we can * start poking the virtual property table. */ irqd_set_forwarded_to_vcpu(d); /* Write out the property to the prop table */ lpi_write_config(d, 0xff, info->map->properties); /* Drop the physical mapping */ its_send_discard(its_dev, event); /* and install the virtual one */ its_send_vmapti(its_dev, event); /* Increment the number of VLPIs */ its_dev->event_map.nr_vlpis++; } out: raw_spin_unlock(&its_dev->event_map.vlpi_lock); return ret; } static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info) { struct its_device *its_dev = irq_data_get_irq_chip_data(d); struct its_vlpi_map *map; int ret = 0; raw_spin_lock(&its_dev->event_map.vlpi_lock); map = get_vlpi_map(d); if (!its_dev->event_map.vm || !map) { ret = -EINVAL; goto out; } /* Copy our mapping information to the incoming request */ *info->map = *map; out: raw_spin_unlock(&its_dev->event_map.vlpi_lock); return ret; } static int its_vlpi_unmap(struct irq_data *d) { struct its_device *its_dev = irq_data_get_irq_chip_data(d); u32 event = its_get_event_id(d); int ret = 0; raw_spin_lock(&its_dev->event_map.vlpi_lock); if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) { ret = -EINVAL; goto out; } /* Drop the virtual mapping */ its_send_discard(its_dev, event); /* and restore the physical one */ irqd_clr_forwarded_to_vcpu(d); its_send_mapti(its_dev, d->hwirq, event); lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO | LPI_PROP_ENABLED | LPI_PROP_GROUP1)); /* Potentially unmap the VM from this ITS */ its_unmap_vm(its_dev->its, its_dev->event_map.vm); /* * Drop the refcount and make the device available again if * this was the last VLPI. */ if (!--its_dev->event_map.nr_vlpis) { its_dev->event_map.vm = NULL; kfree(its_dev->event_map.vlpi_maps); } out: raw_spin_unlock(&its_dev->event_map.vlpi_lock); return ret; } static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info) { struct its_device *its_dev = irq_data_get_irq_chip_data(d); if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) return -EINVAL; if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI) lpi_update_config(d, 0xff, info->config); else lpi_write_config(d, 0xff, info->config); its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED)); return 0; } static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) { struct its_device *its_dev = irq_data_get_irq_chip_data(d); struct its_cmd_info *info = vcpu_info; /* Need a v4 ITS */ if (!is_v4(its_dev->its)) return -EINVAL; /* Unmap request? */ if (!info) return its_vlpi_unmap(d); switch (info->cmd_type) { case MAP_VLPI: return its_vlpi_map(d, info); case GET_VLPI: return its_vlpi_get(d, info); case PROP_UPDATE_VLPI: case PROP_UPDATE_AND_INV_VLPI: return its_vlpi_prop_update(d, info); default: return -EINVAL; } } static struct irq_chip its_irq_chip = { .name = "ITS", .irq_mask = its_mask_irq, .irq_unmask = its_unmask_irq, .irq_eoi = irq_chip_eoi_parent, .irq_set_affinity = its_set_affinity, .irq_compose_msi_msg = its_irq_compose_msi_msg, .irq_set_irqchip_state = its_irq_set_irqchip_state, .irq_retrigger = its_irq_retrigger, .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity, }; /* * How we allocate LPIs: * * lpi_range_list contains ranges of LPIs that are to available to * allocate from. To allocate LPIs, just pick the first range that * fits the required allocation, and reduce it by the required * amount. Once empty, remove the range from the list. * * To free a range of LPIs, add a free range to the list, sort it and * merge the result if the new range happens to be adjacent to an * already free block. * * The consequence of the above is that allocation is cost is low, but * freeing is expensive. We assumes that freeing rarely occurs. */ #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */ static DEFINE_MUTEX(lpi_range_lock); static LIST_HEAD(lpi_range_list); struct lpi_range { struct list_head entry; u32 base_id; u32 span; }; static struct lpi_range *mk_lpi_range(u32 base, u32 span) { struct lpi_range *range; range = kmalloc(sizeof(*range), GFP_KERNEL); if (range) { range->base_id = base; range->span = span; } return range; } static int alloc_lpi_range(u32 nr_lpis, u32 *base) { struct lpi_range *range, *tmp; int err = -ENOSPC; mutex_lock(&lpi_range_lock); list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) { if (range->span >= nr_lpis) { *base = range->base_id; range->base_id += nr_lpis; range->span -= nr_lpis; if (range->span == 0) { list_del(&range->entry); kfree(range); } err = 0; break; } } mutex_unlock(&lpi_range_lock); pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis); return err; } static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b) { if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list) return; if (a->base_id + a->span != b->base_id) return; b->base_id = a->base_id; b->span += a->span; list_del(&a->entry); kfree(a); } static int free_lpi_range(u32 base, u32 nr_lpis) { struct lpi_range *new, *old; new = mk_lpi_range(base, nr_lpis); if (!new) return -ENOMEM; mutex_lock(&lpi_range_lock); list_for_each_entry_reverse(old, &lpi_range_list, entry) { if (old->base_id < base) break; } /* * old is the last element with ->base_id smaller than base, * so new goes right after it. If there are no elements with * ->base_id smaller than base, &old->entry ends up pointing * at the head of the list, and inserting new it the start of * the list is the right thing to do in that case as well. */ list_add(&new->entry, &old->entry); /* * Now check if we can merge with the preceding and/or * following ranges. */ merge_lpi_ranges(old, new); merge_lpi_ranges(new, list_next_entry(new, entry)); mutex_unlock(&lpi_range_lock); return 0; } static int __init its_lpi_init(u32 id_bits) { u32 lpis = (1UL << id_bits) - 8192; u32 numlpis; int err; numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer); if (numlpis > 2 && !WARN_ON(numlpis > lpis)) { lpis = numlpis; pr_info("ITS: Using hypervisor restricted LPI range [%u]\n", lpis); } /* * Initializing the allocator is just the same as freeing the * full range of LPIs. */ err = free_lpi_range(8192, lpis); pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis); return err; } static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids) { unsigned long *bitmap = NULL; int err = 0; do { err = alloc_lpi_range(nr_irqs, base); if (!err) break; nr_irqs /= 2; } while (nr_irqs > 0); if (!nr_irqs) err = -ENOSPC; if (err) goto out; bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC); if (!bitmap) goto out; *nr_ids = nr_irqs; out: if (!bitmap) *base = *nr_ids = 0; return bitmap; } static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids) { WARN_ON(free_lpi_range(base, nr_ids)); bitmap_free(bitmap); } static void gic_reset_prop_table(void *va) { /* Priority 0xa0, Group-1, disabled */ memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ); /* Make sure the GIC will observe the written configuration */ gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ); } static struct page *its_allocate_prop_table(gfp_t gfp_flags) { struct page *prop_page; prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ)); if (!prop_page) return NULL; gic_reset_prop_table(page_address(prop_page)); return prop_page; } static void its_free_prop_table(struct page *prop_page) { free_pages((unsigned long)page_address(prop_page), get_order(LPI_PROPBASE_SZ)); } static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size) { phys_addr_t start, end, addr_end; u64 i; /* * We don't bother checking for a kdump kernel as by * construction, the LPI tables are out of this kernel's * memory map. */ if (is_kdump_kernel()) return true; addr_end = addr + size - 1; for_each_reserved_mem_range(i, &start, &end) { if (addr >= start && addr_end <= end) return true; } /* Not found, not a good sign... */ pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n", &addr, &addr_end); add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); return false; } static int gic_reserve_range(phys_addr_t addr, unsigned long size) { if (efi_enabled(EFI_CONFIG_TABLES)) return efi_mem_reserve_persistent(addr, size); return 0; } static int __init its_setup_lpi_prop_table(void) { if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) { u64 val; val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1; gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12); gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa, LPI_PROPBASE_SZ, MEMREMAP_WB); gic_reset_prop_table(gic_rdists->prop_table_va); } else { struct page *page; lpi_id_bits = min_t(u32, GICD_TYPER_ID_BITS(gic_rdists->gicd_typer), ITS_MAX_LPI_NRBITS); page = its_allocate_prop_table(GFP_NOWAIT); if (!page) { pr_err("Failed to allocate PROPBASE\n"); return -ENOMEM; } gic_rdists->prop_table_pa = page_to_phys(page); gic_rdists->prop_table_va = page_address(page); WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa, LPI_PROPBASE_SZ)); } pr_info("GICv3: using LPI property table @%pa\n", &gic_rdists->prop_table_pa); return its_lpi_init(lpi_id_bits); } static const char *its_base_type_string[] = { [GITS_BASER_TYPE_DEVICE] = "Devices", [GITS_BASER_TYPE_VCPU] = "Virtual CPUs", [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)", [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections", [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)", [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)", [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)", }; static u64 its_read_baser(struct its_node *its, struct its_baser *baser) { u32 idx = baser - its->tables; return gits_read_baser(its->base + GITS_BASER + (idx << 3)); } static void its_write_baser(struct its_node *its, struct its_baser *baser, u64 val) { u32 idx = baser - its->tables; gits_write_baser(val, its->base + GITS_BASER + (idx << 3)); baser->val = its_read_baser(its, baser); } static int its_setup_baser(struct its_node *its, struct its_baser *baser, u64 cache, u64 shr, u32 order, bool indirect) { u64 val = its_read_baser(its, baser); u64 esz = GITS_BASER_ENTRY_SIZE(val); u64 type = GITS_BASER_TYPE(val); u64 baser_phys, tmp; u32 alloc_pages, psz; struct page *page; void *base; psz = baser->psz; alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz); if (alloc_pages > GITS_BASER_PAGES_MAX) { pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n", &its->phys_base, its_base_type_string[type], alloc_pages, GITS_BASER_PAGES_MAX); alloc_pages = GITS_BASER_PAGES_MAX; order = get_order(GITS_BASER_PAGES_MAX * psz); } page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order); if (!page) return -ENOMEM; base = (void *)page_address(page); baser_phys = virt_to_phys(base); /* Check if the physical address of the memory is