// SPDX-License-Identifier: GPL-2.0-only /* * drivers/media/i2c/ccs/ccs-core.c * * Generic driver for MIPI CCS/SMIA/SMIA++ compliant camera sensors * * Copyright (C) 2020 Intel Corporation * Copyright (C) 2010--2012 Nokia Corporation * Contact: Sakari Ailus * * Based on smiapp driver by Vimarsh Zutshi * Based on jt8ev1.c by Vimarsh Zutshi * Based on smia-sensor.c by Tuukka Toivonen */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ccs.h" #define CCS_ALIGN_DIM(dim, flags) \ ((flags) & V4L2_SEL_FLAG_GE \ ? ALIGN((dim), 2) \ : (dim) & ~1) static struct ccs_limit_offset { u16 lim; u16 info; } ccs_limit_offsets[CCS_L_LAST + 1]; /* * ccs_module_idents - supported camera modules */ static const struct ccs_module_ident ccs_module_idents[] = { CCS_IDENT_L(0x01, 0x022b, -1, "vs6555"), CCS_IDENT_L(0x01, 0x022e, -1, "vw6558"), CCS_IDENT_L(0x07, 0x7698, -1, "ovm7698"), CCS_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"), CCS_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"), CCS_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk), CCS_IDENT_L(0x0c, 0x213e, -1, "et8en2"), CCS_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"), CCS_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk), CCS_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk), CCS_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk), }; #define CCS_DEVICE_FLAG_IS_SMIA BIT(0) struct ccs_device { unsigned char flags; }; static const char * const ccs_regulators[] = { "vcore", "vio", "vana" }; /* * * Dynamic Capability Identification * */ static void ccs_assign_limit(void *ptr, unsigned int width, u32 val) { switch (width) { case sizeof(u8): *(u8 *)ptr = val; break; case sizeof(u16): *(u16 *)ptr = val; break; case sizeof(u32): *(u32 *)ptr = val; break; } } static int ccs_limit_ptr(struct ccs_sensor *sensor, unsigned int limit, unsigned int offset, void **__ptr) { const struct ccs_limit *linfo; if (WARN_ON(limit >= CCS_L_LAST)) return -EINVAL; linfo = &ccs_limits[ccs_limit_offsets[limit].info]; if (WARN_ON(!sensor->ccs_limits) || WARN_ON(offset + ccs_reg_width(linfo->reg) > ccs_limit_offsets[limit + 1].lim)) return -EINVAL; *__ptr = sensor->ccs_limits + ccs_limit_offsets[limit].lim + offset; return 0; } void ccs_replace_limit(struct ccs_sensor *sensor, unsigned int limit, unsigned int offset, u32 val) { struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); const struct ccs_limit *linfo; void *ptr; int ret; ret = ccs_limit_ptr(sensor, limit, offset, &ptr); if (ret) return; linfo = &ccs_limits[ccs_limit_offsets[limit].info]; dev_dbg(&client->dev, "quirk: 0x%8.8x \"%s\" %u = %d, 0x%x\n", linfo->reg, linfo->name, offset, val, val); ccs_assign_limit(ptr, ccs_reg_width(linfo->reg), val); } u32 ccs_get_limit(struct ccs_sensor *sensor, unsigned int limit, unsigned int offset) { void *ptr; u32 val; int ret; ret = ccs_limit_ptr(sensor, limit, offset, &ptr); if (ret) return 0; switch (ccs_reg_width(ccs_limits[ccs_limit_offsets[limit].info].reg)) { case sizeof(u8): val = *(u8 *)ptr; break; case sizeof(u16): val = *(u16 *)ptr; break; case sizeof(u32): val = *(u32 *)ptr; break; default: WARN_ON(1); return 0; } return ccs_reg_conv(sensor, ccs_limits[limit].reg, val); } static int ccs_read_all_limits(struct ccs_sensor *sensor) { struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); void *ptr, *alloc, *end; unsigned int i, l; int ret; kfree(sensor->ccs_limits); sensor->ccs_limits = NULL; alloc = kzalloc(ccs_limit_offsets[CCS_L_LAST].lim, GFP_KERNEL); if (!alloc) return -ENOMEM; end = alloc + ccs_limit_offsets[CCS_L_LAST].lim; for (i = 0, l = 0, ptr = alloc; ccs_limits[i].size; i++) { u32 reg = ccs_limits[i].reg; unsigned int width = ccs_reg_width(reg); unsigned int j; if (l == CCS_L_LAST) { dev_err(&client->dev, "internal error --- end of limit array\n"); ret = -EINVAL; goto out_err; } for (j = 0; j < ccs_limits[i].size / width; j++, reg += width, ptr += width) { u32 val; ret = ccs_read_addr_noconv(sensor, reg, &val); if (ret) goto out_err; if (ptr + width > end) { dev_err(&client->dev, "internal error --- no room for regs\n"); ret = -EINVAL; goto out_err; } if (!val && j) break; ccs_assign_limit(ptr, width, val); dev_dbg(&client->dev, "0x%8.8x \"%s\" = %u, 0x%x\n", reg, ccs_limits[i].name, val, val); } if (ccs_limits[i].flags & CCS_L_FL_SAME_REG) continue; l++; ptr = alloc + ccs_limit_offsets[l].lim; } if (l != CCS_L_LAST) { dev_err(&client->dev, "internal error --- insufficient limits\n"); ret = -EINVAL; goto out_err; } sensor->ccs_limits = alloc; if (CCS_LIM(sensor, SCALER_N_MIN) < 16) ccs_replace_limit(sensor, CCS_L_SCALER_N_MIN, 0, 16); return 0; out_err: kfree(alloc); return ret; } static int ccs_read_frame_fmt(struct ccs_sensor *sensor) { struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); u8 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc; unsigned int i; int pixel_count = 0; int line_count = 0; fmt_model_type = CCS_LIM(sensor, FRAME_FORMAT_MODEL_TYPE); fmt_model_subtype = CCS_LIM(sensor, FRAME_FORMAT_MODEL_SUBTYPE); ncol_desc = (fmt_model_subtype & CCS_FRAME_FORMAT_MODEL_SUBTYPE_COLUMNS_MASK) >> CCS_FRAME_FORMAT_MODEL_SUBTYPE_COLUMNS_SHIFT; nrow_desc = fmt_model_subtype & CCS_FRAME_FORMAT_MODEL_SUBTYPE_ROWS_MASK; dev_dbg(&client->dev, "format_model_type %s\n", fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_2_BYTE ? "2 byte" : fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_4_BYTE ? "4 byte" : "is simply bad"); dev_dbg(&client->dev, "%u column and %u row descriptors\n", ncol_desc, nrow_desc); for (i = 0; i < ncol_desc + nrow_desc; i++) { u32 desc; u32 pixelcode; u32 pixels; char *which; char *what; if (fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_2_BYTE) { desc = CCS_LIM_AT(sensor, FRAME_FORMAT_DESCRIPTOR, i); pixelcode = (desc & CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_MASK) >> CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_SHIFT; pixels = desc & CCS_FRAME_FORMAT_DESCRIPTOR_PIXELS_MASK; } else if (fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_4_BYTE) { desc = CCS_LIM_AT(sensor, FRAME_FORMAT_DESCRIPTOR_4, i); pixelcode = (desc & CCS_FRAME_FORMAT_DESCRIPTOR_4_PCODE_MASK) >> CCS_FRAME_FORMAT_DESCRIPTOR_4_PCODE_SHIFT; pixels = desc & CCS_FRAME_FORMAT_DESCRIPTOR_4_PIXELS_MASK; } else { dev_dbg(&client->dev, "invalid frame format model type %d\n", fmt_model_type); return -EINVAL; } if (i < ncol_desc) which = "columns"; else which = "rows"; switch (pixelcode) { case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_EMBEDDED: what = "embedded"; break; case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_DUMMY_PIXEL: what = "dummy"; break; case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_BLACK_PIXEL: what = "black"; break; case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_DARK_PIXEL: what = "dark"; break; case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL: what = "visible"; break; default: what = "invalid"; break; } dev_dbg(&client->dev, "%s pixels: %d %s (pixelcode %u)\n", what, pixels, which, pixelcode); if (i < ncol_desc) { if (pixelcode == CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL) sensor->visible_pixel_start = pixel_count; pixel_count += pixels; continue; } /* Handle row descriptors */ switch (pixelcode) { case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_EMBEDDED: if (sensor->embedded_end) break; sensor->embedded_start = line_count; sensor->embedded_end = line_count + pixels; break; case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL: sensor->image_start = line_count; break; } line_count += pixels; } if (sensor->embedded_end > sensor->image_start) { dev_dbg(&client->dev, "adjusting image start line to %u (was %u)\n", sensor->embedded_end, sensor->image_start); sensor->image_start = sensor->embedded_end; } dev_dbg(&client->dev, "embedded data from lines %d to %d\n", sensor->embedded_start, sensor->embedded_end); dev_dbg(&client->dev, "image data starts at line %d\n", sensor->image_start); return 0; } static int ccs_pll_configure(struct ccs_sensor *sensor) { struct ccs_pll *pll = &sensor->pll; int rval; rval = ccs_write(sensor, VT_PIX_CLK_DIV, pll->vt_bk.pix_clk_div); if (rval < 0) return rval; rval = ccs_write(sensor, VT_SYS_CLK_DIV, pll->vt_bk.sys_clk_div); if (rval < 0) return rval; rval = ccs_write(sensor, PRE_PLL_CLK_DIV, pll->vt_fr.pre_pll_clk_div); if (rval < 0) return rval; rval = ccs_write(sensor, PLL_MULTIPLIER, pll->vt_fr.pll_multiplier); if (rval < 0) return rval; if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY) & CCS_PHY_CTRL_CAPABILITY_AUTO_PHY_CTL)) { /* Lane op clock ratio does not apply here. */ rval = ccs_write(sensor, REQUESTED_LINK_RATE, DIV_ROUND_UP(pll->op_bk.sys_clk_freq_hz, 1000000 / 256 / 256) * (pll->flags & CCS_PLL_FLAG_LANE_SPEED_MODEL ? sensor->pll.csi2.lanes : 1) << (pll->flags & CCS_PLL_FLAG_OP_SYS_DDR ? 1 : 0)); if (rval < 0) return rval; } if (sensor->pll.flags & CCS_PLL_FLAG_NO_OP_CLOCKS) return 0; rval = ccs_write(sensor, OP_PIX_CLK_DIV, pll->op_bk.pix_clk_div); if (rval < 0) return rval; rval = ccs_write(sensor, OP_SYS_CLK_DIV, pll->op_bk.sys_clk_div); if (rval < 0) return rval; if (!(pll->flags & CCS_PLL_FLAG_DUAL_PLL)) return 0; rval = ccs_write(sensor, PLL_MODE, CCS_PLL_MODE_DUAL); if (rval < 0) return rval; rval = ccs_write(sensor, OP_PRE_PLL_CLK_DIV, pll->op_fr.pre_pll_clk_div); if (rval < 0) return rval; return ccs_write(sensor, OP_PLL_MULTIPLIER, pll->op_fr.pll_multiplier); } static int ccs_pll_try(struct ccs_sensor *sensor, struct ccs_pll *pll) { struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); struct ccs_pll_limits lim = { .vt_fr = { .min_pre_pll_clk_div = CCS_LIM(sensor, MIN_PRE_PLL_CLK_DIV), .max_pre_pll_clk_div = CCS_LIM(sensor, MAX_PRE_PLL_CLK_DIV), .min_pll_ip_clk_freq_hz = CCS_LIM(sensor, MIN_PLL_IP_CLK_FREQ_MHZ), .max_pll_ip_clk_freq_hz = CCS_LIM(sensor, MAX_PLL_IP_CLK_FREQ_MHZ), .min_pll_multiplier = CCS_LIM(sensor, MIN_PLL_MULTIPLIER), .max_pll_multiplier = CCS_LIM(sensor, MAX_PLL_MULTIPLIER), .min_pll_op_clk_freq_hz = CCS_LIM(sensor, MIN_PLL_OP_CLK_FREQ_MHZ), .max_pll_op_clk_freq_hz = CCS_LIM(sensor, MAX_PLL_OP_CLK_FREQ_MHZ), }, .op_fr = { .min_pre_pll_clk_div = CCS_LIM(sensor, MIN_OP_PRE_PLL_CLK_DIV), .max_pre_pll_clk_div = CCS_LIM(sensor, MAX_OP_PRE_PLL_CLK_DIV), .min_pll_ip_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PLL_IP_CLK_FREQ_MHZ), .max_pll_ip_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PLL_IP_CLK_FREQ_MHZ), .min_pll_multiplier = CCS_LIM(sensor, MIN_OP_PLL_MULTIPLIER), .max_pll_multiplier = CCS_LIM(sensor, MAX_OP_PLL_MULTIPLIER), .min_pll_op_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PLL_OP_CLK_FREQ_MHZ), .max_pll_op_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PLL_OP_CLK_FREQ_MHZ), }, .op_bk = { .min_sys_clk_div = CCS_LIM(sensor, MIN_OP_SYS_CLK_DIV), .max_sys_clk_div = CCS_LIM(sensor, MAX_OP_SYS_CLK_DIV), .min_pix_clk_div = CCS_LIM(sensor, MIN_OP_PIX_CLK_DIV), .max_pix_clk_div = CCS_LIM(sensor, MAX_OP_PIX_CLK_DIV), .min_sys_clk_freq_hz = CCS_LIM(sensor, MIN_OP_SYS_CLK_FREQ_MHZ), .max_sys_clk_freq_hz = CCS_LIM(sensor, MAX_OP_SYS_CLK_FREQ_MHZ), .min_pix_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PIX_CLK_FREQ_MHZ), .max_pix_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PIX_CLK_FREQ_MHZ), }, .vt_bk = { .min_sys_clk_div = CCS_LIM(sensor, MIN_VT_SYS_CLK_DIV), .max_sys_clk_div = CCS_LIM(sensor, MAX_VT_SYS_CLK_DIV), .min_pix_clk_div = CCS_LIM(sensor, MIN_VT_PIX_CLK_DIV), .max_pix_clk_div = CCS_LIM(sensor, MAX_VT_PIX_CLK_DIV), .min_sys_clk_freq_hz = CCS_LIM(sensor, MIN_VT_SYS_CLK_FREQ_MHZ), .max_sys_clk_freq_hz = CCS_LIM(sensor, MAX_VT_SYS_CLK_FREQ_MHZ), .min_pix_clk_freq_hz = CCS_LIM(sensor, MIN_VT_PIX_CLK_FREQ_MHZ), .max_pix_clk_freq_hz = CCS_LIM(sensor, MAX_VT_PIX_CLK_FREQ_MHZ), }, .min_line_length_pck_bin = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK_BIN), .min_line_length_pck = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK), }; return ccs_pll_calculate(&client->dev, &lim, pll); } static int ccs_pll_update(struct ccs_sensor *sensor) { struct ccs_pll *pll = &sensor->pll; int rval; pll->binning_horizontal = sensor->binning_horizontal; pll->binning_vertical = sensor->binning_vertical; pll->link_freq = sensor->link_freq->qmenu_int[sensor->link_freq->val]; pll->scale_m = sensor->scale_m; pll->bits_per_pixel = sensor->csi_format->compressed; rval = ccs_pll_try(sensor, pll); if (rval < 0) return rval; __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_parray, pll->pixel_rate_pixel_array); __v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_csi, pll->pixel_rate_csi); return 0; } /* * * V4L2 Controls handling * */ static void __ccs_update_exposure_limits(struct ccs_sensor *sensor) { struct v4l2_ctrl *ctrl = sensor->exposure; int max; max = sensor->pixel_array->crop[CCS_PA_PAD_SRC].height + sensor->vblank->val - CCS_LIM(sensor, COARSE_INTEGRATION_TIME_MAX_MARGIN); __v4l2_ctrl_modify_range(ctrl, ctrl->minimum, max, ctrl->step, max); } /* * Order matters. * * 1. Bits-per-pixel, descending. * 2. Bits-per-pixel compressed, descending. * 3. Pixel order, same as in pixel_order_str. Formats for all four pixel * orders must be defined. */ static const struct ccs_csi_data_format ccs_csi_data_formats[] = { { MEDIA_BUS_FMT_SGRBG16_1X16, 16, 16, CCS_PIXEL_ORDER_GRBG, }, { MEDIA_BUS_FMT_SRGGB16_1X16, 16, 16, CCS_PIXEL_ORDER_RGGB, }, { MEDIA_BUS_FMT_SBGGR16_1X16, 16, 16, CCS_PIXEL_ORDER_BGGR, }, { MEDIA_BUS_FMT_SGBRG16_1X16, 16, 16, CCS_PIXEL_ORDER_GBRG, }, { MEDIA_BUS_FMT_SGRBG14_1X14, 14, 14, CCS_PIXEL_ORDER_GRBG, }, { MEDIA_BUS_FMT_SRGGB14_1X14, 14, 14, CCS_PIXEL_ORDER_RGGB, }, { MEDIA_BUS_FMT_SBGGR14_1X14, 14, 14, CCS_PIXEL_ORDER_BGGR, }, { MEDIA_BUS_FMT_SGBRG14_1X14, 14, 14, CCS_PIXEL_ORDER_GBRG, }, { MEDIA_BUS_FMT_SGRBG12_1X12, 12, 12, CCS_PIXEL_ORDER_GRBG, }, { MEDIA_BUS_FMT_SRGGB12_1X12, 12, 12, CCS_PIXEL_ORDER_RGGB, }, { MEDIA_BUS_FMT_SBGGR12_1X12, 12, 12, CCS_PIXEL_ORDER_BGGR, }, { MEDIA_BUS_FMT_SGBRG12_1X12, 12, 12, CCS_PIXEL_ORDER_GBRG, }, { MEDIA_BUS_FMT_SGRBG10_1X10, 10, 10, CCS_PIXEL_ORDER_GRBG, }, { MEDIA_BUS_FMT_SRGGB10_1X10, 10, 10, CCS_PIXEL_ORDER_RGGB, }, { MEDIA_BUS_FMT_SBGGR10_1X10, 10, 10, CCS_PIXEL_ORDER_BGGR, }, { MEDIA_BUS_FMT_SGBRG10_1X10, 10, 10, CCS_PIXEL_ORDER_GBRG, }, { MEDIA_BUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_GRBG, }, { MEDIA_BUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_RGGB, }, { MEDIA_BUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_BGGR, }, { MEDIA_BUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_GBRG, }, { MEDIA_BUS_FMT_SGRBG8_1X8, 8, 8, CCS_PIXEL_ORDER_GRBG, }, { MEDIA_BUS_FMT_SRGGB8_1X8, 8, 8, CCS_PIXEL_ORDER_RGGB, }, { MEDIA_BUS_FMT_SBGGR8_1X8, 8, 8, CCS_PIXEL_ORDER_BGGR, }, { MEDIA_BUS_FMT_SGBRG8_1X8, 8, 8, CCS_PIXEL_ORDER_GBRG, }, }; static const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" }; #define to_csi_format_idx(fmt) (((unsigned long)(fmt) \ - (unsigned long)ccs_csi_data_formats) \ / sizeof(*ccs_csi_data_formats)) static u32 ccs_pixel_order(struct ccs_sensor *sensor) { struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); int flip = 0; if (sensor->hflip) { if (sensor->hflip->val) flip |= CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR; if (sensor->vflip->val) flip |= CCS_IMAGE_ORIENTATION_VERTICAL_FLIP; } flip ^= sensor->hvflip_inv_mask; dev_dbg(&client->dev, "flip %d\n", flip); return sensor->default_pixel_order ^ flip; } static void ccs_update_mbus_formats(struct ccs_sensor *sensor) { struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); unsigned int csi_format_idx = to_csi_format_idx(sensor->csi_format) & ~3; unsigned int internal_csi_format_idx = to_csi_format_idx(sensor->internal_csi_format) & ~3; unsigned int pixel_order = ccs_pixel_order(sensor); if (WARN_ON_ONCE(max(internal_csi_format_idx, csi_format_idx) + pixel_order >= ARRAY_SIZE(ccs_csi_data_formats))) return; sensor->mbus_frame_fmts = sensor->default_mbus_frame_fmts << pixel_order; sensor->csi_format = &ccs_csi_data_formats[csi_format_idx + pixel_order]; sensor->internal_csi_format = &ccs_csi_data_formats[internal_csi_format_idx + pixel_order]; dev_dbg(&client->dev, "new pixel order %s\n", pixel_order_str[pixel_order]); } static const char * const ccs_test_patterns[] = { "Disabled", "Solid Colour", "Eight Vertical Colour Bars", "Colour Bars With Fade to Grey", "Pseudorandom Sequence (PN9)", }; static int ccs_set_ctrl(struct v4l2_ctrl *ctrl) { struct ccs_sensor *sensor = container_of(ctrl->handler, struct ccs_subdev, ctrl_handler) ->sensor; struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); int pm_status; u32 orient = 0; unsigned int i; int exposure; int rval; switch (ctrl->id) { case V4L2_CID_HFLIP: case V4L2_CID_VFLIP: if (sensor->streaming) return -EBUSY; if (sensor->hflip->val) orient |= CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR; if (sensor->vflip->val) orient |= CCS_IMAGE_ORIENTATION_VERTICAL_FLIP; orient ^= sensor->hvflip_inv_mask; ccs_update_mbus_formats(sensor); break; case V4L2_CID_VBLANK: exposure = sensor->exposure->val; __ccs_update_exposure_limits(sensor); if (exposure > sensor->exposure->maximum) { sensor->exposure->val = sensor->exposure->maximum; rval = ccs_set_ctrl(sensor->exposure); if (rval < 0) return rval; } break; case V4L2_CID_LINK_FREQ: if (sensor->streaming) return -EBUSY; rval = ccs_pll_update(sensor); if (rval) return rval; return 0; case V4L2_CID_TEST_PATTERN: for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) v4l2_ctrl_activate( sensor->test_data[i], ctrl->val == V4L2_SMIAPP_TEST_PATTERN_MODE_SOLID_COLOUR); break; } pm_status = pm_runtime_get_if_active(&client->dev, true); if (!pm_status) return 0; switch (ctrl->id) { case V4L2_CID_ANALOGUE_GAIN: rval = ccs_write(sensor, ANALOG_GAIN_CODE_GLOBAL, ctrl->val); break; case V4L2_CID_CCS_ANALOGUE_LINEAR_GAIN: rval = ccs_write(sensor, ANALOG_LINEAR_GAIN_GLOBAL, ctrl->val); break; case V4L2_CID_CCS_ANALOGUE_EXPONENTIAL_GAIN: rval = ccs_write(sensor, ANALOG_EXPONENTIAL_GAIN_GLOBAL, ctrl->val); break; case V4L2_CID_DIGITAL_GAIN: if (CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) == CCS_DIGITAL_GAIN_CAPABILITY_GLOBAL) { rval = ccs_write(sensor, DIGITAL_GAIN_GLOBAL, ctrl->val); break; } rval = ccs_write_addr(sensor, SMIAPP_REG_U16_DIGITAL_GAIN_GREENR, ctrl->val); if (rval) break; rval = ccs_write_addr(sensor, SMIAPP_REG_U16_DIGITAL_GAIN_RED, ctrl->val); if (rval) break; rval = ccs_write_addr(sensor, SMIAPP_REG_U16_DIGITAL_GAIN_BLUE, ctrl->val); if (rval) break; rval = ccs_write_addr(sensor, SMIAPP_REG_U16_DIGITAL_GAIN_GREENB, ctrl->val); break; case V4L2_CID_EXPOSURE: rval = ccs_write(sensor, COARSE_INTEGRATION_TIME, ctrl->val); break; case V4L2_CID_HFLIP: case V4L2_CID_VFLIP: rval = ccs_write(sensor, IMAGE_ORIENTATION, orient); break; case V4L2_CID_VBLANK: rval = ccs_write(sensor, FRAME_LENGTH_LINES, sensor->pixel_array->crop[ CCS_PA_PAD_SRC].height + ctrl->val); break; case V4L2_CID_HBLANK: rval = ccs_write(sensor, LINE_LENGTH_PCK, sensor->pixel_array->crop[CCS_PA_PAD_SRC].width + ctrl->val); break; case V4L2_CID_TEST_PATTERN: rval = ccs_write(sensor, TEST_PATTERN_MODE, ctrl->val); break; case V4L2_CID_TEST_PATTERN_RED: rval = ccs_write(sensor, TEST_DATA_RED, ctrl->val); break; case V4L2_CID_TEST_PATTERN_GREENR: rval = ccs_write(sensor, TEST_DATA_GREENR, ctrl->val); break; case V4L2_CID_TEST_PATTERN_BLUE: rval = ccs_write(sensor, TEST_DATA_BLUE, ctrl->val); break; case V4L2_CID_TEST_PATTERN_GREENB: rval = ccs_write(sensor, TEST_DATA_GREENB, ctrl->val); break; case V4L2_CID_CCS_SHADING_CORRECTION: rval = ccs_write(sensor, SHADING_CORRECTION_EN, ctrl->val ? CCS_SHADING_CORRECTION_EN_ENABLE : 0); if (!rval && sensor->luminance_level) v4l2_ctrl_activate(sensor->luminance_level, ctrl->val); break; case V4L2_CID_CCS_LUMINANCE_CORRECTION_LEVEL: rval = ccs_write(sensor, LUMINANCE_CORRECTION_LEVEL, ctrl->val); break; case V4L2_CID_PIXEL_RATE: /* For v4l2_ctrl_s_ctrl_int64() used internally. */ rval = 0; break; default: rval = -EINVAL; } if (pm_status > 0) { pm_runtime_mark_last_busy(&client->dev); pm_runtime_put_autosuspend(&client->dev); } return rval; } static const struct v4l2_ctrl_ops ccs_ctrl_ops = { .s_ctrl = ccs_set_ctrl, }; static int ccs_init_controls(struct ccs_sensor *sensor) { struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); int rval; rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 17); if (rval) return rval; sensor->pixel_array->ctrl_handler.lock = &sensor->mutex; switch (CCS_LIM(sensor, ANALOG_GAIN_CAPABILITY)) { case CCS_ANALOG_GAIN_CAPABILITY_GLOBAL: { struct { const char *name; u32 id; s32 value; } const gain_ctrls[] = { { "Analogue Gain m0", V4L2_CID_CCS_ANALOGUE_GAIN_M0, CCS_LIM(sensor, ANALOG_GAIN_M0), }, { "Analogue Gain c0", V4L2_CID_CCS_ANALOGUE_GAIN_C0, CCS_LIM(sensor, ANALOG_GAIN_C0), }, { "Analogue Gain m1", V4L2_CID_CCS_ANALOGUE_GAIN_M1, CCS_LIM(sensor, ANALOG_GAIN_M1), }, { "Analogue Gain c1", V4L2_CID_CCS_ANALOGUE_GAIN_C1, CCS_LIM(sensor, ANALOG_GAIN_C1), }, }; struct v4l2_ctrl_config ctrl_cfg = { .type = V4L2_CTRL_TYPE_INTEGER, .ops = &ccs_ctrl_ops, .flags = V4L2_CTRL_FLAG_READ_ONLY, .step = 1, }; unsigned int i; for (i = 0; i < ARRAY_SIZE(gain_ctrls); i++) { ctrl_cfg.name = gain_ctrls[i].name; ctrl_cfg.id = gain_ctrls[i].id; ctrl_cfg.min = ctrl_cfg.max = ctrl_cfg.def = gain_ctrls[i].value; v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler, &ctrl_cfg, NULL); } v4l2_ctrl_new_std(&sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops, V4L2_CID_ANALOGUE_GAIN, CCS_LIM(sensor, ANALOG_GAIN_CODE_MIN), CCS_LIM(sensor, ANALOG_GAIN_CODE_MAX), max(CCS_LIM(sensor, ANALOG_GAIN_CODE_STEP), 1U), CCS_LIM(sensor, ANALOG_GAIN_CODE_MIN)); } break; case CCS_ANALOG_GAIN_CAPABILITY_ALTERNATE_GLOBAL: { struct { const char *name; u32 id; u16 min, max, step; } const gain_ctrls[] = { { "Analogue Linear Gain", V4L2_CID_CCS_ANALOGUE_LINEAR_GAIN, CCS_LIM(sensor, ANALOG_LINEAR_GAIN_MIN), CCS_LIM(sensor, ANALOG_LINEAR_GAIN_MAX), max(CCS_LIM(sensor, ANALOG_LINEAR_GAIN_STEP_SIZE), 1U), }, { "Analogue Exponential Gain", V4L2_CID_CCS_ANALOGUE_EXPONENTIAL_GAIN, CCS_LIM(sensor, ANALOG_EXPONENTIAL_GAIN_MIN), CCS_LIM(sensor, ANALOG_EXPONENTIAL_GAIN_MAX), max(CCS_LIM(sensor, ANALOG_EXPONENTIAL_GAIN_STEP_SIZE), 1U), }, }; struct v4l2_ctrl_config ctrl_cfg = { .type = V4L2_CTRL_TYPE_INTEGER, .ops = &ccs_ctrl_ops, }; unsigned int i; for (i = 0; i < ARRAY_SIZE(gain_ctrls); i++) { ctrl_cfg.name = gain_ctrls[i].name; ctrl_cfg.min = ctrl_cfg.def = gain_ctrls[i].min; ctrl_cfg.max = gain_ctrls[i].max; ctrl_cfg.step = gain_ctrls[i].step; ctrl_cfg.id = gain_ctrls[i].id; v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler, &ctrl_cfg, NULL); } } } if (CCS_LIM(sensor, SHADING_CORRECTION_CAPABILITY) & (CCS_SHADING_CORRECTION_CAPABILITY_COLOR_SHADING | CCS_SHADING_CORRECTION_CAPABILITY_LUMINANCE_CORRECTION)) { const struct v4l2_ctrl_config ctrl_cfg = { .name = "Shading Correction", .type = V4L2_CTRL_TYPE_BOOLEAN, .id = V4L2_CID_CCS_SHADING_CORRECTION, .ops = &ccs_ctrl_ops, .max = 1, .step = 1, }; v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler, &ctrl_cfg, NULL); } if (CCS_LIM(sensor, SHADING_CORRECTION_CAPABILITY) & CCS_SHADING_CORRECTION_CAPABILITY_LUMINANCE_CORRECTION) { const struct v4l2_ctrl_config ctrl_cfg = { .name = "Luminance Correction Level", .type = V4L2_CTRL_TYPE_BOOLEAN, .id = V4L2_CID_CCS_LUMINANCE_CORRECTION_LEVEL, .ops = &ccs_ctrl_ops, .max = 255, .step = 1, .def = 128, }; sensor->luminance_level = v4l2_ctrl_new_custom(&sensor->pixel_array->ctrl_handler, &ctrl_cfg, NULL); } if (CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) == CCS_DIGITAL_GAIN_CAPABILITY_GLOBAL || CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) == SMIAPP_DIGITAL_GAIN_CAPABILITY_PER_CHANNEL) v4l2_ctrl_new_std(&sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops, V4L2_CID_DIGITAL_GAIN, CCS_LIM(sensor, DIGITAL_GAIN_MIN), CCS_LIM(sensor, DIGITAL_GAIN_MAX), max(CCS_LIM(sensor, DIGITAL_GAIN_STEP_SIZE), 1U), 0x100); /* Exposure limits will be updated soon, use just something here. */ sensor->exposure = v4l2_ctrl_new_std( &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops, V4L2_CID_EXPOSURE, 0, 0, 1, 0); sensor->hflip = v4l2_ctrl_new_std( &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops, V4L2_CID_HFLIP, 0, 1, 1, 0); sensor->vflip = v4l2_ctrl_new_std( &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops, V4L2_CID_VFLIP, 0, 1, 1, 0); sensor->vblank = v4l2_ctrl_new_std( &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops, V4L2_CID_VBLANK, 0, 1, 1, 0); if (sensor->vblank) sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE; sensor->hblank = v4l2_ctrl_new_std( &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops, V4L2_CID_HBLANK, 0, 1, 1, 0); if (sensor->hblank) sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE; sensor->pixel_rate_parray = v4l2_ctrl_new_std( &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops, V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1); v4l2_ctrl_new_std_menu_items(&sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops, V4L2_CID_TEST_PATTERN, ARRAY_SIZE(ccs_test_patterns) - 1, 0, 0, ccs_test_patterns); if (sensor->pixel_array->ctrl_handler.error) { dev_err(&client->dev, "pixel array controls initialization failed (%d)\n", sensor->pixel_array->ctrl_handler.error); return sensor->pixel_array->ctrl_handler.error; } sensor->pixel_array->sd.ctrl_handler = &sensor->pixel_array->ctrl_handler; v4l2_ctrl_cluster(2, &sensor->hflip); rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0); if (rval) return rval; sensor->src->ctrl_handler.lock = &sensor->mutex; sensor->pixel_rate_csi = v4l2_ctrl_new_std( &sensor->src->ctrl_handler, &ccs_ctrl_ops, V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1); if (sensor->src->ctrl_handler.error) { dev_err(&client->dev, "src controls initialization failed (%d)\n", sensor->src->ctrl_handler.error); return sensor->src->ctrl_handler.error; } sensor->src->sd.ctrl_handler = &sensor->src->ctrl_handler; return 0; } /* * For controls that require information on available media bus codes * and linke frequencies. */ static int ccs_init_late_controls(struct ccs_sensor *sensor) { unsigned long *valid_link_freqs = &sensor->valid_link_freqs[ sensor->csi_format->compressed - sensor->compressed_min_bpp]; unsigned int i; for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) { int max_value = (1 << sensor->csi_format->width) - 1; sensor->test_data[i] = v4l2_ctrl_new_std( &sensor->pixel_array->ctrl_handler, &ccs_ctrl_ops, V4L2_CID_TEST_PATTERN_RED + i, 0, max_value, 1, max_value); } sensor->link_freq = v4l2_ctrl_new_int_menu( &sensor->src->ctrl_handler, &ccs_ctrl_ops, V4L2_CID_LINK_FREQ, __fls(*valid_link_freqs), __ffs(*valid_link_freqs), sensor->hwcfg.op_sys_clock); return sensor->src->ctrl_handler.error; } static void ccs_free_controls(struct ccs_sensor *sensor) { unsigned int i; for (i = 0; i < sensor->ssds_used; i++) v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler); } static int ccs_get_mbus_formats(struct ccs_sensor *sensor) { struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); struct ccs_pll *pll = &sensor->pll; u8 compressed_max_bpp = 0; unsigned int type, n; unsigned int i, pixel_order; int rval; type = CCS_LIM(sensor, DATA_FORMAT_MODEL_TYPE); dev_dbg(&client->dev, "data_format_model_type %d\n", type); rval = ccs_read(sensor, PIXEL_ORDER, &pixel_order); if (rval) return rval; if (pixel_order >= ARRAY_SIZE(pixel_order_str)) { dev_dbg(&client->dev, "bad pixel order %d\n", pixel_order); return -EINVAL; } dev_dbg(&client->dev, "pixel order %d (%s)\n", pixel_order, pixel_order_str[pixel_order]); switch (type) { case CCS_DATA_FORMAT_MODEL_TYPE_NORMAL: n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N; break; case CCS_DATA_FORMAT_MODEL_TYPE_EXTENDED: n = CCS_LIM_DATA_FORMAT_DESCRIPTOR_MAX_N + 1; break; default: return -EINVAL; } sensor->default_pixel_order = pixel_order; sensor->mbus_frame_fmts = 0; for (i = 0; i < n; i++) { unsigned int fmt, j; fmt = CCS_LIM_AT(sensor, DATA_FORMAT_DESCRIPTOR, i); dev_dbg(&client->dev, "%u: bpp %u, compressed %u\n", i, fmt >> 8, (u8)fmt); for (j = 0; j < ARRAY_SIZE(ccs_csi_data_formats); j++) { const struct ccs_csi_data_format *f = &ccs_csi_data_formats[j]; if (f->pixel_order != CCS_PIXEL_ORDER_GRBG) continue; if (f->width != fmt >> CCS_DATA_FORMAT_DESCRIPTOR_UNCOMPRESSED_SHIFT || f->compressed != (fmt & CCS_DATA_FORMAT_DESCRIPTOR_COMPRESSED_MASK)) continue; dev_dbg(&client->dev, "jolly good! %d\n", j); sensor->default_mbus_frame_fmts |= 1 << j; } } /* Figure out which BPP values can be used with which formats. */ pll->binning_horizontal = 1; pll->binning_vertical = 1; pll->scale_m = sensor->scale_m; for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) { sensor->compressed_min_bpp = min(ccs_csi_data_formats[i].compressed, sensor->compressed_min_bpp); compressed_max_bpp = max(ccs_csi_data_formats[i].compressed, compressed_max_bpp); } sensor->valid_link_freqs = devm_kcalloc( &client->dev, compressed_max_bpp - sensor->compressed_min_bpp + 1, sizeof(*sensor->valid_link_freqs), GFP_KERNEL); if (!sensor->valid_link_freqs) return -ENOMEM; for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) { const struct ccs_csi_data_format *f = &ccs_csi_data_formats[i]; unsigned long *valid_link_freqs = &sensor->valid_link_freqs[ f->compressed - sensor->compressed_min_bpp]; unsigned int j; if (!(sensor->default_mbus_frame_fmts & 1 << i)) continue; pll->bits_per_pixel = f->compressed; for (j = 0; sensor->hwcfg.op_sys_clock[j]; j++) { pll->link_freq = sensor->hwcfg.op_sys_clock[j]; rval = ccs_pll_try(sensor, pll); dev_dbg(&client->dev, "link freq %u Hz, bpp %u %s\n", pll->link_freq, pll->bits_per_pixel, rval ? "not ok" : "ok"); if (rval) continue; set_bit(j, valid_link_freqs); } if (!*valid_link_freqs) { dev_info(&client->dev, "no valid link frequencies for %u bpp\n", f->compressed); sensor->default_mbus_frame_fmts &= ~BIT(i); continue; } if (!sensor->csi_format || f->width > sensor->csi_format->width || (f->width == sensor->csi_format->width && f->compressed > sensor->csi_format->compressed)) { sensor->csi_format = f; sensor->internal_csi_format = f; } } if (!sensor->csi_format) { dev_err(&client->dev, "no supported mbus code found\n"); return -EINVAL; } ccs_update_mbus_formats(sensor); return 0; } static void ccs_update_blanking(struct ccs_sensor *sensor) { struct v4l2_ctrl *vblank = sensor->vblank; struct v4l2_ctrl *hblank = sensor->hblank; u16 min_fll, max_fll, min_llp, max_llp, min_lbp; int min, max; if (sensor->binning_vertical > 1 || sensor->binning_horizontal > 1) { min_fll = CCS_LIM(sensor, MIN_FRAME_LENGTH_LINES_BIN); max_fll = CCS_LIM(sensor, MAX_FRAME_LENGTH_LINES_BIN); min_llp = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK_BIN); max_llp = CCS_LIM(sensor, MAX_LINE_LENGTH_PCK_BIN); min_lbp = CCS_LIM(sensor, MIN_LINE_BLANKING_PCK_BIN); } else { min_fll = CCS_LIM(sensor, MIN_FRAME_LENGTH_LINES); max_fll = CCS_LIM(sensor, MAX_FRAME_LENGTH_LINES); min_llp = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK); max_llp = CCS_LIM(sensor, MAX_LINE_LENGTH_PCK); min_lbp = CCS_LIM(sensor, MIN_LINE_BLANKING_PCK); } min = max_t(int, CCS_LIM(sensor, MIN_FRAME_BLANKING_LINES), min_fll - sensor->pixel_array->crop[CCS_PA_PAD_SRC].height); max = max_fll - sensor->pixel_array->crop[CCS_PA_PAD_SRC].height; __v4l2_ctrl_modify_range(vblank, min, max, vblank->step, min); min = max_t(int, min_llp - sensor->pixel_array->crop[CCS_PA_PAD_SRC].width, min_lbp); max = max_llp - sensor->pixel_array->crop[CCS_PA_PAD_SRC].width; __v4l2_ctrl_modify_range(hblank, min, max, hblank->step, min); __ccs_update_exposure_limits(sensor); } static int ccs_pll_blanking_update(struct ccs_sensor *sensor) { struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); int rval; rval = ccs_pll_update(sensor); if (rval < 0) return rval; /* Output from pixel array, including blanking */ ccs_update_blanking(sensor); dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val); dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val); dev_dbg(&client->dev, "real timeperframe\t100/%d\n", sensor->pll.pixel_rate_pixel_array / ((sensor->pixel_array->crop[CCS_PA_PAD_SRC].width + sensor->hblank->val) * (sensor->pixel_array->crop[CCS_PA_PAD_SRC].height + sensor->vblank->val) / 100)); return 0; } /* * * SMIA++ NVM handling * */ static int ccs_read_nvm_page(struct ccs_sensor *sensor, u32 p, u8 *nvm, u8 *status) { unsigned int i; int rval; u32 s; *status = 0; rval = ccs_write(sensor, DATA_TRANSFER_IF_1_PAGE_SELECT, p); if (rval) return rval; rval = ccs_write(sensor, DATA_TRANSFER_IF_1_CTRL, CCS_DATA_TRANSFER_IF_1_CTRL_ENABLE); if (rval) return rval; rval = ccs_read(sensor, DATA_TRANSFER_IF_1_STATUS, &s); if (rval) return rval; if (s & CCS_DATA_TRANSFER_IF_1_STATUS_IMPROPER_IF_USAGE) { *status = s; return -ENODATA; } if (CCS_LIM(sensor, DATA_TRANSFER_IF_CAPABILITY) & CCS_DATA_TRANSFER_IF_CAPABILITY_POLLING) { for (i = 1000; i > 0; i--) { if (s & CCS_DATA_TRANSFER_IF_1_STATUS_READ_IF_READY) break; rval = ccs_read(sensor, DATA_TRANSFER_IF_1_STATUS, &s); if (rval) return rval; } if (!i) return -ETIMEDOUT; } for (i = 0; i <= CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P; i++) { u32 v; rval = ccs_read(sensor, DATA_TRANSFER_IF_1_DATA(i), &v); if (rval) return rval; *nvm++ = v; } return 0; } static int ccs_read_nvm(struct ccs_sensor *sensor, unsigned char *nvm, size_t nvm_size) { u8 status = 0; u32 p; int rval = 0, rval2; for (p = 0; p < nvm_size / (CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1) && !rval; p++) { rval = ccs_read_nvm_page(sensor, p, nvm, &status); nvm += CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1; } if (rval == -ENODATA && status & CCS_DATA_TRANSFER_IF_1_STATUS_IMPROPER_IF_USAGE) rval = 0; rval2 = ccs_write(sensor, DATA_TRANSFER_IF_1_CTRL, 0); if (rval < 0) return rval; else return rval2 ?: p * (CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1); } /* * * SMIA++ CCI address control * */ static int ccs_change_cci_addr(struct ccs_sensor *sensor) { struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); int rval; u32 val; client->addr = sensor->hwcfg.i2c_addr_dfl; rval = ccs_write(sensor, CCI_ADDRESS_CTRL, sensor->hwcfg.i2c_addr_alt << 1); if (rval) return rval; client->addr = sensor->hwcfg.i2c_addr_alt; /* verify addr change went ok */ rval = ccs_read(sensor, CCI_ADDRESS_CTRL, &val); if (rval) return rval; if (val != sensor->hwcfg.i2c_addr_alt << 1) return -ENODEV; return 0; } /* * * SMIA++ Mode Control * */ static int ccs_setup_flash_strobe(struct ccs_sensor *sensor) { struct ccs_flash_strobe_parms *strobe_setup; unsigned int ext_freq = sensor->hwcfg.ext_clk; u32 tmp; u32 strobe_adjustment; u32 strobe_width_high_rs; int rval; strobe_setup = sensor->hwcfg.strobe_setup; /* * How to calculate registers related to strobe length. Please * do not change, or if you do at least know what you're * doing. :-) * * Sakari Ailus 2010-10-25 * * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl * / EXTCLK freq [Hz]) * flash_strobe_adjustment * * tFlash_strobe_width_ctrl E N, [1 - 