// SPDX-License-Identifier: GPL-2.0-only /* * Microchip Image Sensor Controller (ISC) common driver base * * Copyright (C) 2016-2019 Microchip Technology, Inc. * * Author: Songjun Wu * Author: Eugen Hristev * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "atmel-isc-regs.h" #include "atmel-isc.h" static unsigned int debug; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "debug level (0-2)"); static unsigned int sensor_preferred = 1; module_param(sensor_preferred, uint, 0644); MODULE_PARM_DESC(sensor_preferred, "Sensor is preferred to output the specified format (1-on 0-off), default 1"); #define ISC_IS_FORMAT_RAW(mbus_code) \ (((mbus_code) & 0xf000) == 0x3000) #define ISC_IS_FORMAT_GREY(mbus_code) \ (((mbus_code) == MEDIA_BUS_FMT_Y10_1X10) | \ (((mbus_code) == MEDIA_BUS_FMT_Y8_1X8))) static inline void isc_update_v4l2_ctrls(struct isc_device *isc) { struct isc_ctrls *ctrls = &isc->ctrls; /* In here we set the v4l2 controls w.r.t. our pipeline config */ v4l2_ctrl_s_ctrl(isc->r_gain_ctrl, ctrls->gain[ISC_HIS_CFG_MODE_R]); v4l2_ctrl_s_ctrl(isc->b_gain_ctrl, ctrls->gain[ISC_HIS_CFG_MODE_B]); v4l2_ctrl_s_ctrl(isc->gr_gain_ctrl, ctrls->gain[ISC_HIS_CFG_MODE_GR]); v4l2_ctrl_s_ctrl(isc->gb_gain_ctrl, ctrls->gain[ISC_HIS_CFG_MODE_GB]); v4l2_ctrl_s_ctrl(isc->r_off_ctrl, ctrls->offset[ISC_HIS_CFG_MODE_R]); v4l2_ctrl_s_ctrl(isc->b_off_ctrl, ctrls->offset[ISC_HIS_CFG_MODE_B]); v4l2_ctrl_s_ctrl(isc->gr_off_ctrl, ctrls->offset[ISC_HIS_CFG_MODE_GR]); v4l2_ctrl_s_ctrl(isc->gb_off_ctrl, ctrls->offset[ISC_HIS_CFG_MODE_GB]); } static inline void isc_update_awb_ctrls(struct isc_device *isc) { struct isc_ctrls *ctrls = &isc->ctrls; /* In here we set our actual hw pipeline config */ regmap_write(isc->regmap, ISC_WB_O_RGR, ((ctrls->offset[ISC_HIS_CFG_MODE_R])) | ((ctrls->offset[ISC_HIS_CFG_MODE_GR]) << 16)); regmap_write(isc->regmap, ISC_WB_O_BGB, ((ctrls->offset[ISC_HIS_CFG_MODE_B])) | ((ctrls->offset[ISC_HIS_CFG_MODE_GB]) << 16)); regmap_write(isc->regmap, ISC_WB_G_RGR, ctrls->gain[ISC_HIS_CFG_MODE_R] | (ctrls->gain[ISC_HIS_CFG_MODE_GR] << 16)); regmap_write(isc->regmap, ISC_WB_G_BGB, ctrls->gain[ISC_HIS_CFG_MODE_B] | (ctrls->gain[ISC_HIS_CFG_MODE_GB] << 16)); } static inline void isc_reset_awb_ctrls(struct isc_device *isc) { unsigned int c; for (c = ISC_HIS_CFG_MODE_GR; c <= ISC_HIS_CFG_MODE_B; c++) { /* gains have a fixed point at 9 decimals */ isc->ctrls.gain[c] = 1 << 9; /* offsets are in 2's complements */ isc->ctrls.offset[c] = 0; } } static int isc_wait_clk_stable(struct clk_hw *hw) { struct isc_clk *isc_clk = to_isc_clk(hw); struct regmap *regmap = isc_clk->regmap; unsigned long timeout = jiffies + usecs_to_jiffies(1000); unsigned int status; while (time_before(jiffies, timeout)) { regmap_read(regmap, ISC_CLKSR, &status); if (!