above 48bits */ if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) { /* 52bit PA is supported only when PageSize=64K */ if (psz != SZ_64K) { pr_err("ITS: no 52bit PA support when psz=%d\n", psz); free_pages((unsigned long)base, order); return -ENXIO; } /* Convert 52bit PA to 48bit field */ baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys); } retry_baser: val = (baser_phys | (type << GITS_BASER_TYPE_SHIFT) | ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) | ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) | cache | shr | GITS_BASER_VALID); val |= indirect ? GITS_BASER_INDIRECT : 0x0; switch (psz) { case SZ_4K: val |= GITS_BASER_PAGE_SIZE_4K; break; case SZ_16K: val |= GITS_BASER_PAGE_SIZE_16K; break; case SZ_64K: val |= GITS_BASER_PAGE_SIZE_64K; break; } its_write_baser(its, baser, val); tmp = baser->val; if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) { /* * Shareability didn't stick. Just use * whatever the read reported, which is likely * to be the only thing this redistributor * supports. If that's zero, make it * non-cacheable as well. */ shr = tmp & GITS_BASER_SHAREABILITY_MASK; if (!shr) { cache = GITS_BASER_nC; gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order)); } goto retry_baser; } if (val != tmp) { pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n", &its->phys_base, its_base_type_string[type], val, tmp); free_pages((unsigned long)base, order); return -ENXIO; } baser->order = order; baser->base = base; baser->psz = psz; tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz; pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n", &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp), its_base_type_string[type], (unsigned long)virt_to_phys(base), indirect ? "indirect" : "flat", (int)esz, psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT); return 0; } static bool its_parse_indirect_baser(struct its_node *its, struct its_baser *baser, u32 *order, u32 ids) { u64 tmp = its_read_baser(its, baser); u64 type = GITS_BASER_TYPE(tmp); u64 esz = GITS_BASER_ENTRY_SIZE(tmp); u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb; u32 new_order = *order; u32 psz = baser->psz; bool indirect = false; /* No need to enable Indirection if memory requirement < (psz*2)bytes */ if ((esz << ids) > (psz * 2)) { /* * Find out whether hw supports a single or two-level table by * table by reading bit at offset '62' after writing '1' to it. */ its_write_baser(its, baser, val | GITS_BASER_INDIRECT); indirect = !!(baser->val & GITS_BASER_INDIRECT); if (indirect) { /* * The size of the lvl2 table is equal to ITS page size * which is 'psz'. For computing lvl1 table size, * subtract ID bits that sparse lvl2 table from 'ids' * which is reported by ITS hardware times lvl1 table * entry size. */ ids -= ilog2(psz / (int)esz); esz = GITS_LVL1_ENTRY_SIZE; } } /* * Allocate as many entries as required to fit the * range of device IDs that the ITS can grok... The ID * space being incredibly sparse, this results in a * massive waste of memory if two-level device table * feature is not supported by hardware. */ new_order = max_t(u32, get_order(esz << ids), new_order); if (new_order >= MAX_ORDER) { new_order = MAX_ORDER - 1; ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz); pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n", &its->phys_base, its_base_type_string[type], device_ids(its), ids); } *order = new_order; return indirect; } static u32 compute_common_aff(u64 val) { u32 aff, clpiaff; aff = FIELD_GET(GICR_TYPER_AFFINITY, val); clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val); return aff & ~(GENMASK(31, 0) >> (clpiaff * 8)); } static u32 compute_its_aff(struct its_node *its) { u64 val; u32 svpet; /* * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute * the resulting affinity. We then use that to see if this match * our own affinity. */ svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer); val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet); val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr); return compute_common_aff(val); } static struct its_node *find_sibling_its(struct its_node *cur_its) { struct its_node *its; u32 aff; if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer)) return NULL; aff = compute_its_aff(cur_its); list_for_each_entry(its, &its_nodes, entry) { u64 baser; if (!is_v4_1(its) || its == cur_its) continue; if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) continue; if (aff != compute_its_aff(its)) continue; /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ baser = its->tables[2].val; if (!(baser & GITS_BASER_VALID)) continue; return its; } return NULL; } static void its_free_tables(struct its_node *its) { int i; for (i = 0; i < GITS_BASER_NR_REGS; i++) { if (its->tables[i].base) { free_pages((unsigned long)its->tables[i].base, its->tables[i].order); its->tables[i].base = NULL; } } } static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser) { u64 psz = SZ_64K; while (psz) { u64 val, gpsz; val = its_read_baser(its, baser); val &= ~GITS_BASER_PAGE_SIZE_MASK; switch (psz) { case SZ_64K: gpsz = GITS_BASER_PAGE_SIZE_64K; break; case SZ_16K: gpsz = GITS_BASER_PAGE_SIZE_16K; break; case SZ_4K: default: gpsz = GITS_BASER_PAGE_SIZE_4K; break; } gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT; val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz); its_write_baser(its, baser, val); if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz) break; switch (psz) { case SZ_64K: psz = SZ_16K; break; case SZ_16K: psz = SZ_4K; break; case SZ_4K: default: return -1; } } baser->psz = psz; return 0; } static int its_alloc_tables(struct its_node *its) { u64 shr = GITS_BASER_InnerShareable; u64 cache = GITS_BASER_RaWaWb; int err, i; if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) /* erratum 24313: ignore memory access type */ cache = GITS_BASER_nCnB; for (i = 0; i < GITS_BASER_NR_REGS; i++) { struct its_baser *baser = its->tables + i; u64 val = its_read_baser(its, baser); u64 type = GITS_BASER_TYPE(val); bool indirect = false; u32 order; if (type == GITS_BASER_TYPE_NONE) continue; if (its_probe_baser_psz(its, baser)) { its_free_tables(its); return -ENXIO; } order = get_order(baser->psz); switch (type) { case GITS_BASER_TYPE_DEVICE: indirect = its_parse_indirect_baser(its, baser, &order, device_ids(its)); break; case GITS_BASER_TYPE_VCPU: if (is_v4_1(its)) { struct its_node *sibling; WARN_ON(i != 2); if ((sibling = find_sibling_its(its))) { *baser = sibling->tables[2]; its_write_baser(its, baser, baser->val); continue; } } indirect = its_parse_indirect_baser(its, baser, &order, ITS_MAX_VPEID_BITS); break; } err = its_setup_baser(its, baser, cache, shr, order, indirect); if (err < 0) { its_free_tables(its); return err; } /* Update settings which will be used for next BASERn */ cache = baser->val & GITS_BASER_CACHEABILITY_MASK; shr = baser->val & GITS_BASER_SHAREABILITY_MASK; } return 0; } static u64 inherit_vpe_l1_table_from_its(void) { struct its_node *its; u64 val; u32 aff; val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); aff = compute_common_aff(val); list_for_each_entry(its, &its_nodes, entry) { u64 baser, addr; if (!is_v4_1(its)) continue; if (!FIELD_GET(GITS_TYPER_SVPET, its->typer)) continue; if (aff != compute_its_aff(its)) continue; /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */ baser = its->tables[2].val; if (!(baser & GITS_BASER_VALID)) continue; /* We have a winner! */ gic_data_rdist()->vpe_l1_base = its->tables[2].base; val = GICR_VPROPBASER_4_1_VALID; if (baser & GITS_BASER_INDIRECT) val |= GICR_VPROPBASER_4_1_INDIRECT; val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)); switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) { case GIC_PAGE_SIZE_64K: addr = GITS_BASER_ADDR_48_to_52(baser); break; default: addr = baser & GENMASK_ULL(47, 12); break; } val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12); val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK, FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser)); val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK, FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser)); val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1); return val; } return 0; } static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask) { u32 aff; u64 val; int cpu; val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); aff = compute_common_aff(val); for_each_possible_cpu(cpu) { void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; if (!base || cpu == smp_processor_id()) continue; val = gic_read_typer(base + GICR_TYPER); if (aff != compute_common_aff(val)) continue; /* * At this point, we have a victim. This particular CPU * has already booted, and has an affinity that matches * ours wrt CommonLPIAff. Let's use its own VPROPBASER. * Make sure we don't write the Z bit in that case. */ val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); val &= ~GICR_VPROPBASER_4_1_Z; gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base; *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask; return val; } return 0; } static bool allocate_vpe_l2_table(int cpu, u32 id) { void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base; unsigned int psz, esz, idx, npg, gpsz; u64 val; struct page *page; __le64 *table; if (!gic_rdists->has_rvpeid) return true; /* Skip non-present CPUs */ if (!base) return true; val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER); esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1; gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1; switch (gpsz) { default: WARN_ON(1); fallthrough; case GIC_PAGE_SIZE_4K: psz = SZ_4K; break; case GIC_PAGE_SIZE_16K: psz = SZ_16K; break; case GIC_PAGE_SIZE_64K: psz = SZ_64K; break; } /* Don't allow vpe_id that exceeds single, flat table limit */ if (!