0xffff] * flash_strobe_adjustment E N, [1 - 0xff] * * The formula above is written as below to keep it on one * line: * * l / 10^6 = w / e * a * * Let's mark w * a by x: * * x = w * a * * Thus, we get: * * x = l * e / 10^6 * * The strobe width must be at least as long as requested, * thus rounding upwards is needed. * * x = (l * e + 10^6 - 1) / 10^6 * ----------------------------- * * Maximum possible accuracy is wanted at all times. Thus keep * a as small as possible. * * Calculate a, assuming maximum w, with rounding upwards: * * a = (x + (2^16 - 1) - 1) / (2^16 - 1) * ------------------------------------- * * Thus, we also get w, with that a, with rounding upwards: * * w = (x + a - 1) / a * ------------------- * * To get limits: * * x E [1, (2^16 - 1) * (2^8 - 1)] * * Substituting maximum x to the original formula (with rounding), * the maximum l is thus * * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1 * * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e * -------------------------------------------------- * * flash_strobe_length must be clamped between 1 and * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq. * * Then, * * flash_strobe_adjustment = ((flash_strobe_length * * EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1) * * tFlash_strobe_width_ctrl = ((flash_strobe_length * * EXTCLK freq + 10^6 - 1) / 10^6 + * flash_strobe_adjustment - 1) / flash_strobe_adjustment */ tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) - 1000000 + 1, ext_freq); strobe_setup->strobe_width_high_us = clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp); tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq + 1000000 - 1), 1000000ULL); strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1); strobe_width_high_rs = (tmp + strobe_adjustment - 1) / strobe_adjustment; rval = ccs_write(sensor, FLASH_MODE_RS, strobe_setup->mode); if (rval < 0) goto out; rval = ccs_write(sensor, FLASH_STROBE_ADJUSTMENT, strobe_adjustment); if (rval < 0) goto out; rval = ccs_write(sensor, TFLASH_STROBE_WIDTH_HIGH_RS_CTRL, strobe_width_high_rs); if (rval < 0) goto out; rval = ccs_write(sensor, TFLASH_STROBE_DELAY_RS_CTRL, strobe_setup->strobe_delay); if (rval < 0) goto out; rval = ccs_write(sensor, FLASH_STROBE_START_POINT, strobe_setup->stobe_start_point); if (rval < 0) goto out; rval = ccs_write(sensor, FLASH_TRIGGER_RS, strobe_setup->trigger); out: sensor->hwcfg.strobe_setup->trigger = 0; return rval; } /* ----------------------------------------------------------------------------- * Power management */ static int ccs_write_msr_regs(struct ccs_sensor *sensor) { int rval; rval = ccs_write_data_regs(sensor, sensor->sdata.sensor_manufacturer_regs, sensor->sdata.num_sensor_manufacturer_regs); if (rval) return rval; return ccs_write_data_regs(sensor, sensor->mdata.module_manufacturer_regs, sensor->mdata.num_module_manufacturer_regs); } static int ccs_update_phy_ctrl(struct ccs_sensor *sensor) { struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); u8 val; if (!sensor->ccs_limits) return 0; if (CCS_LIM(sensor, PHY_CTRL_CAPABILITY) & CCS_PHY_CTRL_CAPABILITY_AUTO_PHY_CTL) { val = CCS_PHY_CTRL_AUTO; } else if (CCS_LIM(sensor, PHY_CTRL_CAPABILITY) & CCS_PHY_CTRL_CAPABILITY_UI_PHY_CTL) { val = CCS_PHY_CTRL_UI; } else { dev_err(&client->dev, "manual PHY control not supported\n"); return -EINVAL; } return ccs_write(sensor, PHY_CTRL, val); } static int ccs_power_on(struct device *dev) { struct v4l2_subdev *subdev = dev_get_drvdata(dev); struct ccs_subdev *ssd = to_ccs_subdev(subdev); /* * The sub-device related to the I2C device is always the * source one, i.e. ssds[0]. */ struct ccs_sensor *sensor = container_of(ssd, struct ccs_sensor, ssds[0]); const struct ccs_device *ccsdev = device_get_match_data(dev); int rval; rval = regulator_bulk_enable(ARRAY_SIZE(ccs_regulators), sensor->regulators); if (rval) { dev_err(dev, "failed to enable vana regulator\n"); return rval; } if (sensor->reset || sensor->xshutdown || sensor->ext_clk) { unsigned int sleep; rval = clk_prepare_enable(sensor->ext_clk); if (rval < 0) { dev_dbg(dev, "failed to enable xclk\n"); goto out_xclk_fail; } gpiod_set_value(sensor->reset, 0); gpiod_set_value(sensor->xshutdown, 1); if (ccsdev->flags & CCS_DEVICE_FLAG_IS_SMIA) sleep = SMIAPP_RESET_DELAY(sensor->hwcfg.ext_clk); else sleep = 5000; usleep_range(sleep, sleep); } /* * Failures to respond to the address change command have been noticed. * Those failures seem to be caused by the sensor requiring a longer * boot time than advertised. An additional 10ms delay seems to work * around the issue, but the SMIA++ I2C write retry hack makes the delay * unnecessary. The failures need to be investigated to find a proper * fix, and a delay will likely need to be added here if the I2C write * retry hack is reverted before the root cause of the boot time issue * is found. */ if (!sensor->reset && !sensor->xshutdown) { u8 retry = 100; u32 reset; rval = ccs_write(sensor, SOFTWARE_RESET, CCS_SOFTWARE_RESET_ON); if (rval < 0) { dev_err(dev, "software reset failed\n"); goto out_cci_addr_fail; } do { rval = ccs_read(sensor, SOFTWARE_RESET, &reset); reset = !rval && reset == CCS_SOFTWARE_RESET_OFF; if (reset) break; usleep_range(1000, 2000); } while (--retry); if (!reset) { dev_err(dev, "software reset failed\n"); rval = -EIO; goto out_cci_addr_fail; } } if (sensor->hwcfg.i2c_addr_alt) { rval = ccs_change_cci_addr(sensor); if (rval) { dev_err(dev, "cci address change error\n"); goto out_cci_addr_fail; } } rval = ccs_write(sensor, COMPRESSION_MODE, CCS_COMPRESSION_MODE_DPCM_PCM_SIMPLE); if (rval) { dev_err(dev, "compression mode set failed\n"); goto out_cci_addr_fail; } rval = ccs_write(sensor, EXTCLK_FREQUENCY_MHZ, sensor->hwcfg.ext_clk / (1000000 / (1 << 8))); if (rval) { dev_err(dev, "extclk frequency set failed\n"); goto out_cci_addr_fail; } rval = ccs_write(sensor, CSI_LANE_MODE, sensor->hwcfg.lanes - 1); if (rval) { dev_err(dev, "csi lane mode set failed\n"); goto out_cci_addr_fail; } rval = ccs_write(sensor, FAST_STANDBY_CTRL, CCS_FAST_STANDBY_CTRL_FRAME_TRUNCATION); if (rval) { dev_err(dev, "fast standby set failed\n"); goto out_cci_addr_fail; } rval = ccs_write(sensor, CSI_SIGNALING_MODE, sensor->hwcfg.csi_signalling_mode); if (rval) { dev_err(dev, "csi signalling mode set failed\n"); goto out_cci_addr_fail; } rval = ccs_update_phy_ctrl(sensor); if (rval < 0) goto out_cci_addr_fail; rval = ccs_write_msr_regs(sensor); if (rval) goto out_cci_addr_fail; rval = ccs_call_quirk(sensor, post_poweron); if (rval) { dev_err(dev, "post_poweron quirks failed\n"); goto out_cci_addr_fail; } return 0; out_cci_addr_fail: gpiod_set_value(sensor->reset, 1); gpiod_set_value(sensor->xshutdown, 0); clk_disable_unprepare(sensor->ext_clk); out_xclk_fail: regulator_bulk_disable(ARRAY_SIZE(ccs_regulators), sensor->regulators); return rval; } static int ccs_power_off(struct device *dev) { struct v4l2_subdev *subdev = dev_get_drvdata(dev); struct ccs_subdev *ssd = to_ccs_subdev(subdev); struct ccs_sensor *sensor = container_of(ssd, struct ccs_sensor, ssds[0]); /* * Currently power/clock to lens are enable/disabled separately * but they are essentially the same signals. So if the sensor is * powered off while the lens is powered on the sensor does not * really see a power off and next time the cci address change * will fail. So do a soft reset explicitly here. */ if (sensor->hwcfg.i2c_addr_alt) ccs_write(sensor, SOFTWARE_RESET, CCS_SOFTWARE_RESET_ON); gpiod_set_value(sensor->reset, 1); gpiod_set_value(sensor->xshutdown, 0); clk_disable_unprepare(sensor->ext_clk); usleep_range(5000, 5000); regulator_bulk_disable(ARRAY_SIZE(ccs_regulators), sensor->regulators); sensor->streaming = false; return 0; } /* ----------------------------------------------------------------------------- * Video stream management */ static int ccs_start_streaming(struct ccs_sensor *sensor) { struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); unsigned int binning_mode; int rval; mutex_lock(&sensor->mutex); rval = ccs_write(sensor, CSI_DATA_FORMAT, (sensor->csi_format->width << 8) | sensor->csi_format->compressed); if (rval) goto out; /* Binning configuration */ if (sensor->binning_horizontal == 1 && sensor->binning_vertical == 1) { binning_mode = 0; } else { u8 binning_type = (sensor->binning_horizontal << 4) | sensor->binning_vertical; rval = ccs_write(sensor, BINNING_TYPE, binning_type); if (rval < 0) goto out; binning_mode = 1; } rval = ccs_write(sensor, BINNING_MODE, binning_mode); if (rval < 0) goto out; /* Set up PLL */ rval = ccs_pll_configure(sensor); if (rval) goto out; /* Analog crop start coordinates */ rval = ccs_write(sensor, X_ADDR_START, sensor->pixel_array->crop[CCS_PA_PAD_SRC].left); if (rval < 0) goto out; rval = ccs_write(sensor, Y_ADDR_START, sensor->pixel_array->crop[CCS_PA_PAD_SRC].top); if (rval < 0) goto out; /* Analog crop end coordinates */ rval = ccs_write( sensor, X_ADDR_END, sensor->pixel_array->crop[CCS_PA_PAD_SRC].left + sensor->pixel_array->crop[CCS_PA_PAD_SRC].width - 1); if (rval < 0) goto out; rval = ccs_write( sensor, Y_ADDR_END, sensor->pixel_array->crop[CCS_PA_PAD_SRC].top + sensor->pixel_array->crop[CCS_PA_PAD_SRC].height - 1); if (rval < 0) goto out; /* * Output from pixel array, including blanking, is set using * controls below. No need to set here. */ /* Digital crop */ if (CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY) == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP) { rval = ccs_write( sensor, DIGITAL_CROP_X_OFFSET, sensor->scaler->crop[CCS_PAD_SINK].left); if (rval < 0) goto out; rval = ccs_write( sensor, DIGITAL_CROP_Y_OFFSET, sensor->scaler->crop[CCS_PAD_SINK].top); if (rval < 0) goto out; rval = ccs_write( sensor, DIGITAL_CROP_IMAGE_WIDTH, sensor->scaler->crop[CCS_PAD_SINK].width); if (rval < 0) goto out; rval = ccs_write( sensor, DIGITAL_CROP_IMAGE_HEIGHT, sensor->scaler->crop[CCS_PAD_SINK].height); if (rval < 0) goto out; } /* Scaling */ if (CCS_LIM(sensor, SCALING_CAPABILITY) != CCS_SCALING_CAPABILITY_NONE) { rval = ccs_write(sensor, SCALING_MODE, sensor->scaling_mode); if (rval < 0) goto out; rval = ccs_write(sensor, SCALE_M, sensor->scale_m); if (rval < 0) goto out; } /* Output size from sensor */ rval = ccs_write(sensor, X_OUTPUT_SIZE, sensor->src->crop[CCS_PAD_SRC].width); if (rval < 0) goto out; rval = ccs_write(sensor, Y_OUTPUT_SIZE, sensor->src->crop[CCS_PAD_SRC].height); if (rval < 0) goto out; if (CCS_LIM(sensor, FLASH_MODE_CAPABILITY) & (CCS_FLASH_MODE_CAPABILITY_SINGLE_STROBE | SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE) && sensor->hwcfg.strobe_setup != NULL && sensor->hwcfg.strobe_setup->trigger != 0) { rval = ccs_setup_flash_strobe(sensor); if (rval) goto out; } rval = ccs_call_quirk(sensor, pre_streamon); if (rval) { dev_err(&client->dev, "pre_streamon quirks failed\n"); goto out; } rval = ccs_write(sensor, MODE_SELECT, CCS_MODE_SELECT_STREAMING); out: mutex_unlock(&sensor->mutex); return rval; } static int ccs_stop_streaming(struct ccs_sensor *sensor) { struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); int rval; mutex_lock(&sensor->mutex); rval = ccs_write(sensor, MODE_SELECT, CCS_MODE_SELECT_SOFTWARE_STANDBY); if (rval) goto out; rval = ccs_call_quirk(sensor, post_streamoff); if (rval) dev_err(&client->dev, "post_streamoff quirks failed\n"); out: mutex_unlock(&sensor->mutex); return rval; } /* ----------------------------------------------------------------------------- * V4L2 subdev video operations */ static int ccs_pm_get_init(struct ccs_sensor *sensor) { struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); int rval; /* * It can't use pm_runtime_resume_and_get() here, as the driver * relies at the