(status & ISC_CLKSR_SIP)) return 0; usleep_range(10, 250); } return -ETIMEDOUT; } static int isc_clk_prepare(struct clk_hw *hw) { struct isc_clk *isc_clk = to_isc_clk(hw); int ret; ret = pm_runtime_resume_and_get(isc_clk->dev); if (ret < 0) return ret; return isc_wait_clk_stable(hw); } static void isc_clk_unprepare(struct clk_hw *hw) { struct isc_clk *isc_clk = to_isc_clk(hw); isc_wait_clk_stable(hw); pm_runtime_put_sync(isc_clk->dev); } static int isc_clk_enable(struct clk_hw *hw) { struct isc_clk *isc_clk = to_isc_clk(hw); u32 id = isc_clk->id; struct regmap *regmap = isc_clk->regmap; unsigned long flags; unsigned int status; dev_dbg(isc_clk->dev, "ISC CLK: %s, id = %d, div = %d, parent id = %d\n", __func__, id, isc_clk->div, isc_clk->parent_id); spin_lock_irqsave(&isc_clk->lock, flags); regmap_update_bits(regmap, ISC_CLKCFG, ISC_CLKCFG_DIV_MASK(id) | ISC_CLKCFG_SEL_MASK(id), (isc_clk->div << ISC_CLKCFG_DIV_SHIFT(id)) | (isc_clk->parent_id << ISC_CLKCFG_SEL_SHIFT(id))); regmap_write(regmap, ISC_CLKEN, ISC_CLK(id)); spin_unlock_irqrestore(&isc_clk->lock, flags); regmap_read(regmap, ISC_CLKSR, &status); if (status & ISC_CLK(id)) return 0; else return -EINVAL; } static void isc_clk_disable(struct clk_hw *hw) { struct isc_clk *isc_clk = to_isc_clk(hw); u32 id = isc_clk->id; unsigned long flags; spin_lock_irqsave(&isc_clk->lock, flags); regmap_write(isc_clk->regmap, ISC_CLKDIS, ISC_CLK(id)); spin_unlock_irqrestore(&isc_clk->lock, flags); } static int isc_clk_is_enabled(struct clk_hw *hw) { struct isc_clk *isc_clk = to_isc_clk(hw); u32 status; int ret; ret = pm_runtime_resume_and_get(isc_clk->dev); if (ret < 0) return 0; regmap_read(isc_clk->regmap, ISC_CLKSR, &status); pm_runtime_put_sync(isc_clk->dev); return status & ISC_CLK(isc_clk->id) ? 1 : 0; } static unsigned long isc_clk_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct isc_clk *isc_clk = to_isc_clk(hw); return DIV_ROUND_CLOSEST(parent_rate, isc_clk->div + 1); } static int isc_clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { struct isc_clk *isc_clk = to_isc_clk(hw); long best_rate = -EINVAL; int best_diff = -1; unsigned int i, div; for (i = 0; i < clk_hw_get_num_parents(hw); i++) { struct clk_hw *parent; unsigned long parent_rate; parent = clk_hw_get_parent_by_index(hw, i); if (!parent) continue; parent_rate = clk_hw_get_rate(parent); if (!parent_rate) continue; for (div = 1; div < ISC_CLK_MAX_DIV + 2; div++) { unsigned long rate; int diff; rate = DIV_ROUND_CLOSEST(parent_rate, div); diff = abs(req->rate - rate); if (best_diff < 0 || best_diff > diff) { best_rate = rate; best_diff = diff; req->best_parent_rate = parent_rate; req->best_parent_hw = parent; } if (!best_diff || rate < req->rate) break; } if (!best_diff) break; } dev_dbg(isc_clk->dev, "ISC CLK: %s, best_rate = %ld, parent clk: %s @ %ld\n", __func__, best_rate, __clk_get_name((req->best_parent_hw)->clk), req->best_parent_rate); if (best_rate < 0) return best_rate; req->rate = best_rate; return 0; } static int isc_clk_set_parent(struct clk_hw *hw, u8 index) { struct isc_clk *isc_clk = to_isc_clk(hw); if (index >= clk_hw_get_num_parents(hw)) return -EINVAL; isc_clk->parent_id = index; return 0; } static u8 isc_clk_get_parent(struct clk_hw *hw) { struct isc_clk *isc_clk = to_isc_clk(hw); return isc_clk->parent_id; } static int isc_clk_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct isc_clk *isc_clk = to_isc_clk(hw); u32 div; if (!rate) return -EINVAL; div = DIV_ROUND_CLOSEST(parent_rate, rate); if (div > (ISC_CLK_MAX_DIV + 1) || !div) return -EINVAL; isc_clk->div = div - 1; return 0; } static const struct clk_ops isc_clk_ops = { .prepare = isc_clk_prepare, .unprepare = isc_clk_unprepare, .enable = isc_clk_enable, .disable = isc_clk_disable, .is_enabled = isc_clk_is_enabled, .recalc_rate = isc_clk_recalc_rate, .determine_rate = isc_clk_determine_rate, .set_parent = isc_clk_set_parent, .get_parent = isc_clk_get_parent, .set_rate = isc_clk_set_rate, }; static int isc_clk_register(struct isc_device *isc, unsigned int id) { struct regmap *regmap = isc->regmap; struct device_node *np = isc->dev->of_node; struct isc_clk *isc_clk; struct clk_init_data init; const char *clk_name = np->name; const char *parent_names[3]; int num_parents; if (id == ISC_ISPCK && !isc->ispck_required) return 0; num_parents = of_clk_get_parent_count(np); if (num_parents < 1 || num_parents > 3) return -EINVAL; if (num_parents > 2 && id == ISC_ISPCK) num_parents = 2; of_clk_parent_fill(np, parent_names, num_parents); if (id == ISC_MCK) of_property_read_string(np, "clock-output-names", &clk_name); else clk_name = "isc-ispck"; init.parent_names = parent_names; init.num_parents = num_parents; init.name = clk_name; init.ops = &isc_clk_ops; init.flags = CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE; isc_clk = &isc->isc_clks[id]; isc_clk->hw.init = &init; isc_clk->regmap = regmap; isc_clk->id = id; isc_clk->dev = isc->dev; spin_lock_init(&isc_clk->lock); isc_clk->clk = clk_register(isc->dev, &isc_clk->hw); if (IS_ERR(isc_clk->clk)) { dev_err(isc->dev, "%s: clock register fail\n", clk_name); return PTR_ERR(isc_clk->clk); } else if (id == ISC_MCK) of_clk_add_provider(np, of_clk_src_simple_get, isc_clk->clk); return 0; } int isc_clk_init(struct isc_device *isc) { unsigned int i; int ret; for (i = 0; i < ARRAY_SIZE(isc->isc_clks); i++) isc->isc_clks[i].clk = ERR_PTR(-EINVAL); for (i = 0; i < ARRAY_SIZE(isc->isc_clks); i++) { ret = isc_clk_register(isc, i); if (ret) return ret; } return 0; } EXPORT_SYMBOL_GPL(isc_clk_init); void isc_clk_cleanup(struct isc_device *isc) { unsigned int i; of_clk_del_provider(isc->dev->of_node); for (i = 0; i < ARRAY_SIZE(isc->isc_clks); i++) { struct isc_clk *isc_clk = &isc->isc_clks[i]; if (!IS_ERR(isc_clk->clk)) clk_unregister(isc_clk->clk); } } EXPORT_SYMBOL_GPL(isc_clk_cleanup); static int isc_queue_setup(struct vb2_queue *vq, unsigned int *nbuffers, unsigned int *nplanes, unsigned int sizes[], struct device *alloc_devs[]) { struct isc_device *isc = vb2_get_drv_priv(vq); unsigned int size = isc->fmt.fmt.pix.sizeimage; if (*nplanes) return sizes[0] < size ? -EINVAL : 0; *nplanes = 1; sizes[0] = size; return 0; } static int isc_buffer_prepare(struct vb2_buffer *vb) { struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); struct isc_device *isc = vb2_get_drv_priv(vb->vb2_queue); unsigned long size = isc->fmt.fmt.pix.sizeimage; if (vb2_plane_size(vb, 0) < size) { v4l2_err(&isc->v4l2_dev, "buffer too small (%lu < %lu)\n", vb2_plane_size(vb, 0), size); return -EINVAL; } vb2_set_plane_payload(vb, 0, size); vbuf->field = isc->fmt.fmt.pix.field; return 0; } static void isc_start_dma(struct isc_device *isc) { struct regmap *regmap = isc->regmap; u32 sizeimage = isc->fmt.fmt.pix.sizeimage; u32 dctrl_dview; dma_addr_t addr0; u32 h, w; h = isc->fmt.fmt.pix.height; w = isc->fmt.fmt.pix.width; /* * In case the sensor is not RAW, it will output a pixel (12-16 bits) * with