(val & GICR_VPROPBASER_4_1_INDIRECT)) return (id < (npg * psz / (esz * SZ_8))); /* Compute 1st level table index & check if that exceeds table limit */ idx = id >> ilog2(psz / (esz * SZ_8)); if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE)) return false; table = gic_data_rdist_cpu(cpu)->vpe_l1_base; /* Allocate memory for 2nd level table */ if (!table[idx]) { page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz)); if (!page) return false; /* Flush Lvl2 table to PoC if hw doesn't support coherency */ if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) gic_flush_dcache_to_poc(page_address(page), psz); table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK)) gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); /* Ensure updated table contents are visible to RD hardware */ dsb(sy); } return true; } static int allocate_vpe_l1_table(void) { void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); u64 val, gpsz, npg, pa; unsigned int psz = SZ_64K; unsigned int np, epp, esz; struct page *page; if (!gic_rdists->has_rvpeid) return 0; /* * if VPENDBASER.Valid is set, disable any previously programmed * VPE by setting PendingLast while clearing Valid. This has the * effect of making sure no doorbell will be generated and we can * then safely clear VPROPBASER.Valid. */ if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid) gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast, vlpi_base + GICR_VPENDBASER); /* * If we can inherit the configuration from another RD, let's do * so. Otherwise, we have to go through the allocation process. We * assume that all RDs have the exact same requirements, as * nothing will work otherwise. */ val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask); if (val & GICR_VPROPBASER_4_1_VALID) goto out; gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC); if (!gic_data_rdist()->vpe_table_mask) return -ENOMEM; val = inherit_vpe_l1_table_from_its(); if (val & GICR_VPROPBASER_4_1_VALID) goto out; /* First probe the page size */ val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K); gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER); gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val); esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val); switch (gpsz) { default: gpsz = GIC_PAGE_SIZE_4K; fallthrough; case GIC_PAGE_SIZE_4K: psz = SZ_4K; break; case GIC_PAGE_SIZE_16K: psz = SZ_16K; break; case GIC_PAGE_SIZE_64K: psz = SZ_64K; break; } /* * Start populating the register from scratch, including RO fields * (which we want to print in debug cases...) */ val = 0; val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz); val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz); /* How many entries per GIC page? */ esz++; epp = psz / (esz * SZ_8); /* * If we need more than just a single L1 page, flag the table * as indirect and compute the number of required L1 pages. */ if (epp < ITS_MAX_VPEID) { int nl2; val |= GICR_VPROPBASER_4_1_INDIRECT; /* Number of L2 pages required to cover the VPEID space */ nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp); /* Number of L1 pages to point to the L2 pages */ npg = DIV_ROUND_UP(nl2 * SZ_8, psz); } else { npg = 1; } val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1); /* Right, that's the number of CPU pages we need for L1 */ np = DIV_ROUND_UP(npg * psz, PAGE_SIZE); pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n", np, npg, psz, epp, esz); page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE)); if (!page) return -ENOMEM; gic_data_rdist()->vpe_l1_base = page_address(page); pa = virt_to_phys(page_address(page)); WARN_ON(!IS_ALIGNED(pa, psz)); val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12); val |= GICR_VPROPBASER_RaWb; val |= GICR_VPROPBASER_InnerShareable; val |= GICR_VPROPBASER_4_1_Z; val |= GICR_VPROPBASER_4_1_VALID; out: gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask); pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n", smp_processor_id(), val, cpumask_pr_args(gic_data_rdist()->vpe_table_mask)); return 0; } static int its_alloc_collections(struct its_node *its) { int i; its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections), GFP_KERNEL); if (!its->collections) return -ENOMEM; for (i = 0; i < nr_cpu_ids; i++) its->collections[i].target_address = ~0ULL; return 0; } static struct page *its_allocate_pending_table(gfp_t gfp_flags) { struct page *pend_page; pend_page = alloc_pages(gfp_flags | __GFP_ZERO, get_order(LPI_PENDBASE_SZ)); if (!pend_page) return NULL; /* Make sure the GIC will observe the zero-ed page */ gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ); return pend_page; } static void its_free_pending_table(struct page *pt) { free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ)); } /* * Booting with kdump and LPIs enabled is generally fine. Any other * case is wrong in the absence of firmware/EFI support. */ static bool enabled_lpis_allowed(void) { phys_addr_t addr; u64 val; /* Check whether the property table is in a reserved region */ val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER); addr = val & GENMASK_ULL(51, 12); return gic_check_reserved_range(addr, LPI_PROPBASE_SZ); } static int __init allocate_lpi_tables(void) { u64 val; int err, cpu; /* * If LPIs are enabled while we run this from the boot CPU, * flag the RD tables as pre-allocated if the stars do align. */ val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR); if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) { gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED | RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING); pr_info("GICv3: Using preallocated redistributor tables\n"); } err = its_setup_lpi_prop_table(); if (err) return err; /* * We allocate all the pending tables anyway, as we may have a * mix of RDs that have had LPIs enabled, and some that * don't. We'll free the unused ones as each CPU comes online. */ for_each_possible_cpu(cpu) { struct page *pend_page; pend_page = its_allocate_pending_table(GFP_NOWAIT); if (!pend_page) { pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu); return -ENOMEM; } gic_data_rdist_cpu(cpu)->pend_page = pend_page; } return 0; } static u64 read_vpend_dirty_clear(void __iomem *vlpi_base) { u32 count = 1000000; /* 1s! */ bool clean; u64 val; do { val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER); clean = !(val & GICR_VPENDBASER_Dirty); if (!clean) { count--; cpu_relax(); udelay(1); } } while (!clean && count); if (unlikely(!clean)) pr_err_ratelimited("ITS virtual pending table not cleaning\n"); return val; } static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set) { u64 val; /* Make sure we wait until the RD is done with the initial scan */ val = read_vpend_dirty_clear(vlpi_base); val &= ~GICR_VPENDBASER_Valid; val &= ~clr; val |= set; gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); val = read_vpend_dirty_clear(vlpi_base); if (unlikely(val & GICR_VPENDBASER_Dirty)) val |= GICR_VPENDBASER_PendingLast; return val; } static void its_cpu_init_lpis(void) { void __iomem *rbase = gic_data_rdist_rd_base(); struct page *pend_page; phys_addr_t paddr; u64 val, tmp; if (gic_data_rdist()->lpi_enabled) return; val = readl_relaxed(rbase + GICR_CTLR); if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) && (val & GICR_CTLR_ENABLE_LPIS)) { /* * Check that we get the same property table on all * RDs. If we don't, this is hopeless. */ paddr = gicr_read_propbaser(rbase + GICR_PROPBASER); paddr &= GENMASK_ULL(51, 12); if (WARN_ON(gic_rdists->prop_table_pa != paddr)) add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER); paddr &= GENMASK_ULL(51, 16); WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ)); its_free_pending_table(gic_data_rdist()->pend_page); gic_data_rdist()->pend_page = NULL; goto out; } pend_page = gic_data_rdist()->pend_page; paddr = page_to_phys(pend_page); WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ)); /* set PROPBASE */ val = (gic_rdists->prop_table_pa | GICR_PROPBASER_InnerShareable | GICR_PROPBASER_RaWaWb | ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK)); gicr_write_propbaser(val, rbase + GICR_PROPBASER); tmp = gicr_read_propbaser(rbase + GICR_PROPBASER); if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) { if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) { /* * The HW reports non-shareable, we must * remove the cacheability attributes as * well. */ val &= ~(GICR_PROPBASER_SHAREABILITY_MASK | GICR_PROPBASER_CACHEABILITY_MASK); val |= GICR_PROPBASER_nC; gicr_write_propbaser(val, rbase + GICR_PROPBASER); } pr_info_once("GIC: using cache flushing for LPI property table\n"); gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING; } /* set PENDBASE */ val = (page_to_phys(pend_page) | GICR_PENDBASER_InnerShareable | GICR_PENDBASER_RaWaWb); gicr_write_pendbaser(val, rbase + GICR_PENDBASER); tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER); if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) { /* * The HW reports non-shareable, we must remove the * cacheability attributes as well. */ val &= ~(GICR_PENDBASER_SHAREABILITY_MASK | GICR_PENDBASER_CACHEABILITY_MASK); val |= GICR_PENDBASER_nC; gicr_write_pendbaser(val, rbase + GICR_PENDBASER); } /* Enable LPIs */ val = readl_relaxed(rbase + GICR_CTLR); val |= GICR_CTLR_ENABLE_LPIS; writel_relaxed(val, rbase + GICR_CTLR); if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) { void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); /* * It's possible for CPU to receive VLPIs before it is * scheduled as a vPE, especially for the first CPU, and the * VLPI with INTID larger than 2^(IDbits+1) will be considered * as out of range and dropped by GIC. * So we initialize IDbits to known value to avoid VLPI drop. */ val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n", smp_processor_id(), val); gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); /* * Also clear Valid bit of GICR_VPENDBASER, in case some * ancient programming gets left in and has possibility of * corrupting memory. */ val = its_clear_vpend_valid(vlpi_base, 0, 0); } if (allocate_vpe_l1_table()) { /* * If the allocation has failed, we're in massive trouble. * Disable direct injection, and pray that no VM was * already running... */ gic_rdists->has_rvpeid = false; gic_rdists->has_vlpis = false; } /* Make sure the GIC has seen the above */ dsb(sy); out: gic_data_rdist()->lpi_enabled = true; pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n", smp_processor_id(), gic_data_rdist()->pend_page ? "allocated" : "reserved", &paddr); } static void its_cpu_init_collection(struct its_node *its) { int cpu = smp_processor_id(); u64 target; /* avoid cross node collections and its mapping */ if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) { struct device_node *cpu_node; cpu_node = of_get_cpu_node(cpu, NULL); if (its->numa_node != NUMA_NO_NODE && its->numa_node != of_node_to_nid(cpu_node)) return; } /* * We now have to bind each collection to its target * redistributor. */ if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) { /* * This ITS wants the physical address of the * redistributor. */ target = gic_data_rdist()->phys_base; } else { /* This ITS wants a linear CPU number. */ target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER); target = GICR_TYPER_CPU_NUMBER(target) << 16; } /* Perform collection mapping */ its->collections[cpu].target_address = target; its->collections[cpu].col_id = cpu; its_send_mapc(its, &its->collections[cpu], 1); its_send_invall(its, &its->collections[cpu]); } static void its_cpu_init_collections(void) { struct its_node *its; raw_spin_lock(&its_lock); list_for_each_entry(its, &its_nodes, entry) its_cpu_init_collection(its); raw_spin_unlock(&its_lock); } static struct its_device *its_find_device(struct its_node *its, u32 dev_id) { struct its_device *its_dev = NULL, *tmp; unsigned long flags; raw_spin_lock_irqsave(&its->lock, flags); list_for_each_entry(tmp, &its->its_device_list, entry) { if (tmp->device_id == dev_id) { its_dev = tmp; break; } } raw_spin_unlock_irqrestore(&its->lock, flags); return its_dev; } static struct its_baser *its_get_baser(struct its_node *its, u32 type) { int i; for (i = 0; i < GITS_BASER_NR_REGS; i++) { if (GITS_BASER_TYPE(its->tables[i].val) == type) return &its->tables[i]; } return NULL; } static bool its_alloc_table_entry(struct its_node *its, struct its_baser *baser, u32 id) { struct page *page; u32 esz, idx; __le64 *table; /* Don't allow device id that exceeds single, flat table limit */ esz = GITS_BASER_ENTRY_SIZE(baser->val); if (!