returned value to detect if the device was already * active or not. */ rval = pm_runtime_get_sync(&client->dev); if (rval < 0) goto error; /* Device was already active, so don't set controls */ if (rval == 1) return 0; /* Restore V4L2 controls to the previously suspended device */ rval = v4l2_ctrl_handler_setup(&sensor->pixel_array->ctrl_handler); if (rval) goto error; rval = v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler); if (rval) goto error; /* Keep PM runtime usage_count incremented on success */ return 0; error: pm_runtime_put(&client->dev); return rval; } static int ccs_set_stream(struct v4l2_subdev *subdev, int enable) { struct ccs_sensor *sensor = to_ccs_sensor(subdev); struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); int rval; if (sensor->streaming == enable) return 0; if (!enable) { ccs_stop_streaming(sensor); sensor->streaming = false; pm_runtime_mark_last_busy(&client->dev); pm_runtime_put_autosuspend(&client->dev); return 0; } rval = ccs_pm_get_init(sensor); if (rval) return rval; sensor->streaming = true; rval = ccs_start_streaming(sensor); if (rval < 0) { sensor->streaming = false; pm_runtime_mark_last_busy(&client->dev); pm_runtime_put_autosuspend(&client->dev); } return rval; } static int ccs_pre_streamon(struct v4l2_subdev *subdev, u32 flags) { struct ccs_sensor *sensor = to_ccs_sensor(subdev); struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); int rval; if (flags & V4L2_SUBDEV_PRE_STREAMON_FL_MANUAL_LP) { switch (sensor->hwcfg.csi_signalling_mode) { case CCS_CSI_SIGNALING_MODE_CSI_2_DPHY: if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY_2) & CCS_PHY_CTRL_CAPABILITY_2_MANUAL_LP_DPHY)) return -EACCES; break; case CCS_CSI_SIGNALING_MODE_CSI_2_CPHY: if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY_2) & CCS_PHY_CTRL_CAPABILITY_2_MANUAL_LP_CPHY)) return -EACCES; break; default: return -EACCES; } } rval = ccs_pm_get_init(sensor); if (rval) return rval; if (flags & V4L2_SUBDEV_PRE_STREAMON_FL_MANUAL_LP) { rval = ccs_write(sensor, MANUAL_LP_CTRL, CCS_MANUAL_LP_CTRL_ENABLE); if (rval) pm_runtime_put(&client->dev); } return rval; } static int ccs_post_streamoff(struct v4l2_subdev *subdev) { struct ccs_sensor *sensor = to_ccs_sensor(subdev); struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); return pm_runtime_put(&client->dev); } static int ccs_enum_mbus_code(struct v4l2_subdev *subdev, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_mbus_code_enum *code) { struct i2c_client *client = v4l2_get_subdevdata(subdev); struct ccs_sensor *sensor = to_ccs_sensor(subdev); unsigned int i; int idx = -1; int rval = -EINVAL; mutex_lock(&sensor->mutex); dev_err(&client->dev, "subdev %s, pad %d, index %d\n", subdev->name, code->pad, code->index); if (subdev != &sensor->src->sd || code->pad != CCS_PAD_SRC) { if (code->index) goto out; code->code = sensor->internal_csi_format->code; rval = 0; goto out; } for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) { if (sensor->mbus_frame_fmts & (1 << i)) idx++; if (idx == code->index) { code->code = ccs_csi_data_formats[i].code; dev_err(&client->dev, "found index %d, i %d, code %x\n", code->index, i, code->code); rval = 0; break; } } out: mutex_unlock(&sensor->mutex); return rval; } static u32 __ccs_get_mbus_code(struct v4l2_subdev *subdev, unsigned int pad) { struct ccs_sensor *sensor = to_ccs_sensor(subdev); if (subdev == &sensor->src->sd && pad == CCS_PAD_SRC) return sensor->csi_format->code; else return sensor->internal_csi_format->code; } static int __ccs_get_format(struct v4l2_subdev *subdev, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *fmt) { struct ccs_subdev *ssd = to_ccs_subdev(subdev); if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) { fmt->format = *v4l2_subdev_get_try_format(subdev, sd_state, fmt->pad); } else { struct v4l2_rect *r; if (fmt->pad == ssd->source_pad) r = &ssd->crop[ssd->source_pad]; else r = &ssd->sink_fmt; fmt->format.code = __ccs_get_mbus_code(subdev, fmt->pad); fmt->format.width = r->width; fmt->format.height = r->height; fmt->format.field = V4L2_FIELD_NONE; } return 0; } static int ccs_get_format(struct v4l2_subdev *subdev, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *fmt) { struct ccs_sensor *sensor = to_ccs_sensor(subdev); int rval; mutex_lock(&sensor->mutex); rval = __ccs_get_format(subdev, sd_state, fmt); mutex_unlock(&sensor->mutex); return rval; } static void ccs_get_crop_compose(struct v4l2_subdev *subdev, struct v4l2_subdev_state *sd_state, struct v4l2_rect **crops, struct v4l2_rect **comps, int which) { struct ccs_subdev *ssd = to_ccs_subdev(subdev); unsigned int i; if (which == V4L2_SUBDEV_FORMAT_ACTIVE) { if (crops) for (i = 0; i < subdev->entity.num_pads; i++) crops[i] = &ssd->crop[i]; if (comps) *comps = &ssd->compose; } else { if (crops) { for (i = 0; i < subdev->entity.num_pads; i++) crops[i] = v4l2_subdev_get_try_crop(subdev, sd_state, i); } if (comps) *comps = v4l2_subdev_get_try_compose(subdev, sd_state, CCS_PAD_SINK); } } /* Changes require propagation only on sink pad. */ static void ccs_propagate(struct v4l2_subdev *subdev, struct v4l2_subdev_state *sd_state, int which, int target) { struct ccs_sensor *sensor = to_ccs_sensor(subdev); struct ccs_subdev *ssd = to_ccs_subdev(subdev); struct v4l2_rect *comp, *crops[CCS_PADS]; ccs_get_crop_compose(subdev, sd_state, crops, &comp, which); switch (target) { case V4L2_SEL_TGT_CROP: comp->width = crops[CCS_PAD_SINK]->width; comp->height = crops[CCS_PAD_SINK]->height; if (which == V4L2_SUBDEV_FORMAT_ACTIVE) { if (ssd == sensor->scaler) { sensor->scale_m = CCS_LIM(sensor, SCALER_N_MIN); sensor->scaling_mode = CCS_SCALING_MODE_NO_SCALING; } else if (ssd == sensor->binner) { sensor->binning_horizontal = 1; sensor->binning_vertical = 1; } } fallthrough; case V4L2_SEL_TGT_COMPOSE: *crops[CCS_PAD_SRC] = *comp; break; default: WARN_ON_ONCE(1); } } static const struct ccs_csi_data_format *ccs_validate_csi_data_format(struct ccs_sensor *sensor, u32 code) { unsigned int i; for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) { if (sensor->mbus_frame_fmts & (1 << i) && ccs_csi_data_formats[i].code == code) return &ccs_csi_data_formats[i]; } return sensor->csi_format; } static int ccs_set_format_source(struct v4l2_subdev *subdev, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *fmt) { struct ccs_sensor *sensor = to_ccs_sensor(subdev); const struct ccs_csi_data_format *csi_format, *old_csi_format = sensor->csi_format; unsigned long *valid_link_freqs; u32 code = fmt->format.code; unsigned int i; int rval; rval = __ccs_get_format(subdev, sd_state, fmt); if (rval) return rval; /* * Media bus code is changeable on src subdev's source pad. On * other source pads we just get format here. */ if (subdev != &sensor->src->sd) return 0; csi_format = ccs_validate_csi_data_format(sensor, code); fmt->format.code = csi_format->code; if (fmt->which != V4L2_SUBDEV_FORMAT_ACTIVE) return 0; sensor->csi_format = csi_format; if (csi_format->width != old_csi_format->width) for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) __v4l2_ctrl_modify_range( sensor->test_data[i], 0, (1 << csi_format->width) - 1, 1, 0); if (csi_format->compressed == old_csi_format->compressed) return 0; valid_link_freqs = &sensor->valid_link_freqs[sensor->csi_format->compressed - sensor->compressed_min_bpp]; __v4l2_ctrl_modify_range( sensor->link_freq, 0, __fls(*valid_link_freqs), ~*valid_link_freqs, __ffs(*valid_link_freqs)); return ccs_pll_update(sensor); } static int ccs_set_format(struct v4l2_subdev *subdev, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *fmt) { struct ccs_sensor *sensor = to_ccs_sensor(subdev); struct ccs_subdev *ssd = to_ccs_subdev(subdev); struct v4l2_rect *crops[CCS_PADS]; mutex_lock(&sensor->mutex); if (fmt->pad == ssd->source_pad) { int rval; rval = ccs_set_format_source(subdev, sd_state, fmt); mutex_unlock(&sensor->mutex); return rval; } /* Sink pad. Width and height are changeable here. */ fmt->format.code = __ccs_get_mbus_code(subdev, fmt->pad); fmt->format.width &= ~1; fmt->format.height &= ~1; fmt->format.field = V4L2_FIELD_NONE; fmt->format.width = clamp(fmt->format.width, CCS_LIM(sensor, MIN_X_OUTPUT_SIZE), CCS_LIM(sensor, MAX_X_OUTPUT_SIZE)); fmt->format.height = clamp(fmt->format.height, CCS_LIM(sensor, MIN_Y_OUTPUT_SIZE), CCS_LIM(sensor, MAX_Y_OUTPUT_SIZE)); ccs_get_crop_compose(subdev, sd_state, crops, NULL, fmt->which); crops[ssd->sink_pad]->left = 0; crops[ssd->sink_pad]->top = 0; crops[ssd->sink_pad]->width = fmt->format.width; crops[ssd->sink_pad]->height = fmt->format.height; if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE) ssd->sink_fmt = *crops[ssd->sink_pad]; ccs_propagate(subdev, sd_state, fmt->which, V4L2_SEL_TGT_CROP); mutex_unlock(&sensor->mutex); return 0; } /* * Calculate goodness of scaled image size compared to expected image * size and flags provided. */ #define SCALING_GOODNESS 100000 #define SCALING_GOODNESS_EXTREME 100000000 static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w, int h, int ask_h, u32 flags) { struct ccs_sensor *sensor = to_ccs_sensor(subdev); struct i2c_client *client = v4l2_get_subdevdata(subdev); int val = 0; w &= ~1; ask_w &= ~1; h &= ~1; ask_h &= ~1; if (flags & V4L2_SEL_FLAG_GE) { if (w < ask_w) val -= SCALING_GOODNESS; if (h < ask_h) val -= SCALING_GOODNESS; } if (flags & V4L2_SEL_FLAG_LE) { if (w > ask_w) val -= SCALING_GOODNESS; if (h > ask_h) val -= SCALING_GOODNESS; } val -= abs(w - ask_w); val -= abs(h - ask_h); if (w < CCS_LIM(sensor, MIN_X_OUTPUT_SIZE)) val -= SCALING_GOODNESS_EXTREME; dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n", w, ask_w, h, ask_h, val); return val; } static void ccs_set_compose_binner(struct v4l2_subdev *subdev, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_selection *sel, struct v4l2_rect **crops, struct v4l2_rect *comp) { struct ccs_sensor *sensor = to_ccs_sensor(subdev); unsigned int i; unsigned int binh = 1, binv = 1; int best = scaling_goodness( subdev, crops[CCS_PAD_SINK]->width, sel->r.width, crops[CCS_PAD_SINK]->height, sel->r.height, sel->flags); for (i = 0; i < sensor->nbinning_subtypes; i++) { int this = scaling_goodness( subdev, crops[CCS_PAD_SINK]->width / sensor->binning_subtypes[i].horizontal, sel->r.width, crops[CCS_PAD_SINK]->height / sensor->binning_subtypes[i].vertical, sel->r.height, sel->flags); if (this > best) { binh = sensor->binning_subtypes[i].horizontal; binv = sensor->binning_subtypes[i].vertical; best = this; } } if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) { sensor->binning_vertical = binv; sensor->binning_horizontal = binh; } sel->r.width = (crops[CCS_PAD_SINK]->width / binh) & ~1; sel->r.height = (crops[CCS_PAD_SINK]->height / binv) & ~1; } /* * Calculate best scaling ratio and mode for given output resolution. * * Try all of these: horizontal ratio, vertical ratio and smallest * size possible (horizontally). * * Also try whether horizontal scaler or full scaler gives a better * result. */ static void ccs_set_compose_scaler(struct v4l2_subdev *subdev, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_selection *sel, struct v4l2_rect **crops, struct v4l2_rect *comp) { struct i2c_client *client = v4l2_get_subdevdata(subdev); struct ccs_sensor *sensor = to_ccs_sensor(subdev); u32 min, max, a, b, max_m; u32 scale_m = CCS_LIM(sensor, SCALER_N_MIN); int mode = CCS_SCALING_MODE_HORIZONTAL; u32 try[4]; u32 ntry = 0; unsigned int i; int best = INT_MIN; sel->r.width = min_t(unsigned int, sel->r.width, crops[CCS_PAD_SINK]->width); sel->r.height = min_t(unsigned int, sel->r.height, crops[CCS_PAD_SINK]->height); a = crops[CCS_PAD_SINK]->width * CCS_LIM(sensor, SCALER_N_MIN) / sel->r.width; b = crops[CCS_PAD_SINK]->height * CCS_LIM(sensor, SCALER_N_MIN) / sel->r.height; max_m = crops[CCS_PAD_SINK]->width * CCS_LIM(sensor, SCALER_N_MIN) / CCS_LIM(sensor, MIN_X_OUTPUT_SIZE); a = clamp(a, CCS_LIM(sensor, SCALER_M_MIN), CCS_LIM(sensor, SCALER_M_MAX)); b = clamp(b, CCS_LIM(sensor, SCALER_M_MIN), CCS_LIM(sensor, SCALER_M_MAX)); max_m = clamp(max_m, CCS_LIM(sensor, SCALER_M_MIN), CCS_LIM(sensor, SCALER_M_MAX)); dev_dbg(&client->dev, "scaling: a %d b %d max_m %d\n", a, b, max_m); min = min(max_m, min(a, b)); max = min(max_m, max(a, b)); try[ntry] = min; ntry++; if (min != max) { try[ntry] = max; ntry++; } if (max != max_m) { try[ntry] = min + 1; ntry++; if (min != max) { try[ntry] = max + 1; ntry++; } } for (i = 0; i < ntry; i++) { int this = scaling_goodness( subdev, crops[CCS_PAD_SINK]->width / try[i] * CCS_LIM(sensor, SCALER_N_MIN), sel->r.width, crops[CCS_PAD_SINK]->height, sel->r.height, sel->flags); dev_dbg(&client->dev, "trying factor %d (%d)\n", try[i], i); if (this > best) { scale_m = try[i]; mode = CCS_SCALING_MODE_HORIZONTAL; best = this; } if (CCS_LIM(sensor, SCALING_CAPABILITY) == CCS_SCALING_CAPABILITY_HORIZONTAL) continue; this = scaling_goodness( subdev, crops[CCS_PAD_SINK]->width / try[i] * CCS_LIM(sensor, SCALER_N_MIN), sel->r.width, crops[CCS_PAD_SINK]->height / try[i] * CCS_LIM(sensor, SCALER_N_MIN), sel->r.height, sel->flags); if (this > best) { scale_m = try[i]; mode = SMIAPP_SCALING_MODE_BOTH; best = this; } } sel->r.width = (crops[CCS_PAD_SINK]->width / scale_m * CCS_LIM(sensor, SCALER_N_MIN)) & ~1; if (mode == SMIAPP_SCALING_MODE_BOTH) sel->r.height = (crops[CCS_PAD_SINK]->height / scale_m * CCS_LIM(sensor, SCALER_N_MIN)) & ~1; else sel->r.height = crops[CCS_PAD_SINK]->height; if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) { sensor->scale_m = scale_m; sensor->scaling_mode = mode; } } /* We're only called on source pads. This function sets scaling. */ static int ccs_set_compose(struct v4l2_subdev *subdev, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_selection *sel) { struct ccs_sensor *sensor = to_ccs_sensor(subdev); struct ccs_subdev *ssd = to_ccs_subdev(subdev); struct v4l2_rect *comp, *crops[CCS_PADS]; ccs_get_crop_compose(subdev, sd_state, crops, &comp, sel->which); sel->r.top = 0; sel->r.left = 0; if (ssd == sensor->binner) ccs_set_compose_binner(subdev, sd_state, sel, crops, comp); else ccs_set_compose_scaler(subdev, sd_state, sel, crops, comp); *comp = sel->r; ccs_propagate(subdev, sd_state, sel->which, V4L2_SEL_TGT_COMPOSE); if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) return ccs_pll_blanking_update(sensor); return 0; } static int __ccs_sel_supported(struct v4l2_subdev *subdev, struct v4l2_subdev_selection *sel) { struct ccs_sensor *sensor = to_ccs_sensor(subdev); struct ccs_subdev *ssd = to_ccs_subdev(subdev); /* We only implement crop in three places. */ switch (sel->target) { case V4L2_SEL_TGT_CROP: case V4L2_SEL_TGT_CROP_BOUNDS: if (ssd == sensor->pixel_array && sel->pad == CCS_PA_PAD_SRC) return 0; if (ssd == sensor->src && sel->pad == CCS_PAD_SRC) return 0; if (ssd == sensor->scaler && sel->pad == CCS_PAD_SINK && CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY) == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP) return 0; return -EINVAL; case V4L2_SEL_TGT_NATIVE_SIZE: if (ssd == sensor->pixel_array && sel->pad == CCS_PA_PAD_SRC) return 0; return -EINVAL; case V4L2_SEL_TGT_COMPOSE: case V4L2_SEL_TGT_COMPOSE_BOUNDS: if (sel->pad == ssd->source_pad) return -EINVAL; if (ssd == sensor->binner) return 0; if (ssd == sensor->scaler && CCS_LIM(sensor, SCALING_CAPABILITY) != CCS_SCALING_CAPABILITY_NONE) return 0; fallthrough; default: return -EINVAL; } } static int ccs_set_crop(struct v4l2_subdev *subdev, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_selection *sel) { struct ccs_sensor *sensor = to_ccs_sensor(subdev); struct ccs_subdev *ssd = to_ccs_subdev(subdev); struct v4l2_rect *src_size, *crops[CCS_PADS]; struct v4l2_rect _r; ccs_get_crop_compose(subdev, sd_state, crops, NULL, sel->which); if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) { if (sel->pad == ssd->sink_pad) src_size = &ssd->sink_fmt; else src_size = &ssd->compose; } else { if (sel->pad == ssd->sink_pad) { _r.left = 0; _r.top = 0; _r.width = v4l2_subdev_get_try_format(subdev, sd_state, sel->pad) ->width; _r.height = v4l2_subdev_get_try_format(subdev, sd_state, sel->pad) ->height; src_size = &_r; } else { src_size = v4l2_subdev_get_try_compose( subdev, sd_state, ssd->sink_pad); } } if (ssd == sensor->src && sel->pad == CCS_PAD_SRC) { sel->r.left = 0; sel->r.top = 0; } sel->r.width = min(sel->r.width, src_size->width); sel->r.height = min(sel->r.height, src_size->height); sel->r.left = min_t(int, sel->r.left, src_size->width - sel->r.width); sel->r.top = min_t(int, sel->r.top, src_size->height - sel->r.height); *crops[sel->pad] = sel->r; if (ssd != sensor->pixel_array && sel->pad == CCS_PAD_SINK) ccs_propagate(subdev, sd_state, sel->which, V4L2_SEL_TGT_CROP); return 0; } static void ccs_get_native_size(struct ccs_subdev *ssd, struct v4l2_rect *r) { r->top = 0; r->left = 0; r->width = CCS_LIM(ssd->sensor, X_ADDR_MAX) + 1; r->height = CCS_LIM(ssd->sensor, Y_ADDR_MAX) + 1; } static int __ccs_get_selection(struct v4l2_subdev *subdev, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_selection *sel) { struct ccs_sensor *sensor = to_ccs_sensor(subdev); struct ccs_subdev *ssd = to_ccs_subdev(subdev); struct v4l2_rect *comp, *crops[CCS_PADS]; struct v4l2_rect sink_fmt; int ret; ret = __ccs_sel_supported(subdev, sel); if (ret) return ret; ccs_get_crop_compose(subdev, sd_state, crops, &comp, sel->which); if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) { sink_fmt = ssd->sink_fmt; } else { struct v4l2_mbus_framefmt *fmt = v4l2_subdev_get_try_format(subdev, sd_state, ssd->sink_pad); sink_fmt.left = 0; sink_fmt.top = 0; sink_fmt.width = fmt->width; sink_fmt.height = fmt->height; } switch (sel->target) { case V4L2_SEL_TGT_CROP_BOUNDS: case V4L2_SEL_TGT_NATIVE_SIZE: if (ssd == sensor->pixel_array) ccs_get_native_size(ssd, &sel->r); else if (sel->pad == ssd->sink_pad) sel->r = sink_fmt; else sel->r = *comp; break; case V4L2_SEL_TGT_CROP: case V4L2_SEL_TGT_COMPOSE_BOUNDS: sel->r = *crops[sel->pad]; break; case V4L2_SEL_TGT_COMPOSE: sel->r = *comp; break; } return 0; } static int ccs_get_selection(struct v4l2_subdev *subdev, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_selection *sel) { struct ccs_sensor *sensor = to_ccs_sensor(subdev); int rval; mutex_lock(&sensor->mutex); rval = __ccs_get_selection(subdev, sd_state, sel); mutex_unlock(&sensor->mutex); return rval; } static int ccs_set_selection(struct v4l2_subdev *subdev, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_selection *sel) { struct ccs_sensor *sensor = to_ccs_sensor(subdev); int ret; ret = __ccs_sel_supported(subdev, sel); if (ret) return ret; mutex_lock(&sensor->mutex); sel->r.left = max(0, sel->r.left & ~1); sel->r.top = max(0, sel->r.top & ~1); sel->r.width = CCS_ALIGN_DIM(sel->r.width, sel->flags); sel->r.height = CCS_ALIGN_DIM(sel->r.height, sel->flags); sel->r.width = max_t(unsigned int, CCS_LIM(sensor, MIN_X_OUTPUT_SIZE), sel->r.width); sel->r.height = max_t(unsigned int, CCS_LIM(sensor, MIN_Y_OUTPUT_SIZE), sel->r.height); switch (sel->target) { case V4L2_SEL_TGT_CROP: ret = ccs_set_crop(subdev, sd_state, sel); break; case V4L2_SEL_TGT_COMPOSE: ret = ccs_set_compose(subdev, sd_state, sel); break; default: ret = -EINVAL; } mutex_unlock(&sensor->mutex); return ret; } static int ccs_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames) { struct ccs_sensor *sensor = to_ccs_sensor(subdev); *frames = sensor->frame_skip; return 0; } static int ccs_get_skip_top_lines(struct v4l2_subdev *subdev, u32 *lines) { struct ccs_sensor *sensor = to_ccs_sensor(subdev); *lines = sensor->image_start; return 0; } /* ----------------------------------------------------------------------------- * sysfs attributes */ static ssize_t nvm_show(struct device *dev, struct device_attribute *attr, char *buf) { struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev)); struct i2c_client *client = v4l2_get_subdevdata(subdev); struct ccs_sensor *sensor = to_ccs_sensor(subdev); int rval; if (!sensor->dev_init_done) return -EBUSY; rval = ccs_pm_get_init(sensor); if (rval < 0) return -ENODEV; rval = ccs_read_nvm(sensor, buf, PAGE_SIZE); if (rval < 0) { pm_runtime_put(&client->dev); dev_err(&client->dev, "nvm read failed\n"); return -ENODEV; } pm_runtime_mark_last_busy(&client->dev); pm_runtime_put_autosuspend(&client->dev); /* * NVM is still way below a PAGE_SIZE, so we can safely * assume this for now. */ return rval; } static DEVICE_ATTR_RO(nvm); static ssize_t ident_show(struct device *dev, struct device_attribute *attr, char *buf) { struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev)); struct ccs_sensor *sensor = to_ccs_sensor(subdev); struct ccs_module_info *minfo = &sensor->minfo; if (minfo->mipi_manufacturer_id) return snprintf(buf, PAGE_SIZE, "%4.4x%4.4x%2.2x\n", minfo->mipi_manufacturer_id, minfo->model_id, minfo->revision_number) + 1; else return snprintf(buf, PAGE_SIZE, "%2.2x%4.4x%2.2x\n", minfo->smia_manufacturer_id, minfo->model_id, minfo->revision_number) + 1; } static DEVICE_ATTR_RO(ident); /* ----------------------------------------------------------------------------- * V4L2 subdev core operations */ static int ccs_identify_module(struct ccs_sensor *sensor) { struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); struct ccs_module_info *minfo = &sensor->minfo; unsigned int i; u32 rev; int rval = 0; /* Module info */ rval = ccs_read(sensor, MODULE_MANUFACTURER_ID, &minfo->mipi_manufacturer_id); if (!rval && !minfo->mipi_manufacturer_id) rval = ccs_read_addr_8only(sensor, SMIAPP_REG_U8_MANUFACTURER_ID, &minfo->smia_manufacturer_id); if (!rval) rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_MODEL_ID, &minfo->model_id); if (!rval) rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_REVISION_NUMBER_MAJOR, &rev); if (!rval) { rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_REVISION_NUMBER_MINOR, &minfo->revision_number); minfo->revision_number |= rev << 8; } if (!rval) rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_DATE_YEAR, &minfo->module_year); if (!rval) rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_DATE_MONTH, &minfo->module_month); if (!rval) rval = ccs_read_addr_8only(sensor, CCS_R_MODULE_DATE_DAY, &minfo->module_day); /* Sensor info */ if (!rval) rval = ccs_read(sensor, SENSOR_MANUFACTURER_ID, &minfo->sensor_mipi_manufacturer_id); if (!rval && !minfo->sensor_mipi_manufacturer_id) rval = ccs_read_addr_8only(sensor, CCS_R_SENSOR_MANUFACTURER_ID, &minfo->sensor_smia_manufacturer_id); if (!rval) rval = ccs_read_addr_8only(sensor, CCS_R_SENSOR_MODEL_ID, &minfo->sensor_model_id); if (!rval) rval = ccs_read_addr_8only(sensor, CCS_R_SENSOR_REVISION_NUMBER, &minfo->sensor_revision_number); if (!rval) rval = ccs_read_addr_8only(sensor, CCS_R_SENSOR_FIRMWARE_VERSION, &minfo->sensor_firmware_version); /* SMIA */ if (!rval) rval = ccs_read(sensor, MIPI_CCS_VERSION, &minfo->ccs_version); if (!rval && !minfo->ccs_version) rval = ccs_read_addr_8only(sensor, SMIAPP_REG_U8_SMIA_VERSION, &minfo->smia_version); if (!rval && !minfo->ccs_version) rval = ccs_read_addr_8only(sensor, SMIAPP_REG_U8_SMIAPP_VERSION, &minfo->smiapp_version); if (rval) { dev_err(&client->dev, "sensor detection failed\n"); return -ENODEV; } if (minfo->mipi_manufacturer_id) dev_dbg(&client->dev, "MIPI CCS module 0x%4.4x-0x%4.4x\n", minfo->mipi_manufacturer_id, minfo->model_id); else dev_dbg(&client->dev, "SMIA module 0x%2.2x-0x%4.4x\n", minfo->smia_manufacturer_id, minfo->model_id); dev_dbg(&client->dev, "module revision 0x%4.4x date %2.2d-%2.2d-%2.2d\n", minfo->revision_number, minfo->module_year, minfo->module_month, minfo->module_day); if (minfo->sensor_mipi_manufacturer_id) dev_dbg(&client->dev, "MIPI CCS sensor 0x%4.4x-0x%4.4x\n", minfo->sensor_mipi_manufacturer_id, minfo->sensor_model_id); else dev_dbg(&client->dev, "SMIA sensor 0x%2.2x-0x%4.4x\n", minfo->sensor_smia_manufacturer_id, minfo->sensor_model_id); dev_dbg(&client->dev, "sensor revision 0x%2.2x firmware version 0x%2.2x\n", minfo->sensor_revision_number, minfo->sensor_firmware_version); if (minfo->ccs_version) { dev_dbg(&client->dev, "MIPI CCS version %u.%u", (minfo->ccs_version & CCS_MIPI_CCS_VERSION_MAJOR_MASK) >> CCS_MIPI_CCS_VERSION_MAJOR_SHIFT, (minfo->ccs_version & CCS_MIPI_CCS_VERSION_MINOR_MASK)); minfo->name = CCS_NAME; } else { dev_dbg(&client->dev, "smia version %2.2d smiapp version %2.2d\n", minfo->smia_version, minfo->smiapp_version); minfo->name = SMIAPP_NAME; } /* * Some modules have bad data in the lvalues below. Hope the * rvalues have better stuff. The lvalues are module * parameters whereas the rvalues are sensor parameters. */ if (minfo->sensor_smia_manufacturer_id && !minfo->smia_manufacturer_id && !minfo->model_id) { minfo->smia_manufacturer_id = minfo->sensor_smia_manufacturer_id; minfo->model_id = minfo->sensor_model_id; minfo->revision_number = minfo->sensor_revision_number; } for (i = 0; i < ARRAY_SIZE(ccs_module_idents); i++) { if (ccs_module_idents[i].mipi_manufacturer_id && ccs_module_idents[i].mipi_manufacturer_id != minfo->mipi_manufacturer_id) continue; if (ccs_module_idents[i].smia_manufacturer_id && ccs_module_idents[i].smia_manufacturer_id != minfo->smia_manufacturer_id) continue; if (ccs_module_idents[i].model_id != minfo->model_id) continue; if (ccs_module_idents[i].flags & CCS_MODULE_IDENT_FLAG_REV_LE) { if (ccs_module_idents[i].revision_number_major < (minfo->revision_number >> 8)) continue; } else { if (ccs_module_idents[i].revision_number_major != (minfo->revision_number >> 8)) continue; } minfo->name = ccs_module_idents[i].name; minfo->quirk = ccs_module_idents[i].quirk; break; } if (i >= ARRAY_SIZE(ccs_module_idents)) dev_warn(&client->dev, "no quirks for this module; let's hope it's fully compliant\n"); dev_dbg(&client->dev, "the sensor is called %s\n", minfo->name); return 0; } static const struct v4l2_subdev_ops ccs_ops; static const struct v4l2_subdev_internal_ops ccs_internal_ops; static const struct media_entity_operations ccs_entity_ops; static int ccs_register_subdev(struct ccs_sensor *sensor, struct ccs_subdev *ssd, struct ccs_subdev *sink_ssd, u16 source_pad, u16 sink_pad, u32 link_flags) { struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); int rval; if (!sink_ssd) return 0; rval = media_entity_pads_init(&ssd->sd.entity, ssd->npads, ssd->pads); if (rval) { dev_err(&client->dev, "media_entity_pads_init failed\n"); return rval; } rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev, &ssd->sd); if (rval) { dev_err(&client->dev, "v4l2_device_register_subdev failed\n"); return rval; } rval = media_create_pad_link(&ssd->sd.entity, source_pad, &sink_ssd->sd.entity, sink_pad, link_flags); if (rval) { dev_err(&client->dev, "media_create_pad_link failed\n"); v4l2_device_unregister_subdev(&ssd->sd); return rval; } return 0; } static void ccs_unregistered(struct v4l2_subdev *subdev) { struct ccs_sensor *sensor = to_ccs_sensor(subdev); unsigned int i; for (i = 1; i < sensor->ssds_used; i++) v4l2_device_unregister_subdev(&sensor->ssds[i].sd); } static int ccs_registered(struct v4l2_subdev *subdev) { struct ccs_sensor *sensor = to_ccs_sensor(subdev); int rval; if (sensor->scaler) { rval = ccs_register_subdev(sensor, sensor->binner, sensor->scaler, CCS_PAD_SRC, CCS_PAD_SINK, MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE); if (rval < 0) return rval; } rval = ccs_register_subdev(sensor, sensor->pixel_array, sensor->binner, CCS_PA_PAD_SRC, CCS_PAD_SINK, MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE); if (rval) goto out_err; return 0; out_err: ccs_unregistered(subdev); return rval; } static void ccs_cleanup(struct ccs_sensor *sensor) { struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); device_remove_file(&client->dev, &dev_attr_nvm); device_remove_file(&client->dev, &dev_attr_ident); ccs_free_controls(sensor); } static void ccs_create_subdev(struct ccs_sensor *sensor, struct ccs_subdev *ssd, const char *name, unsigned short num_pads, u32 function) { struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); if (!ssd) return; if (ssd != sensor->src) v4l2_subdev_init(&ssd->sd, &ccs_ops); ssd->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE; ssd->sd.entity.function = function; ssd->sensor = sensor; ssd->npads = num_pads; ssd->source_pad = num_pads - 1; v4l2_i2c_subdev_set_name(&ssd->sd, client, sensor->minfo.name, name); ccs_get_native_size(ssd, &ssd->sink_fmt); ssd->compose.width = ssd->sink_fmt.width; ssd->compose.height = ssd->sink_fmt.height; ssd->crop[ssd->source_pad] = ssd->compose; ssd->pads[ssd->source_pad].flags = MEDIA_PAD_FL_SOURCE; if (ssd != sensor->pixel_array) { ssd->crop[ssd->sink_pad] = ssd->compose; ssd->pads[ssd->sink_pad].flags = MEDIA_PAD_FL_SINK; } ssd->sd.entity.ops = &ccs_entity_ops; if (ssd == sensor->src) return; ssd->sd.internal_ops = &ccs_internal_ops; ssd->sd.owner = THIS_MODULE; ssd->sd.dev = &client->dev; v4l2_set_subdevdata(&ssd->sd, client); } static int ccs_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh) { struct ccs_subdev *ssd = to_ccs_subdev(sd); struct ccs_sensor *sensor = ssd->sensor; unsigned int i; mutex_lock(&sensor->mutex); for (i = 0; i < ssd->npads; i++) { struct v4l2_mbus_framefmt *try_fmt = v4l2_subdev_get_try_format(sd, fh->state, i); struct v4l2_rect *try_crop = v4l2_subdev_get_try_crop(sd, fh->state, i); struct v4l2_rect *try_comp; ccs_get_native_size(ssd, try_crop); try_fmt->width = try_crop->width; try_fmt->height = try_crop->height; try_fmt->code = sensor->internal_csi_format->code; try_fmt->field = V4L2_FIELD_NONE; if (ssd != sensor->pixel_array) continue; try_comp = v4l2_subdev_get_try_compose(sd, fh->state, i); *try_comp = *try_crop; } mutex_unlock(&sensor->mutex); return 0; } static const struct v4l2_subdev_video_ops ccs_video_ops = { .s_stream = ccs_set_stream, .pre_streamon = ccs_pre_streamon, .post_streamoff = ccs_post_streamoff, }; static const struct v4l2_subdev_pad_ops ccs_pad_ops = { .enum_mbus_code = ccs_enum_mbus_code, .get_fmt = ccs_get_format, .set_fmt = ccs_set_format, .get_selection = ccs_get_selection, .set_selection = ccs_set_selection, }; static const struct v4l2_subdev_sensor_ops ccs_sensor_ops = { .g_skip_frames = ccs_get_skip_frames, .g_skip_top_lines = ccs_get_skip_top_lines, }; static const struct v4l2_subdev_ops ccs_ops = { .video = &ccs_video_ops, .pad = &ccs_pad_ops, .sensor = &ccs_sensor_ops, }; static const struct media_entity_operations ccs_entity_ops = { .link_validate = v4l2_subdev_link_validate, }; static const struct v4l2_subdev_internal_ops ccs_internal_src_ops = { .registered = ccs_registered, .unregistered = ccs_unregistered, .open = ccs_open, }; static const struct v4l2_subdev_internal_ops ccs_internal_ops = { .open = ccs_open, }; /* ----------------------------------------------------------------------------- * I2C Driver */ static int __maybe_unused ccs_suspend(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct v4l2_subdev *subdev = i2c_get_clientdata(client); struct ccs_sensor *sensor = to_ccs_sensor(subdev); bool streaming = sensor->streaming; int rval; rval = pm_runtime_resume_and_get(dev); if (rval < 0) return rval; if (sensor->streaming) ccs_stop_streaming(sensor); /* save state for resume */ sensor->streaming = streaming; return 0; } static int __maybe_unused ccs_resume(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct v4l2_subdev *subdev = i2c_get_clientdata(client); struct ccs_sensor *sensor = to_ccs_sensor(subdev); int rval = 0; pm_runtime_put(dev); if (sensor->streaming) rval = ccs_start_streaming(sensor); return rval; } static int ccs_get_hwconfig(struct ccs_sensor *sensor, struct device *dev) { struct ccs_hwconfig *hwcfg = &sensor->hwcfg; struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = V4L2_MBUS_UNKNOWN }; struct fwnode_handle *ep; struct fwnode_handle *fwnode = dev_fwnode(dev); u32 rotation; int i; int rval; ep = fwnode_graph_get_endpoint_by_id(fwnode, 0, 0, FWNODE_GRAPH_ENDPOINT_NEXT); if (!ep) return -ENODEV; /* * Note that we do need to rely on detecting the bus type between CSI-2 * D-PHY and CCP2 as the old bindings did not require it. */ rval = v4l2_fwnode_endpoint_alloc_parse(ep, &bus_cfg); if (rval) goto out_err; switch (bus_cfg.bus_type) { case V4L2_MBUS_CSI2_DPHY: hwcfg->csi_signalling_mode = CCS_CSI_SIGNALING_MODE_CSI_2_DPHY; hwcfg->lanes = bus_cfg.bus.mipi_csi2.num_data_lanes; break; case V4L2_MBUS_CSI2_CPHY: hwcfg->csi_signalling_mode = CCS_CSI_SIGNALING_MODE_CSI_2_CPHY; hwcfg->lanes = bus_cfg.bus.mipi_csi2.num_data_lanes; break; case V4L2_MBUS_CSI1: case V4L2_MBUS_CCP2: hwcfg->csi_signalling_mode = (bus_cfg.bus.mipi_csi1.strobe) ? SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_STROBE : SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_CLOCK; hwcfg->lanes = 1; break; default: dev_err(dev, "unsupported bus %u\n", bus_cfg.bus_type); rval = -EINVAL; goto out_err; } dev_dbg(dev, "lanes %u\n", hwcfg->lanes); rval = fwnode_property_read_u32(fwnode, "rotation", &rotation); if (!rval) { switch (rotation) { case 180: hwcfg->module_board_orient = CCS_MODULE_BOARD_ORIENT_180; fallthrough; case 0: break; default: dev_err(dev, "invalid rotation %u\n", rotation); rval = -EINVAL; goto out_err; } } rval = fwnode_property_read_u32(dev_fwnode(dev), "clock-frequency", &hwcfg->ext_clk); if (rval) dev_info(dev, "can't get clock-frequency\n"); dev_dbg(dev, "clk %d, mode %d\n", hwcfg->ext_clk, hwcfg->csi_signalling_mode); if (!bus_cfg.nr_of_link_frequencies) { dev_warn(dev, "no link frequencies defined\n"); rval = -EINVAL; goto out_err; } hwcfg->op_sys_clock = devm_kcalloc( dev, bus_cfg.nr_of_link_frequencies + 1 /* guardian */, sizeof(*hwcfg->op_sys_clock), GFP_KERNEL); if (!hwcfg->op_sys_clock) { rval = -ENOMEM; goto out_err; } for (i = 0; i < bus_cfg.nr_of_link_frequencies; i++) { hwcfg->op_sys_clock[i] = bus_cfg.link_frequencies[i]; dev_dbg(dev, "freq %d: %lld\n", i, hwcfg->op_sys_clock[i]); } v4l2_fwnode_endpoint_free(&bus_cfg); fwnode_handle_put(ep); return 0; out_err: v4l2_fwnode_endpoint_free(&bus_cfg); fwnode_handle_put(ep); return rval; } static int ccs_probe(struct i2c_client *client) { struct ccs_sensor *sensor; const struct firmware *fw; char filename[40]; unsigned int i; int rval; sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL); if (sensor == NULL) return -ENOMEM; rval = ccs_get_hwconfig(sensor, &client->dev); if (rval) return rval; sensor->src = &sensor->ssds[sensor->ssds_used]; v4l2_i2c_subdev_init(&sensor->src->sd, client, &ccs_ops); sensor->src->sd.internal_ops = &ccs_internal_src_ops; sensor->regulators = devm_kcalloc(&client->dev, ARRAY_SIZE(ccs_regulators), sizeof(*sensor->regulators), GFP_KERNEL); if (!sensor->regulators) return -ENOMEM; for (i = 0; i < ARRAY_SIZE(ccs_regulators); i++) sensor->regulators[i].supply = ccs_regulators[i]; rval = devm_regulator_bulk_get(&client->dev, ARRAY_SIZE(ccs_regulators), sensor->regulators); if (rval) { dev_err(&client->dev, "could not get regulators\n"); return rval; } sensor->ext_clk = devm_clk_get(&client->dev, NULL); if (PTR_ERR(sensor->ext_clk) == -ENOENT) { dev_info(&client->dev, "no clock defined, continuing...