(baser->val & GITS_BASER_INDIRECT)) return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz)); /* Compute 1st level table index & check if that exceeds table limit */ idx = id >> ilog2(baser->psz / esz); if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE)) return false; table = baser->base; /* Allocate memory for 2nd level table */ if (!table[idx]) { page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, get_order(baser->psz)); if (!page) return false; /* Flush Lvl2 table to PoC if hw doesn't support coherency */ if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) gic_flush_dcache_to_poc(page_address(page), baser->psz); table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID); /* Flush Lvl1 entry to PoC if hw doesn't support coherency */ if (!(baser->val & GITS_BASER_SHAREABILITY_MASK)) gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE); /* Ensure updated table contents are visible to ITS hardware */ dsb(sy); } return true; } static bool its_alloc_device_table(struct its_node *its, u32 dev_id) { struct its_baser *baser; baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE); /* Don't allow device id that exceeds ITS hardware limit */ if (!baser) return (ilog2(dev_id) < device_ids(its)); return its_alloc_table_entry(its, baser, dev_id); } static bool its_alloc_vpe_table(u32 vpe_id) { struct its_node *its; int cpu; /* * Make sure the L2 tables are allocated on *all* v4 ITSs. We * could try and only do it on ITSs corresponding to devices * that have interrupts targeted at this VPE, but the * complexity becomes crazy (and you have tons of memory * anyway, right?). */ list_for_each_entry(its, &its_nodes, entry) { struct its_baser *baser; if (!is_v4(its)) continue; baser = its_get_baser(its, GITS_BASER_TYPE_VCPU); if (!baser) return false; if (!its_alloc_table_entry(its, baser, vpe_id)) return false; } /* Non v4.1? No need to iterate RDs and go back early. */ if (!gic_rdists->has_rvpeid) return true; /* * Make sure the L2 tables are allocated for all copies of * the L1 table on *all* v4.1 RDs. */ for_each_possible_cpu(cpu) { if (!allocate_vpe_l2_table(cpu, vpe_id)) return false; } return true; } static struct its_device *its_create_device(struct its_node *its, u32 dev_id, int nvecs, bool alloc_lpis) { struct its_device *dev; unsigned long *lpi_map = NULL; unsigned long flags; u16 *col_map = NULL; void *itt; int lpi_base; int nr_lpis; int nr_ites; int sz; if (!its_alloc_device_table(its, dev_id)) return NULL; if (WARN_ON(!is_power_of_2(nvecs))) nvecs = roundup_pow_of_two(nvecs); dev = kzalloc(sizeof(*dev), GFP_KERNEL); /* * Even if the device wants a single LPI, the ITT must be * sized as a power of two (and you need at least one bit...). */ nr_ites = max(2, nvecs); sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1); sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1; itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node); if (alloc_lpis) { lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis); if (lpi_map) col_map = kcalloc(nr_lpis, sizeof(*col_map), GFP_KERNEL); } else { col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL); nr_lpis = 0; lpi_base = 0; } if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) { kfree(dev); kfree(itt); bitmap_free(lpi_map); kfree(col_map); return NULL; } gic_flush_dcache_to_poc(itt, sz); dev->its = its; dev->itt = itt; dev->nr_ites = nr_ites; dev->event_map.lpi_map = lpi_map; dev->event_map.col_map = col_map; dev->event_map.lpi_base = lpi_base; dev->event_map.nr_lpis = nr_lpis; raw_spin_lock_init(&dev->event_map.vlpi_lock); dev->device_id = dev_id; INIT_LIST_HEAD(&dev->entry); raw_spin_lock_irqsave(&its->lock, flags); list_add(&dev->entry, &its->its_device_list); raw_spin_unlock_irqrestore(&its->lock, flags); /* Map device to its ITT */ its_send_mapd(dev, 1); return dev; } static void its_free_device(struct its_device *its_dev) { unsigned long flags; raw_spin_lock_irqsave(&its_dev->its->lock, flags); list_del(&its_dev->entry); raw_spin_unlock_irqrestore(&its_dev->its->lock, flags); kfree(its_dev->event_map.col_map); kfree(its_dev->itt); kfree(its_dev); } static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq) { int idx; /* Find a free LPI region in lpi_map and allocate them. */ idx = bitmap_find_free_region(dev->event_map.lpi_map, dev->event_map.nr_lpis, get_count_order(nvecs)); if (idx < 0) return -ENOSPC; *hwirq = dev->event_map.lpi_base + idx; return 0; } static int its_msi_prepare(struct irq_domain *domain, struct device *dev, int nvec, msi_alloc_info_t *info) { struct its_node *its; struct its_device *its_dev; struct msi_domain_info *msi_info; u32 dev_id; int err = 0; /* * We ignore "dev" entirely, and rely on the dev_id that has * been passed via the scratchpad. This limits this domain's * usefulness to upper layers that definitely know that they * are built on top of the ITS. */ dev_id = info->scratchpad[0].ul; msi_info = msi_get_domain_info(domain); its = msi_info->data; if (!gic_rdists->has_direct_lpi && vpe_proxy.dev && vpe_proxy.dev->its == its && dev_id == vpe_proxy.dev->device_id) { /* Bad luck. Get yourself a better implementation */ WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n", dev_id); return -EINVAL; } mutex_lock(&its->dev_alloc_lock); its_dev = its_find_device(its, dev_id); if (its_dev) { /* * We already have seen this ID, probably through * another alias (PCI bridge of some sort). No need to * create the device. */ its_dev->shared = true; pr_debug("Reusing ITT for devID %x\n", dev_id); goto out; } its_dev = its_create_device(its, dev_id, nvec, true); if (!its_dev) { err = -ENOMEM; goto out; } if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE) its_dev->shared = true; pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec)); out: mutex_unlock(&its->dev_alloc_lock); info->scratchpad[0].ptr = its_dev; return err; } static struct msi_domain_ops its_msi_domain_ops = { .msi_prepare = its_msi_prepare, }; static int its_irq_gic_domain_alloc(struct irq_domain *domain, unsigned int virq, irq_hw_number_t hwirq) { struct irq_fwspec fwspec; if (irq_domain_get_of_node(domain->parent)) { fwspec.fwnode = domain->parent->fwnode; fwspec.param_count = 3; fwspec.param[0] = GIC_IRQ_TYPE_LPI; fwspec.param[1] = hwirq; fwspec.param[2] = IRQ_TYPE_EDGE_RISING; } else if (is_fwnode_irqchip(domain->parent->fwnode)) { fwspec.fwnode = domain->parent->fwnode; fwspec.param_count = 2; fwspec.param[0] = hwirq; fwspec.param[1] = IRQ_TYPE_EDGE_RISING; } else { return -EINVAL; } return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); } static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs, void *args) { msi_alloc_info_t *info = args; struct its_device *its_dev = info->scratchpad[0].ptr; struct its_node *its = its_dev->its; struct irq_data *irqd; irq_hw_number_t hwirq; int err; int i; err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq); if (err) return err; err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev)); if (err) return err; for (i = 0; i < nr_irqs; i++) { err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i); if (err) return err; irq_domain_set_hwirq_and_chip(domain, virq + i, hwirq + i, &its_irq_chip, its_dev); irqd = irq_get_irq_data(virq + i); irqd_set_single_target(irqd); irqd_set_affinity_on_activate(irqd); pr_debug("ID:%d pID:%d vID:%d\n", (int)(hwirq + i - its_dev->event_map.lpi_base), (int)(hwirq + i), virq + i); } return 0; } static int its_irq_domain_activate(struct irq_domain *domain, struct irq_data *d, bool reserve) { struct its_device *its_dev = irq_data_get_irq_chip_data(d); u32 event = its_get_event_id(d); int cpu; cpu = its_select_cpu(d, cpu_online_mask); if (cpu < 0 || cpu >= nr_cpu_ids) return -EINVAL; its_inc_lpi_count(d, cpu); its_dev->event_map.col_map[event] = cpu; irq_data_update_effective_affinity(d, cpumask_of(cpu)); /* Map the GIC IRQ and event to the device */ its_send_mapti(its_dev, d->hwirq, event); return 0; } static void its_irq_domain_deactivate(struct irq_domain *domain, struct irq_data *d) { struct its_device *its_dev = irq_data_get_irq_chip_data(d); u32 event = its_get_event_id(d); its_dec_lpi_count(d, its_dev->event_map.col_map[event]); /* Stop the delivery of interrupts */ its_send_discard(its_dev, event); } static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs) { struct irq_data *d = irq_domain_get_irq_data(domain, virq); struct its_device *its_dev = irq_data_get_irq_chip_data(d); struct its_node *its = its_dev->its; int i; bitmap_release_region(its_dev->event_map.lpi_map, its_get_event_id(irq_domain_get_irq_data(domain, virq)), get_count_order(nr_irqs)); for (i = 0; i < nr_irqs; i++) { struct irq_data *data = irq_domain_get_irq_data(domain, virq + i); /* Nuke the entry in the domain */ irq_domain_reset_irq_data(data); } mutex_lock(&its->dev_alloc_lock); /* * If all interrupts have been freed, start mopping the * floor. This is conditioned on the device not being shared. */ if (!its_dev->shared && bitmap_empty(its_dev->event_map.lpi_map, its_dev->event_map.nr_lpis)) { its_lpi_free(its_dev->event_map.lpi_map, its_dev->event_map.lpi_base, its_dev->event_map.nr_lpis); /* Unmap device/itt */ its_send_mapd(its_dev, 0); its_free_device(its_dev); } mutex_unlock(&its->dev_alloc_lock); irq_domain_free_irqs_parent(domain, virq, nr_irqs); } static const struct irq_domain_ops its_domain_ops = { .alloc = its_irq_domain_alloc, .free = its_irq_domain_free, .activate = its_irq_domain_activate, .deactivate = its_irq_domain_deactivate, }; /* * This is insane. * * If a GICv4.0 doesn't implement Direct LPIs (which is extremely * likely), the only way to perform an invalidate is to use a fake * device to issue an INV command, implying that the LPI has first * been mapped to some event on that device. Since this is not exactly * cheap, we try to keep that mapping around as long as possible, and * only issue an UNMAP if we're short on available slots. * * Broken by design(tm). * * GICv4.1, on the other hand, mandates that we're able to invalidate * by writing to a MMIO register. It doesn't implement the whole of * DirectLPI, but that's good enough. And most of the time, we don't * even have to invalidate anything, as the redistributor can be told * whether to generate a doorbell or not (we thus leave it enabled, * always). */ static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe) { /* GICv4.1 doesn't use a proxy, so nothing to do here */ if (gic_rdists->has_rvpeid) return; /* Already unmapped? */ if (vpe->vpe_proxy_event == -1) return; its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event); vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL; /* * We don't track empty slots at all, so let's move the * next_victim pointer if we can quickly reuse that slot * instead of nuking an existing entry. Not clear that this is * always a win though, and this might just generate a ripple * effect... Let's just hope VPEs don't migrate too often. */ if (vpe_proxy.vpes[vpe_proxy.next_victim]) vpe_proxy.next_victim = vpe->vpe_proxy_event; vpe->vpe_proxy_event = -1; } static void its_vpe_db_proxy_unmap(struct its_vpe *vpe) { /* GICv4.1 doesn't use a proxy, so nothing to do here */ if (gic_rdists->has_rvpeid) return; if (!gic_rdists->has_direct_lpi) { unsigned long flags; raw_spin_lock_irqsave(&vpe_proxy.lock, flags); its_vpe_db_proxy_unmap_locked(vpe); raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); } } static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe) { /* GICv4.1 doesn't use a proxy, so nothing to do here */ if (gic_rdists->has_rvpeid) return; /* Already mapped? */ if (vpe->vpe_proxy_event != -1) return; /* This slot was already allocated. Kick the other VPE out. */ if (vpe_proxy.vpes[vpe_proxy.next_victim]) its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]); /* Map the new VPE instead */ vpe_proxy.vpes[vpe_proxy.next_victim] = vpe; vpe->vpe_proxy_event = vpe_proxy.next_victim; vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites; vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx; its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event); } static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to) { unsigned long flags; struct its_collection *target_col; /* GICv4.1 doesn't use a proxy, so nothing to do here */ if (gic_rdists->has_rvpeid) return; if (gic_rdists->has_direct_lpi) { void __iomem *rdbase; rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base; gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); wait_for_syncr(rdbase); return; } raw_spin_lock_irqsave(&vpe_proxy.lock, flags); its_vpe_db_proxy_map_locked(vpe); target_col = &vpe_proxy.dev->its->collections[to]; its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event); vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to; raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); } static int its_vpe_set_affinity(struct irq_data *d, const struct cpumask *mask_val, bool force) { struct its_vpe *vpe = irq_data_get_irq_chip_data(d); int from, cpu = cpumask_first(mask_val); unsigned long flags; /* * Changing affinity is mega expensive, so let's be as lazy as * we can and only do it if we really have to. Also, if mapped * into the proxy device, we need to move the doorbell * interrupt to its new location. * * Another thing is that changing the affinity of a vPE affects * *other interrupts* such as all the vLPIs that are routed to * this vPE. This means that the irq_desc lock is not enough to * protect us, and that we must ensure nobody samples vpe->col_idx * during the update, hence the lock below which must also be * taken on any vLPI handling path that evaluates vpe->col_idx. */ from = vpe_to_cpuid_lock(vpe, &flags); if (from == cpu) goto out; vpe->col_idx = cpu; /* * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD * is sharing its VPE table with the current one. */ if (gic_data_rdist_cpu(cpu)->vpe_table_mask && cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask)) goto out; its_send_vmovp(vpe); its_vpe_db_proxy_move(vpe, from, cpu); out: irq_data_update_effective_affinity(d, cpumask_of(cpu)); vpe_to_cpuid_unlock(vpe, flags); return IRQ_SET_MASK_OK_DONE; } static void its_wait_vpt_parse_complete(void) { void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); u64 val; if (!gic_rdists->has_vpend_valid_dirty) return; WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER, val, !(val & GICR_VPENDBASER_Dirty), 1, 500)); } static void its_vpe_schedule(struct its_vpe *vpe) { void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); u64 val; /* Schedule the VPE */ val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) & GENMASK_ULL(51, 12); val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK; val |= GICR_VPROPBASER_RaWb; val |= GICR_VPROPBASER_InnerShareable; gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER); val = virt_to_phys(page_address(vpe->vpt_page)) & GENMASK_ULL(51, 16); val |= GICR_VPENDBASER_RaWaWb; val |= GICR_VPENDBASER_InnerShareable; /* * There is no good way of finding out if the pending table is * empty as we can race against the doorbell interrupt very * easily. So in the end, vpe->pending_last is only an * indication that the vcpu has something pending, not one * that the pending table is empty. A good implementation * would be able to read its coarse map pretty quickly anyway, * making this a tolerable issue. */ val |= GICR_VPENDBASER_PendingLast; val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0; val |= GICR_VPENDBASER_Valid; gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); } static void its_vpe_deschedule(struct its_vpe *vpe) { void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); u64 val; val = its_clear_vpend_valid(vlpi_base, 0, 0); vpe->idai = !!(val & GICR_VPENDBASER_IDAI); vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); } static void its_vpe_invall(struct its_vpe *vpe) { struct its_node *its; list_for_each_entry(its, &its_nodes, entry) { if (!is_v4(its)) continue; if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr]) continue; /* * Sending a VINVALL to a single ITS is enough, as all * we need is to reach the redistributors. */ its_send_vinvall(its, vpe); return; } } static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) { struct its_vpe *vpe = irq_data_get_irq_chip_data(d); struct its_cmd_info *info = vcpu_info; switch (info->cmd_type) { case SCHEDULE_VPE: its_vpe_schedule(vpe); return 0; case DESCHEDULE_VPE: its_vpe_deschedule(vpe); return 0; case COMMIT_VPE: its_wait_vpt_parse_complete(); return 0; case INVALL_VPE: its_vpe_invall(vpe); return 0; default: return -EINVAL; } } static void its_vpe_send_cmd(struct its_vpe *vpe, void (*cmd)(struct its_device *, u32)) { unsigned long flags; raw_spin_lock_irqsave(&vpe_proxy.lock, flags); its_vpe_db_proxy_map_locked(vpe); cmd(vpe_proxy.dev, vpe->vpe_proxy_event); raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags); } static void its_vpe_send_inv(struct irq_data *d) { struct its_vpe *vpe = irq_data_get_irq_chip_data(d); if (gic_rdists->has_direct_lpi) { void __iomem *rdbase; /* Target the redistributor this VPE is currently known on */ raw_spin_lock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock); rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; gic_write_lpir(d->parent_data->hwirq, rdbase + GICR_INVLPIR); wait_for_syncr(rdbase); raw_spin_unlock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock); } else { its_vpe_send_cmd(vpe, its_send_inv); } } static void its_vpe_mask_irq(struct irq_data *d) { /* * We need to unmask the LPI, which is described by the parent * irq_data. Instead of calling into the parent (which won't * exactly do the right thing, let's simply use the * parent_data pointer. Yes, I'm naughty. */ lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); its_vpe_send_inv(d); } static void its_vpe_unmask_irq(struct irq_data *d) { /* Same hack as above... */ lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); its_vpe_send_inv(d); } static int its_vpe_set_irqchip_state(struct irq_data *d, enum irqchip_irq_state which, bool state) { struct its_vpe *vpe = irq_data_get_irq_chip_data(d); if (which != IRQCHIP_STATE_PENDING) return -EINVAL; if (gic_rdists->has_direct_lpi) { void __iomem *rdbase; rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base; if (state) { gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR); } else { gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR); wait_for_syncr(rdbase); } } else { if (state) its_vpe_send_cmd(vpe, its_send_int); else its_vpe_send_cmd(vpe, its_send_clear); } return 0; } static int its_vpe_retrigger(struct irq_data *d) { return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true); } static struct irq_chip its_vpe_irq_chip = { .name = "GICv4-vpe", .irq_mask = its_vpe_mask_irq, .irq_unmask = its_vpe_unmask_irq, .irq_eoi = irq_chip_eoi_parent, .irq_set_affinity = its_vpe_set_affinity, .irq_retrigger = its_vpe_retrigger, .irq_set_irqchip_state = its_vpe_set_irqchip_state, .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity, }; static struct its_node *find_4_1_its(void) { static struct its_node *its = NULL; if (!its) { list_for_each_entry(its, &its_nodes, entry) { if (is_v4_1(its)) return its; } /* Oops? */ its = NULL; } return its; } static void its_vpe_4_1_send_inv(struct irq_data *d) { struct its_vpe *vpe = irq_data_get_irq_chip_data(d); struct its_node *its; /* * GICv4.1 wants doorbells to be invalidated using the * INVDB command in order to be broadcast to all RDs. Send * it to the first valid ITS, and let the HW do its magic. */ its = find_4_1_its(); if (its) its_send_invdb(its, vpe); } static void its_vpe_4_1_mask_irq(struct irq_data *d) { lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0); its_vpe_4_1_send_inv(d); } static void its_vpe_4_1_unmask_irq(struct irq_data *d) { lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED); its_vpe_4_1_send_inv(d); } static void its_vpe_4_1_schedule(struct its_vpe *vpe, struct its_cmd_info *info) { void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); u64 val = 0; /* Schedule the VPE */ val |= GICR_VPENDBASER_Valid; val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0; val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0; val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id); gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER); } static void its_vpe_4_1_deschedule(struct its_vpe *vpe, struct its_cmd_info *info) { void __iomem *vlpi_base = gic_data_rdist_vlpi_base(); u64 val; if (info->req_db) { unsigned long flags; /* * vPE is going to block: make the vPE non-resident with * PendingLast clear and DB set. The GIC guarantees that if * we read-back PendingLast clear, then a doorbell will be * delivered when an interrupt comes. * * Note the locking to deal with the concurrent update of * pending_last from the doorbell interrupt handler that can * run concurrently. */ raw_spin_lock_irqsave(&vpe->vpe_lock, flags); val = its_clear_vpend_valid(vlpi_base, GICR_VPENDBASER_PendingLast, GICR_VPENDBASER_4_1_DB); vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast); raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags); } else { /* * We're not blocking, so just make the vPE non-resident * with PendingLast set, indicating that we'll be back. */ val = its_clear_vpend_valid(vlpi_base, 0, GICR_VPENDBASER_PendingLast); vpe->pending_last = true; } } static void its_vpe_4_1_invall(struct its_vpe *vpe) { void __iomem *rdbase; unsigned long flags; u64 val; int cpu; val = GICR_INVALLR_V; val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id); /* Target the redistributor this vPE is currently known on */ cpu = vpe_to_cpuid_lock(vpe, &flags); raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base; gic_write_lpir(val, rdbase + GICR_INVALLR); wait_for_syncr(rdbase); raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); vpe_to_cpuid_unlock(vpe, flags); } static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) { struct its_vpe *vpe = irq_data_get_irq_chip_data(d); struct its_cmd_info *info = vcpu_info; switch (info->cmd_type) { case SCHEDULE_VPE: its_vpe_4_1_schedule(vpe, info); return 0; case DESCHEDULE_VPE: its_vpe_4_1_deschedule(vpe, info); return 0; case COMMIT_VPE: its_wait_vpt_parse_complete(); return 0; case INVALL_VPE: its_vpe_4_1_invall(vpe); return 0; default: return -EINVAL; } } static struct irq_chip its_vpe_4_1_irq_chip = { .name = "GICv4.1-vpe", .irq_mask = its_vpe_4_1_mask_irq, .irq_unmask = its_vpe_4_1_unmask_irq, .irq_eoi = irq_chip_eoi_parent, .irq_set_affinity = its_vpe_set_affinity, .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity, }; static void its_configure_sgi(struct irq_data *d, bool clear) { struct its_vpe *vpe = irq_data_get_irq_chip_data(d); struct its_cmd_desc desc; desc.its_vsgi_cmd.vpe = vpe; desc.its_vsgi_cmd.sgi = d->hwirq; desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority; desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled; desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group; desc.its_vsgi_cmd.clear = clear; /* * GICv4.1 allows us to send VSGI commands to any ITS as long as the * destination VPE is mapped there. Since we map them eagerly at * activation time, we're pretty sure the first GICv4.1 ITS will do. */ its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc); } static void its_sgi_mask_irq(struct irq_data *d) { struct its_vpe *vpe = irq_data_get_irq_chip_data(d); vpe->sgi_config[d->hwirq].enabled = false; its_configure_sgi(d, false); } static void its_sgi_unmask_irq(struct irq_data *d) { struct its_vpe *vpe = irq_data_get_irq_chip_data(d); vpe->sgi_config[d->hwirq].enabled = true; its_configure_sgi(d, false); } static int its_sgi_set_affinity(struct irq_data *d, const struct cpumask *mask_val, bool force) { /* * There is no notion of affinity for virtual SGIs, at least * not on the host (since they can only be targeting a vPE). * Tell the kernel we've done whatever it asked for. */ irq_data_update_effective_affinity(d, mask_val); return IRQ_SET_MASK_OK; } static int its_sgi_set_irqchip_state(struct irq_data *d, enum irqchip_irq_state which, bool state) { if (which != IRQCHIP_STATE_PENDING) return -EINVAL; if (state) { struct its_vpe *vpe = irq_data_get_irq_chip_data(d); struct its_node *its = find_4_1_its(); u64 val; val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id); val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq); writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K); } else { its_configure_sgi(d, true); } return 0; } static int its_sgi_get_irqchip_state(struct irq_data *d, enum irqchip_irq_state which, bool *val) { struct its_vpe *vpe = irq_data_get_irq_chip_data(d); void __iomem *base; unsigned long flags; u32 count = 1000000; /* 1s! */ u32 status; int cpu; if (which != IRQCHIP_STATE_PENDING) return -EINVAL; /* * Locking galore! We can race against two different events: * * - Concurrent vPE affinity change: we must make sure it cannot * happen, or we'll talk to the wrong redistributor. This is * identical to what happens with vLPIs. * * - Concurrent VSGIPENDR access: As it involves accessing two * MMIO registers, this must be made atomic one way or another. */ cpu = vpe_to_cpuid_lock(vpe, &flags); raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock); base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K; writel_relaxed(vpe->vpe_id, base + GICR_VSGIR); do { status = readl_relaxed(base + GICR_VSGIPENDR); if (!(status & GICR_VSGIPENDR_BUSY)) goto out; count--; if (!count) { pr_err_ratelimited("Unable to get SGI status\n"); goto out; } cpu_relax(); udelay(1); } while (count); out: raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock); vpe_to_cpuid_unlock(vpe, flags); if (!count) return -ENXIO; *val = !!(status & (1 << d->hwirq)); return 0; } static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) { struct its_vpe *vpe = irq_data_get_irq_chip_data(d); struct its_cmd_info *info = vcpu_info; switch (info->cmd_type) { case PROP_UPDATE_VSGI: vpe->sgi_config[d->hwirq].priority = info->priority; vpe->sgi_config[d->hwirq].group = info->group; its_configure_sgi(d, false); return 0; default: return -EINVAL; } } static struct irq_chip its_sgi_irq_chip = { .name = "GICv4.1-sgi", .irq_mask = its_sgi_mask_irq, .irq_unmask = its_sgi_unmask_irq, .irq_set_affinity = its_sgi_set_affinity, .irq_set_irqchip_state = its_sgi_set_irqchip_state, .irq_get_irqchip_state = its_sgi_get_irqchip_state, .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity, }; static int its_sgi_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs, void *args) { struct its_vpe *vpe = args; int i; /* Yes, we do want 16 SGIs */ WARN_ON(nr_irqs != 16); for (i = 0; i < 16; i++) { vpe->sgi_config[i].priority = 0; vpe->sgi_config[i].enabled = false; vpe->sgi_config[i].group = false; irq_domain_set_hwirq_and_chip(domain, virq + i, i, &its_sgi_irq_chip, vpe); irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY); } return 0; } static void its_sgi_irq_domain_free(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs) { /* Nothing to do */ } static int its_sgi_irq_domain_activate(struct irq_domain *domain, struct irq_data *d, bool reserve) { /* Write out the initial SGI configuration */ its_configure_sgi(d, false); return 0; } static void its_sgi_irq_domain_deactivate(struct irq_domain *domain, struct irq_data *d) { struct its_vpe *vpe = irq_data_get_irq_chip_data(d); /* * The VSGI command is awkward: * * - To change the configuration, CLEAR must be set to false, * leaving the pending bit unchanged. * - To clear the pending bit, CLEAR must be set to true, leaving * the configuration unchanged. * * You just can't do both at once, hence the two commands below. */ vpe->sgi_config[d->hwirq].enabled = false; its_configure_sgi(d, false); its_configure_sgi(d, true); } static const struct irq_domain_ops its_sgi_domain_ops = { .alloc = its_sgi_irq_domain_alloc, .free = its_sgi_irq_domain_free, .activate = its_sgi_irq_domain_activate, .deactivate = its_sgi_irq_domain_deactivate, }; static int its_vpe_id_alloc(void) { return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL); } static void its_vpe_id_free(u16 id) { ida_simple_remove(&its_vpeid_ida, id); } static int its_vpe_init(struct its_vpe *vpe) { struct page *vpt_page; int vpe_id; /* Allocate vpe_id */ vpe_id = its_vpe_id_alloc(); if (vpe_id < 0) return vpe_id; /* Allocate VPT */ vpt_page = its_allocate_pending_table(GFP_KERNEL); if (!vpt_page) { its_vpe_id_free(vpe_id); return -ENOMEM; } if (!its_alloc_vpe_table(vpe_id)) { its_vpe_id_free(vpe_id); its_free_pending_table(vpt_page); return -ENOMEM; } raw_spin_lock_init(&vpe->vpe_lock); vpe->vpe_id = vpe_id; vpe->vpt_page = vpt_page; if (gic_rdists->has_rvpeid) atomic_set(&vpe->vmapp_count, 0); else vpe->vpe_proxy_event = -1; return 0; } static void its_vpe_teardown(struct its_vpe *vpe) { its_vpe_db_proxy_unmap(vpe); its_vpe_id_free(vpe->vpe_id); its_free_pending_table(vpe->vpt_page); } static void its_vpe_irq_domain_free(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs) { struct its_vm *vm = domain->host_data; int i; irq_domain_free_irqs_parent(domain, virq, nr_irqs); for (i = 0; i < nr_irqs; i++) { struct irq_data *data = irq_domain_get_irq_data(domain, virq + i); struct its_vpe *vpe = irq_data_get_irq_chip_data(data); BUG_ON(vm != vpe->its_vm); clear_bit(data->hwirq, vm->db_bitmap); its_vpe_teardown(vpe); irq_domain_reset_irq_data(data); } if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) { its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis); its_free_prop_table(vm->vprop_page); } } static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs, void *args) { struct irq_chip *irqchip = &its_vpe_irq_chip; struct its_vm *vm = args; unsigned long *bitmap; struct page *vprop_page; int base, nr_ids, i, err = 0; BUG_ON(!vm); bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids); if (!bitmap) return -ENOMEM; if (nr_ids < nr_irqs) { its_lpi_free(bitmap, base, nr_ids); return -ENOMEM; } vprop_page = its_allocate_prop_table(GFP_KERNEL); if (!vprop_page) { its_lpi_free(bitmap, base, nr_ids); return -ENOMEM; } vm->db_bitmap = bitmap; vm->db_lpi_base = base; vm->nr_db_lpis = nr_ids; vm->vprop_page = vprop_page; if (gic_rdists->has_rvpeid) irqchip = &its_vpe_4_1_irq_chip; for (i = 0; i < nr_irqs; i++) { vm->vpes[i]->vpe_db_lpi = base + i; err = its_vpe_init(vm->vpes[i]); if (err) break; err = its_irq_gic_domain_alloc(domain, virq + i, vm->vpes[i]->vpe_db_lpi); if (err) break; irq_domain_set_hwirq_and_chip(domain, virq + i, i, irqchip, vm->vpes[i]); set_bit(i, bitmap); } if (err) { if (i > 0) its_vpe_irq_domain_free(domain, virq, i); its_lpi_free(bitmap, base, nr_ids); its_free_prop_table(vprop_page); } return err; } static int its_vpe_irq_domain_activate(struct irq_domain *domain, struct irq_data *d, bool reserve) { struct its_vpe *vpe = irq_data_get_irq_chip_data(d); struct