\n"); sensor->ext_clk = NULL; } else if (IS_ERR(sensor->ext_clk)) { dev_err(&client->dev, "could not get clock (%ld)\n", PTR_ERR(sensor->ext_clk)); return -EPROBE_DEFER; } if (sensor->ext_clk) { if (sensor->hwcfg.ext_clk) { unsigned long rate; rval = clk_set_rate(sensor->ext_clk, sensor->hwcfg.ext_clk); if (rval < 0) { dev_err(&client->dev, "unable to set clock freq to %u\n", sensor->hwcfg.ext_clk); return rval; } rate = clk_get_rate(sensor->ext_clk); if (rate != sensor->hwcfg.ext_clk) { dev_err(&client->dev, "can't set clock freq, asked for %u but got %lu\n", sensor->hwcfg.ext_clk, rate); return -EINVAL; } } else { sensor->hwcfg.ext_clk = clk_get_rate(sensor->ext_clk); dev_dbg(&client->dev, "obtained clock freq %u\n", sensor->hwcfg.ext_clk); } } else if (sensor->hwcfg.ext_clk) { dev_dbg(&client->dev, "assuming clock freq %u\n", sensor->hwcfg.ext_clk); } else { dev_err(&client->dev, "unable to obtain clock freq\n"); return -EINVAL; } if (!sensor->hwcfg.ext_clk) { dev_err(&client->dev, "cannot work with xclk frequency 0\n"); return -EINVAL; } sensor->reset = devm_gpiod_get_optional(&client->dev, "reset", GPIOD_OUT_HIGH); if (IS_ERR(sensor->reset)) return PTR_ERR(sensor->reset); /* Support old users that may have used "xshutdown" property. */ if (!sensor->reset) sensor->xshutdown = devm_gpiod_get_optional(&client->dev, "xshutdown", GPIOD_OUT_LOW); if (IS_ERR(sensor->xshutdown)) return PTR_ERR(sensor->xshutdown); rval = ccs_power_on(&client->dev); if (rval < 0) return rval; mutex_init(&sensor->mutex); rval = ccs_identify_module(sensor); if (rval) { rval = -ENODEV; goto out_power_off; } rval = snprintf(filename, sizeof(filename), "ccs/ccs-sensor-%4.4x-%4.4x-%4.4x.fw", sensor->minfo.sensor_mipi_manufacturer_id, sensor->minfo.sensor_model_id, sensor->minfo.sensor_revision_number); if (rval >= sizeof(filename)) { rval = -ENOMEM; goto out_power_off; } rval = request_firmware(&fw, filename, &client->dev); if (!rval) { ccs_data_parse(&sensor->sdata, fw->data, fw->size, &client->dev, true); release_firmware(fw); } rval = snprintf(filename, sizeof(filename), "ccs/ccs-module-%4.4x-%4.4x-%4.4x.fw", sensor->minfo.mipi_manufacturer_id, sensor->minfo.model_id, sensor->minfo.revision_number); if (rval >= sizeof(filename)) { rval = -ENOMEM; goto out_release_sdata; } rval = request_firmware(&fw, filename, &client->dev); if (!rval) { ccs_data_parse(&sensor->mdata, fw->data, fw->size, &client->dev, true); release_firmware(fw); } rval = ccs_read_all_limits(sensor); if (rval) goto out_release_mdata; rval = ccs_read_frame_fmt(sensor); if (rval) { rval = -ENODEV; goto out_free_ccs_limits; } rval = ccs_update_phy_ctrl(sensor); if (rval < 0) goto out_free_ccs_limits; /* * Handle Sensor Module orientation on the board. * * The application of H-FLIP and V-FLIP on the sensor is modified by * the sensor orientation on the board. * * For CCS_BOARD_SENSOR_ORIENT_180 the default behaviour is to set * both H-FLIP and V-FLIP for normal operation which also implies * that a set/unset operation for user space HFLIP and VFLIP v4l2 * controls will need to be internally inverted. * * Rotation also changes the bayer pattern. */ if (sensor->hwcfg.module_board_orient == CCS_MODULE_BOARD_ORIENT_180) sensor->hvflip_inv_mask = CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR | CCS_IMAGE_ORIENTATION_VERTICAL_FLIP; rval = ccs_call_quirk(sensor, limits); if (rval) { dev_err(&client->dev, "limits quirks failed\n"); goto out_free_ccs_limits; } if (CCS_LIM(sensor, BINNING_CAPABILITY)) { sensor->nbinning_subtypes = min_t(u8, CCS_LIM(sensor, BINNING_SUB_TYPES), CCS_LIM_BINNING_SUB_TYPE_MAX_N); for (i = 0; i < sensor->nbinning_subtypes; i++) { sensor->binning_subtypes[i].horizontal = CCS_LIM_AT(sensor, BINNING_SUB_TYPE, i) >> CCS_BINNING_SUB_TYPE_COLUMN_SHIFT; sensor->binning_subtypes[i].vertical = CCS_LIM_AT(sensor, BINNING_SUB_TYPE, i) & CCS_BINNING_SUB_TYPE_ROW_MASK; dev_dbg(&client->dev, "binning %xx%x\n", sensor->binning_subtypes[i].horizontal, sensor->binning_subtypes[i].vertical); } } sensor->binning_horizontal = 1; sensor->binning_vertical = 1; if (device_create_file(&client->dev, &dev_attr_ident) != 0) { dev_err(&client->dev, "sysfs ident entry creation failed\n"); rval = -ENOENT; goto out_free_ccs_limits; } if (sensor->minfo.smiapp_version && CCS_LIM(sensor, DATA_TRANSFER_IF_CAPABILITY) & CCS_DATA_TRANSFER_IF_CAPABILITY_SUPPORTED) { if (device_create_file(&client->dev, &dev_attr_nvm) != 0) { dev_err(&client->dev, "sysfs nvm entry failed\n"); rval = -EBUSY; goto out_cleanup; } } if (!CCS_LIM(sensor, MIN_OP_SYS_CLK_DIV) || !CCS_LIM(sensor, MAX_OP_SYS_CLK_DIV) || !CCS_LIM(sensor, MIN_OP_PIX_CLK_DIV) || !CCS_LIM(sensor, MAX_OP_PIX_CLK_DIV)) { /* No OP clock branch */ sensor->pll.flags |= CCS_PLL_FLAG_NO_OP_CLOCKS; } else if (CCS_LIM(sensor, SCALING_CAPABILITY) != CCS_SCALING_CAPABILITY_NONE || CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY) == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP) { /* We have a scaler or digital crop. */ sensor->scaler = &sensor->ssds[sensor->ssds_used]; sensor->ssds_used++; } sensor->binner = &sensor->ssds[sensor->ssds_used]; sensor->ssds_used++; sensor->pixel_array = &sensor->ssds[sensor->ssds_used]; sensor->ssds_used++; sensor->scale_m = CCS_LIM(sensor, SCALER_N_MIN); /* prepare PLL configuration input values */ sensor->pll.bus_type = CCS_PLL_BUS_TYPE_CSI2_DPHY; sensor->pll.csi2.lanes = sensor->hwcfg.lanes; if (CCS_LIM(sensor, CLOCK_CALCULATION) & CCS_CLOCK_CALCULATION_LANE_SPEED) { sensor->pll.flags |= CCS_PLL_FLAG_LANE_SPEED_MODEL; if (CCS_LIM(sensor, CLOCK_CALCULATION) & CCS_CLOCK_CALCULATION_LINK_DECOUPLED) { sensor->pll.vt_lanes = CCS_LIM(sensor, NUM_OF_VT_LANES) + 1; sensor->pll.op_lanes = CCS_LIM(sensor, NUM_OF_OP_LANES) + 1; sensor->pll.flags |= CCS_PLL_FLAG_LINK_DECOUPLED; } else { sensor->pll.vt_lanes = sensor->pll.csi2.lanes; sensor->pll.op_lanes = sensor->pll.csi2.lanes; } } if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) & CCS_CLOCK_TREE_PLL_CAPABILITY_EXT_DIVIDER) sensor->pll.flags |= CCS_PLL_FLAG_EXT_IP_PLL_DIVIDER; if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) & CCS_CLOCK_TREE_PLL_CAPABILITY_FLEXIBLE_OP_PIX_CLK_DIV) sensor->pll.flags |= CCS_PLL_FLAG_FLEXIBLE_OP_PIX_CLK_DIV; if (CCS_LIM(sensor, FIFO_SUPPORT_CAPABILITY) & CCS_FIFO_SUPPORT_CAPABILITY_DERATING) sensor->pll.flags |= CCS_PLL_FLAG_FIFO_DERATING; if (CCS_LIM(sensor, FIFO_SUPPORT_CAPABILITY) & CCS_FIFO_SUPPORT_CAPABILITY_DERATING_OVERRATING) sensor->pll.flags |= CCS_PLL_FLAG_FIFO_DERATING | CCS_PLL_FLAG_FIFO_OVERRATING; if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) & CCS_CLOCK_TREE_PLL_CAPABILITY_DUAL_PLL) { if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) & CCS_CLOCK_TREE_PLL_CAPABILITY_SINGLE_PLL) { u32 v; /* Use sensor default in PLL mode selection */ rval = ccs_read(sensor, PLL_MODE, &v); if (rval) goto out_cleanup; if (v == CCS_PLL_MODE_DUAL) sensor->pll.flags |= CCS_PLL_FLAG_DUAL_PLL; } else { sensor->pll.flags |= CCS_PLL_FLAG_DUAL_PLL; } if (CCS_LIM(sensor, CLOCK_CALCULATION) & CCS_CLOCK_CALCULATION_DUAL_PLL_OP_SYS_DDR) sensor->pll.flags |= CCS_PLL_FLAG_OP_SYS_DDR; if (CCS_LIM(sensor, CLOCK_CALCULATION) & CCS_CLOCK_CALCULATION_DUAL_PLL_OP_PIX_DDR) sensor->pll.flags |= CCS_PLL_FLAG_OP_PIX_DDR; } sensor->pll.op_bits_per_lane = CCS_LIM(sensor, OP_BITS_PER_LANE); sensor->pll.ext_clk_freq_hz = sensor->hwcfg.ext_clk; sensor->pll.scale_n = CCS_LIM(sensor, SCALER_N_MIN); ccs_create_subdev(sensor, sensor->scaler, " scaler", 2, MEDIA_ENT_F_PROC_VIDEO_SCALER); ccs_create_subdev(sensor, sensor->binner, " binner", 2, MEDIA_ENT_F_PROC_VIDEO_SCALER); ccs_create_subdev(sensor, sensor->pixel_array, " pixel_array", 1, MEDIA_ENT_F_CAM_SENSOR); rval = ccs_init_controls(sensor); if (rval < 0) goto out_cleanup; rval = ccs_call_quirk(sensor, init); if (rval) goto out_cleanup; rval = ccs_get_mbus_formats(sensor); if (rval) { rval = -ENODEV; goto out_cleanup; } rval = ccs_init_late_controls(sensor); if (rval) { rval = -ENODEV; goto out_cleanup; } mutex_lock(&sensor->mutex); rval = ccs_pll_blanking_update(sensor); mutex_unlock(&sensor->mutex); if (rval) { dev_err(&client->dev, "update mode failed\n"); goto out_cleanup; } sensor->streaming = false; sensor->dev_init_done = true; rval = media_entity_pads_init(&sensor->src->sd.entity, 2, sensor->src->pads); if (rval < 0) goto out_media_entity_cleanup; rval = ccs_write_msr_regs(sensor); if (rval) goto out_media_entity_cleanup; pm_runtime_set_active(&client->dev); pm_runtime_get_noresume(&client->dev); pm_runtime_enable(&client->dev); rval = v4l2_async_register_subdev_sensor(&sensor->src->sd); if (rval < 0) goto out_disable_runtime_pm; pm_runtime_set_autosuspend_delay(&client->dev, 1000); pm_runtime_use_autosuspend(&client->dev); pm_runtime_put_autosuspend(&client->dev); return 0; out_disable_runtime_pm: pm_runtime_put_noidle(&client->dev); pm_runtime_disable(&client->dev); out_media_entity_cleanup: media_entity_cleanup(&sensor->src->sd.entity); out_cleanup: ccs_cleanup(sensor); out_release_mdata: kvfree(sensor->mdata.backing); out_release_sdata: kvfree(sensor->sdata.backing); out_free_ccs_limits: kfree(sensor->ccs_limits); out_power_off: ccs_power_off(&client->dev); mutex_destroy(&sensor->mutex); return rval; } static int ccs_remove(struct i2c_client *client) { struct v4l2_subdev *subdev = i2c_get_clientdata(client); struct ccs_sensor *sensor = to_ccs_sensor(subdev); unsigned int i; v4l2_async_unregister_subdev(subdev); pm_runtime_disable(&client->dev); if (!pm_runtime_status_suspended(&client->dev)) ccs_power_off(&client->dev); pm_runtime_set_suspended(&client->dev); for (i = 0; i < sensor->ssds_used; i++) { v4l2_device_unregister_subdev(&sensor->ssds[i].sd); media_entity_cleanup(&sensor->ssds[i].sd.entity); } ccs_cleanup(sensor); mutex_destroy(&sensor->mutex); kfree(sensor->ccs_limits); kvfree(sensor->sdata.backing); kvfree(sensor->mdata.backing); return 0; } static const struct ccs_device smia_device = { .flags = CCS_DEVICE_FLAG_IS_SMIA, }; static const struct ccs_device ccs_device = {}; static const struct acpi_device_id ccs_acpi_table[] = { { .id = "MIPI0200", .driver_data = (unsigned long)&ccs_device }, { }, }; MODULE_DEVICE_TABLE(acpi, ccs_acpi_table); static const struct of_device_id ccs_of_table[] = { { .compatible = "mipi-ccs-1.1", .data = &ccs_device }, { .compatible = "mipi-ccs-1.0", .data = &ccs_device }, { .compatible = "mipi-ccs", .data = &ccs_device }, { .compatible = "nokia,smia", .data = &smia_device }, { }, }; MODULE_DEVICE_TABLE(of, ccs_of_table); static const struct dev_pm_ops ccs_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(ccs_suspend, ccs_resume) SET_RUNTIME_PM_OPS(ccs_power_off, ccs_power_on, NULL) }; static struct i2c_driver ccs_i2c_driver = { .driver = { .acpi_match_table = ccs_acpi_table, .of_match_table = ccs_of_table, .name = CCS_NAME, .pm = &ccs_pm_ops, }, .probe_new = ccs_probe, .remove = ccs_remove, }; static int ccs_module_init(void) { unsigned int i, l; for (i = 0, l = 0; ccs_limits[i].size && l < CCS_L_LAST; i++) { if (!(ccs_limits[i].flags & CCS_L_FL_SAME_REG)) { ccs_limit_offsets[l + 1].lim = ALIGN(ccs_limit_offsets[l].lim + ccs_limits[i].size, ccs_reg_width(ccs_limits[i + 1].reg)); ccs_limit_offsets[l].info = i; l++; } else { ccs_limit_offsets[l].lim += ccs_limits[i].size; } } if (WARN_ON(ccs_limits[i].size)) return -EINVAL; if (WARN_ON(l != CCS_L_LAST)) return -EINVAL; return i2c_register_driver(THIS_MODULE, &ccs_i2c_driver); } static void ccs_module_cleanup(void) { i2c_del_driver(&ccs_i2c_driver); } module_init(ccs_module_init); module_exit(ccs_module_cleanup); MODULE_AUTHOR("Sakari Ailus "); MODULE_DESCRIPTION("Generic MIPI CCS/SMIA/SMIA++ camera sensor driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("smiapp");