its_node *its; /* * If we use the list map, we issue VMAPP on demand... Unless * we're on a GICv4.1 and we eagerly map the VPE on all ITSs * so that VSGIs can work. */ if (!gic_requires_eager_mapping()) return 0; /* Map the VPE to the first possible CPU */ vpe->col_idx = cpumask_first(cpu_online_mask); list_for_each_entry(its, &its_nodes, entry) { if (!is_v4(its)) continue; its_send_vmapp(its, vpe, true); its_send_vinvall(its, vpe); } irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx)); return 0; } static void its_vpe_irq_domain_deactivate(struct irq_domain *domain, struct irq_data *d) { struct its_vpe *vpe = irq_data_get_irq_chip_data(d); struct its_node *its; /* * If we use the list map on GICv4.0, we unmap the VPE once no * VLPIs are associated with the VM. */ if (!gic_requires_eager_mapping()) return; list_for_each_entry(its, &its_nodes, entry) { if (!is_v4(its)) continue; its_send_vmapp(its, vpe, false); } /* * There may be a direct read to the VPT after unmapping the * vPE, to guarantee the validity of this, we make the VPT * memory coherent with the CPU caches here. */ if (find_4_1_its() && !atomic_read(&vpe->vmapp_count)) gic_flush_dcache_to_poc(page_address(vpe->vpt_page), LPI_PENDBASE_SZ); } static const struct irq_domain_ops its_vpe_domain_ops = { .alloc = its_vpe_irq_domain_alloc, .free = its_vpe_irq_domain_free, .activate = its_vpe_irq_domain_activate, .deactivate = its_vpe_irq_domain_deactivate, }; static int its_force_quiescent(void __iomem *base) { u32 count = 1000000; /* 1s */ u32 val; val = readl_relaxed(base + GITS_CTLR); /* * GIC architecture specification requires the ITS to be both * disabled and quiescent for writes to GITS_BASER or * GITS_CBASER to not have UNPREDICTABLE results. */ if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE)) return 0; /* Disable the generation of all interrupts to this ITS */ val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe); writel_relaxed(val, base + GITS_CTLR); /* Poll GITS_CTLR and wait until ITS becomes quiescent */ while (1) { val = readl_relaxed(base + GITS_CTLR); if (val & GITS_CTLR_QUIESCENT) return 0; count--; if (!count) return -EBUSY; cpu_relax(); udelay(1); } } static bool __maybe_unused its_enable_quirk_cavium_22375(void *data) { struct its_node *its = data; /* erratum 22375: only alloc 8MB table size (20 bits) */ its->typer &= ~GITS_TYPER_DEVBITS; its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1); its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375; return true; } static bool __maybe_unused its_enable_quirk_cavium_23144(void *data) { struct its_node *its = data; its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144; return true; } static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data) { struct its_node *its = data; /* On QDF2400, the size of the ITE is 16Bytes */ its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE; its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1); return true; } static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev) { struct its_node *its = its_dev->its; /* * The Socionext Synquacer SoC has a so-called 'pre-ITS', * which maps 32-bit writes targeted at a separate window of * size '4 << device_id_bits' onto writes to GITS_TRANSLATER * with device ID taken from bits [device_id_bits + 1:2] of * the window offset. */ return its->pre_its_base + (its_dev->device_id << 2); } static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data) { struct its_node *its = data; u32 pre_its_window[2]; u32 ids; if (!fwnode_property_read_u32_array(its->fwnode_handle, "socionext,synquacer-pre-its", pre_its_window, ARRAY_SIZE(pre_its_window))) { its->pre_its_base = pre_its_window[0]; its->get_msi_base = its_irq_get_msi_base_pre_its; ids = ilog2(pre_its_window[1]) - 2; if (device_ids(its) > ids) { its->typer &= ~GITS_TYPER_DEVBITS; its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1); } /* the pre-ITS breaks isolation, so disable MSI remapping */ its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP; return true; } return false; } static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data) { struct its_node *its = data; /* * Hip07 insists on using the wrong address for the VLPI * page. Trick it into doing the right thing... */ its->vlpi_redist_offset = SZ_128K; return true; } static const struct gic_quirk its_quirks[] = { #ifdef CONFIG_CAVIUM_ERRATUM_22375 { .desc = "ITS: Cavium errata 22375, 24313", .iidr = 0xa100034c, /* ThunderX pass 1.x */ .mask = 0xffff0fff, .init = its_enable_quirk_cavium_22375, }, #endif #ifdef CONFIG_CAVIUM_ERRATUM_23144 { .desc = "ITS: Cavium erratum 23144", .iidr = 0xa100034c, /* ThunderX pass 1.x */ .mask = 0xffff0fff, .init = its_enable_quirk_cavium_23144, }, #endif #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065 { .desc = "ITS: QDF2400 erratum 0065", .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */ .mask = 0xffffffff, .init = its_enable_quirk_qdf2400_e0065, }, #endif #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS { /* * The Socionext Synquacer SoC incorporates ARM's own GIC-500 * implementation, but with a 'pre-ITS' added that requires * special handling in software. */ .desc = "ITS: Socionext Synquacer pre-ITS", .iidr = 0x0001143b, .mask = 0xffffffff, .init = its_enable_quirk_socionext_synquacer, }, #endif #ifdef CONFIG_HISILICON_ERRATUM_161600802 { .desc = "ITS: Hip07 erratum 161600802", .iidr = 0x00000004, .mask = 0xffffffff, .init = its_enable_quirk_hip07_161600802, }, #endif { } }; static void its_enable_quirks(struct its_node *its) { u32 iidr = readl_relaxed(its->base + GITS_IIDR); gic_enable_quirks(iidr, its_quirks, its); } static int its_save_disable(void) { struct its_node *its; int err = 0; raw_spin_lock(&its_lock); list_for_each_entry(its, &its_nodes, entry) { void __iomem *base; base = its->base; its->ctlr_save = readl_relaxed(base + GITS_CTLR); err = its_force_quiescent(base); if (err) { pr_err("ITS@%pa: failed to quiesce: %d\n", &its->phys_base, err); writel_relaxed(its->ctlr_save, base + GITS_CTLR); goto err; } its->cbaser_save = gits_read_cbaser(base + GITS_CBASER); } err: if (err) { list_for_each_entry_continue_reverse(its, &its_nodes, entry) { void __iomem *base; base = its->base; writel_relaxed(its->ctlr_save, base + GITS_CTLR); } } raw_spin_unlock(&its_lock); return err; } static void its_restore_enable(void) { struct its_node *its; int ret; raw_spin_lock(&its_lock); list_for_each_entry(its, &its_nodes, entry) { void __iomem *base; int i; base = its->base; /* * Make sure that the ITS is disabled. If it fails to quiesce, * don't restore it since writing to CBASER or BASER * registers is undefined according to the GIC v3 ITS * Specification. * * Firmware resuming with the ITS enabled is terminally broken. */ WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE); ret = its_force_quiescent(base); if (ret) { pr_err("ITS@%pa: failed to quiesce on resume: %d\n", &its->phys_base, ret); continue; } gits_write_cbaser(its->cbaser_save, base + GITS_CBASER); /* * Writing CBASER resets CREADR to 0, so make CWRITER and * cmd_write line up with it. */ its->cmd_write = its->cmd_base; gits_write_cwriter(0, base + GITS_CWRITER); /* Restore GITS_BASER from the value cache. */ for (i = 0; i < GITS_BASER_NR_REGS; i++) { struct its_baser *baser = &its->tables[i]; if (!(baser->val & GITS_BASER_VALID)) continue; its_write_baser(its, baser, baser->val); } writel_relaxed(its->ctlr_save, base + GITS_CTLR); /* * Reinit the collection if it's stored in the ITS. This is * indicated by the col_id being less than the HCC field. * CID < HCC as specified in the GIC v3 Documentation. */ if (its->collections[smp_processor_id()].col_id < GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER))) its_cpu_init_collection(its); } raw_spin_unlock(&its_lock); } static struct syscore_ops its_syscore_ops = { .suspend = its_save_disable, .resume = its_restore_enable, }; static int its_init_domain(struct fwnode_handle *handle, struct its_node *its) { struct irq_domain *inner_domain; struct msi_domain_info *info; info = kzalloc(sizeof(*info), GFP_KERNEL); if (!info) return -ENOMEM; inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its); if (!inner_domain) { kfree(info); return -ENOMEM; } inner_domain->parent = its_parent; irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS); inner_domain->flags |= its->msi_domain_flags; info->ops = &its_msi_domain_ops; info->data = its; inner_domain->host_data = info; return 0; } static int its_init_vpe_domain(void) { struct its_node *its; u32 devid; int entries; if (gic_rdists->has_direct_lpi) { pr_info("ITS: Using DirectLPI for VPE invalidation\n"); return 0; } /* Any ITS will do, even if not v4 */ its = list_first_entry(&its_nodes, struct its_node, entry); entries = roundup_pow_of_two(nr_cpu_ids); vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes), GFP_KERNEL); if (!vpe_proxy.vpes) return -ENOMEM; /* Use the last possible DevID */ devid = GENMASK(device_ids(its) - 1, 0); vpe_proxy.dev = its_create_device(its, devid, entries, false); if (!vpe_proxy.dev) { kfree(vpe_proxy.vpes); pr_err("ITS: Can't allocate GICv4 proxy device\n"); return -ENOMEM; } BUG_ON(entries > vpe_proxy.dev->nr_ites); raw_spin_lock_init(&vpe_proxy.lock); vpe_proxy.next_victim = 0; pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n", devid, vpe_proxy.dev->nr_ites); return 0; } static int __init its_compute_its_list_map(struct resource *res, void __iomem *its_base) { int its_number; u32 ctlr; /* * This is assumed to be done early enough that we're * guaranteed to be single-threaded, hence no * locking. Should this change, we should address * this. */ its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX); if (its_number >= GICv4_ITS_LIST_MAX) { pr_err("ITS@%pa: No ITSList entry available!\n", &res->start); return -EINVAL; } ctlr = readl_relaxed(its_base + GITS_CTLR); ctlr &= ~GITS_CTLR_ITS_NUMBER; ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT; writel_relaxed(ctlr, its_base + GITS_CTLR); ctlr = readl_relaxed(its_base + GITS_CTLR); if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) { its_number = ctlr & GITS_CTLR_ITS_NUMBER; its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT; } if (test_and_set_bit(its_number, &its_list_map)) { pr_err("ITS@%pa: Duplicate ITSList entry %d\n", &res->start, its_number); return -EINVAL; } return its_number; } static int __init its_probe_one(struct resource *res, struct fwnode_handle *handle, int numa_node) { struct its_node *its; void __iomem *its_base; u32 val, ctlr; u64 baser, tmp, typer; struct page *page; int err; its_base = ioremap(res->start, SZ_64K); if (!its_base) { pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start); return -ENOMEM; } val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK; if (val != 0x30 && val != 0x40) { pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start); err = -ENODEV; goto out_unmap; } err = its_force_quiescent(its_base); if (err) { pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start); goto out_unmap; } pr_info("ITS %pR\n", res); its = kzalloc(sizeof(*its), GFP_KERNEL); if (!its) { err = -ENOMEM; goto out_unmap; } raw_spin_lock_init(&its->lock); mutex_init(&its->dev_alloc_lock); INIT_LIST_HEAD(&its->entry); INIT_LIST_HEAD(&its->its_device_list); typer = gic_read_typer(its_base + GITS_TYPER); its->typer = typer; its->base = its_base; its->phys_base = res->start; if (is_v4(its)) { if (!(typer & GITS_TYPER_VMOVP)) { err = its_compute_its_list_map(res, its_base); if (err < 0) goto out_free_its; its->list_nr = err; pr_info("ITS@%pa: Using ITS number %d\n", &res->start, err); } else { pr_info("ITS@%pa: Single VMOVP capable\n", &res->start); } if (is_v4_1(its)) { u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer); its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K); if (!its->sgir_base) { err = -ENOMEM; goto out_free_its; } its->mpidr = readl_relaxed(its_base + GITS_MPIDR); pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n", &res->start, its->mpidr, svpet); } } its->numa_node = numa_node; page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, get_order(ITS_CMD_QUEUE_SZ)); if (!page) { err = -ENOMEM; goto out_unmap_sgir; } its->cmd_base = (void *)page_address(page); its->cmd_write = its->cmd_base; its->fwnode_handle = handle; its->get_msi_base = its_irq_get_msi_base; its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP; its_enable_quirks(its); err = its_alloc_tables(its); if (err) goto out_free_cmd; err = its_alloc_collections(its); if (err) goto out_free_tables; baser = (virt_to_phys(its->cmd_base) | GITS_CBASER_RaWaWb | GITS_CBASER_InnerShareable | (ITS_CMD_QUEUE_SZ / SZ_4K - 1) | GITS_CBASER_VALID); gits_write_cbaser(baser, its->base + GITS_CBASER); tmp = gits_read_cbaser(its->base + GITS_CBASER); if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) { if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) { /* * The HW reports non-shareable, we must * remove the cacheability attributes as * well. */ baser &= ~(GITS_CBASER_SHAREABILITY_MASK | GITS_CBASER_CACHEABILITY_MASK); baser |= GITS_CBASER_nC; gits_write_cbaser(baser, its->base + GITS_CBASER); } pr_info("ITS: using cache flushing for cmd queue\n"); its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING; } gits_write_cwriter(0, its->base + GITS_CWRITER); ctlr = readl_relaxed(its->base + GITS_CTLR); ctlr |= GITS_CTLR_ENABLE; if (is_v4(its)) ctlr |= GITS_CTLR_ImDe; writel_relaxed(ctlr, its->base + GITS_CTLR); err = its_init_domain(handle, its); if (err) goto out_free_tables; raw_spin_lock(&its_lock); list_add(&its->entry, &its_nodes); raw_spin_unlock(&its_lock); return 0; out_free_tables: its_free_tables(its); out_free_cmd: free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ)); out_unmap_sgir: if (its->sgir_base) iounmap(its->sgir_base); out_free_its: kfree(its); out_unmap: iounmap(its_base); pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err); return err; } static bool gic_rdists_supports_plpis(void) { return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS); } static int redist_disable_lpis(void) { void __iomem *rbase = gic_data_rdist_rd_base(); u64 timeout = USEC_PER_SEC; u64 val; if (!gic_rdists_supports_plpis()) { pr_info("CPU%d: LPIs not supported\n", smp_processor_id()); return -ENXIO; } val = readl_relaxed(rbase + GICR_CTLR); if (!(val & GICR_CTLR_ENABLE_LPIS)) return 0; /* * If coming via a CPU hotplug event, we don't need to disable * LPIs before trying to re-enable them. They are already * configured and all is well in the world. * * If running with preallocated tables, there is nothing to do. */ if (gic_data_rdist()->lpi_enabled || (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED)) return 0; /* * From that point on, we only try to do some damage control. */ pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n", smp_processor_id()); add_taint(TAINT_CRAP, LOCKDEP_STILL_OK); /* Disable LPIs */ val &= ~GICR_CTLR_ENABLE_LPIS; writel_relaxed(val, rbase + GICR_CTLR); /* Make sure any change to GICR_CTLR is observable by the GIC */ dsb(sy); /* * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs * from 1 to 0 before programming GICR_PEND{PROP}BASER registers. * Error out if we time out waiting for RWP to clear. */ while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) { if (!timeout) { pr_err("CPU%d: Timeout while disabling LPIs\n", smp_processor_id()); return -ETIMEDOUT; } udelay(1); timeout--; } /* * After it has been written to 1, it is IMPLEMENTATION * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be * cleared to 0. Error out if clearing the bit failed. */ if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) { pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id()); return -EBUSY; } return 0; } int its_cpu_init(void) { if (!list_empty(&its_nodes)) { int ret; ret = redist_disable_lpis(); if (ret) return ret; its_cpu_init_lpis(); its_cpu_init_collections(); } return 0; } static const struct of_device_id its_device_id[] = { { .compatible = "arm,gic-v3-its", }, {}, }; static int __init its_of_probe(struct device_node *node) { struct device_node *np; struct resource res; for (np = of_find_matching_node(node, its_device_id); np; np = of_find_matching_node(np, its_device_id)) { if (!of_device_is_available(np)) continue; if (!of_property_read_bool(np, "msi-controller")) { pr_warn("%pOF: no msi-controller property, ITS ignored\n", np); continue; } if (of_address_to_resource(np, 0, &res)) { pr_warn("%pOF: no regs?\n", np); continue; } its_probe_one(&res, &np->fwnode, of_node_to_nid(np)); } return 0; } #ifdef CONFIG_ACPI #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K) #ifdef CONFIG_ACPI_NUMA struct its_srat_map { /* numa node id */ u32 numa_node; /* GIC ITS ID */ u32 its_id; }; static struct its_srat_map *its_srat_maps __initdata; static int its_in_srat __initdata; static int __init acpi_get_its_numa_node(u32 its_id) { int i; for (i = 0; i < its_in_srat; i++) { if (its_id == its_srat_maps[i].its_id) return its_srat_maps[i].numa_node; } return NUMA_NO_NODE; } static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header, const unsigned long end) { return 0; } static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header, const unsigned long end) { int node; struct acpi_srat_gic_its_affinity *its_affinity; its_affinity = (struct acpi_srat_gic_its_affinity *)header; if (!its_affinity) return -EINVAL; if (its_affinity->header.length < sizeof(*its_affinity)) { pr_err("SRAT: Invalid header length %d in ITS affinity\n", its_affinity->header.length); return -EINVAL; } /* * Note that in theory a new proximity node could be created by this * entry as it is an SRAT resource allocation structure. * We do not currently support doing so. */ node = pxm_to_node(its_affinity->proximity_domain); if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) { pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node); return 0; } its_srat_maps[its_in_srat].numa_node = node; its_srat_maps[its_in_srat].its_id = its_affinity->its_id; its_in_srat++; pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n", its_affinity->proximity_domain, its_affinity->its_id, node); return 0; } static void __init acpi_table_parse_srat_its(void) { int count; count = acpi_table_parse_entries(ACPI_SIG_SRAT, sizeof(struct acpi_table_srat), ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, gic_acpi_match_srat_its, 0); if (count <= 0) return; its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map), GFP_KERNEL); if (!its_srat_maps) return; acpi_table_parse_entries(ACPI_SIG_SRAT, sizeof(struct acpi_table_srat), ACPI_SRAT_TYPE_GIC_ITS_AFFINITY, gic_acpi_parse_srat_its, 0); } /* free the its_srat_maps after ITS probing */ static void __init acpi_its_srat_maps_free(void) { kfree(its_srat_maps); } #else static void __init acpi_table_parse_srat_its(void) { } static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; } static void __init acpi_its_srat_maps_free(void) { } #endif static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header, const unsigned long end) { struct acpi_madt_generic_translator *its_entry; struct fwnode_handle *dom_handle; struct resource res; int err; its_entry = (struct acpi_madt_generic_translator *)header; memset(&res, 0, sizeof(res)); res.start = its_entry->base_address; res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1; res.flags = IORESOURCE_MEM; dom_handle = irq_domain_alloc_fwnode(&res.start); if (!dom_handle) { pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n", &res.start); return -ENOMEM; } err = iort_register_domain_token(its_entry->translation_id, res.start, dom_handle); if (err) { pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n", &res.start, its_entry->translation_id); goto dom_err; } err = its_probe_one(&res, dom_handle, acpi_get_its_numa_node(its_entry->translation_id)); if (!err) return 0; iort_deregister_domain_token(its_entry->translation_id); dom_err: irq_domain_free_fwnode(dom_handle); return err; } static void __init its_acpi_probe(void) { acpi_table_parse_srat_its(); acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR, gic_acpi_parse_madt_its, 0); acpi_its_srat_maps_free(); } #else static void __init its_acpi_probe(void) { } #endif int __init its_init(struct fwnode_handle *handle, struct rdists *rdists, struct irq_domain *parent_domain) { struct device_node *of_node; struct its_node *its; bool has_v4 = false; bool has_v4_1 = false; int err; gic_rdists = rdists; its_parent = parent_domain; of_node = to_of_node(handle); if (of_node) its_of_probe(of_node); else its_acpi_probe(); if (list_empty(&its_nodes)) { pr_warn("ITS: No ITS available, not enabling LPIs\n"); return -ENXIO; } err = allocate_lpi_tables(); if (err) return err; list_for_each_entry(its, &its_nodes, entry) { has_v4 |= is_v4(its); has_v4_1 |= is_v4_1(its); } /* Don't bother with inconsistent systems */ if (WARN_ON(!has_v4_1 && rdists->has_rvpeid)) rdists->has_rvpeid = false; if (has_v4 & rdists->has_vlpis) { const struct irq_domain_ops *sgi_ops; if (has_v4_1) sgi_ops = &its_sgi_domain_ops; else sgi_ops = NULL; if (its_init_vpe_domain() || its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) { rdists->has_vlpis = false; pr_err("ITS: Disabling GICv4 support\n"); } } register_syscore_ops(&its_syscore_ops); return 0; }