two samples on the ISC Data bus (which is 8-12) * ISC will count each sample, so, we need to multiply these values * by two, to get the real number of samples for the required pixels. */ if (!ISC_IS_FORMAT_RAW(isc->config.sd_format->mbus_code)) { h <<= 1; w <<= 1; } /* * We limit the column/row count that the ISC will output according * to the configured resolution that we want. * This will avoid the situation where the sensor is misconfigured, * sending more data, and the ISC will just take it and DMA to memory, * causing corruption. */ regmap_write(regmap, ISC_PFE_CFG1, (ISC_PFE_CFG1_COLMIN(0) & ISC_PFE_CFG1_COLMIN_MASK) | (ISC_PFE_CFG1_COLMAX(w - 1) & ISC_PFE_CFG1_COLMAX_MASK)); regmap_write(regmap, ISC_PFE_CFG2, (ISC_PFE_CFG2_ROWMIN(0) & ISC_PFE_CFG2_ROWMIN_MASK) | (ISC_PFE_CFG2_ROWMAX(h - 1) & ISC_PFE_CFG2_ROWMAX_MASK)); regmap_update_bits(regmap, ISC_PFE_CFG0, ISC_PFE_CFG0_COLEN | ISC_PFE_CFG0_ROWEN, ISC_PFE_CFG0_COLEN | ISC_PFE_CFG0_ROWEN); addr0 = vb2_dma_contig_plane_dma_addr(&isc->cur_frm->vb.vb2_buf, 0); regmap_write(regmap, ISC_DAD0 + isc->offsets.dma, addr0); switch (isc->config.fourcc) { case V4L2_PIX_FMT_YUV420: regmap_write(regmap, ISC_DAD1 + isc->offsets.dma, addr0 + (sizeimage * 2) / 3); regmap_write(regmap, ISC_DAD2 + isc->offsets.dma, addr0 + (sizeimage * 5) / 6); break; case V4L2_PIX_FMT_YUV422P: regmap_write(regmap, ISC_DAD1 + isc->offsets.dma, addr0 + sizeimage / 2); regmap_write(regmap, ISC_DAD2 + isc->offsets.dma, addr0 + (sizeimage * 3) / 4); break; default: break; } dctrl_dview = isc->config.dctrl_dview; regmap_write(regmap, ISC_DCTRL + isc->offsets.dma, dctrl_dview | ISC_DCTRL_IE_IS); spin_lock(&isc->awb_lock); regmap_write(regmap, ISC_CTRLEN, ISC_CTRL_CAPTURE); spin_unlock(&isc->awb_lock); } static void isc_set_pipeline(struct isc_device *isc, u32 pipeline) { struct regmap *regmap = isc->regmap; struct isc_ctrls *ctrls = &isc->ctrls; u32 val, bay_cfg; const u32 *gamma; unsigned int i; /* WB-->CFA-->CC-->GAM-->CSC-->CBC-->SUB422-->SUB420 */ for (i = 0; i < ISC_PIPE_LINE_NODE_NUM; i++) { val = pipeline & BIT(i) ? 1 : 0; regmap_field_write(isc->pipeline[i], val); } if (!pipeline) return; bay_cfg = isc->config.sd_format->cfa_baycfg; regmap_write(regmap, ISC_WB_CFG, bay_cfg); isc_update_awb_ctrls(isc); isc_update_v4l2_ctrls(isc); regmap_write(regmap, ISC_CFA_CFG, bay_cfg | ISC_CFA_CFG_EITPOL); gamma = &isc->gamma_table[ctrls->gamma_index][0]; regmap_bulk_write(regmap, ISC_GAM_BENTRY, gamma, GAMMA_ENTRIES); regmap_bulk_write(regmap, ISC_GAM_GENTRY, gamma, GAMMA_ENTRIES); regmap_bulk_write(regmap, ISC_GAM_RENTRY, gamma, GAMMA_ENTRIES); isc->config_dpc(isc); isc->config_csc(isc); isc->config_cbc(isc); isc->config_cc(isc); isc->config_gam(isc); } static int isc_update_profile(struct isc_device *isc) { struct regmap *regmap = isc->regmap; u32 sr; int counter = 100; regmap_write(regmap, ISC_CTRLEN, ISC_CTRL_UPPRO); regmap_read(regmap, ISC_CTRLSR, &sr); while ((sr & ISC_CTRL_UPPRO) && counter--) { usleep_range(1000, 2000); regmap_read(regmap, ISC_CTRLSR, &sr); } if (counter < 0) { v4l2_warn(&isc->v4l2_dev, "Time out to update profile\n"); return -ETIMEDOUT; } return 0; } static void isc_set_histogram(struct isc_device *isc, bool enable) { struct regmap *regmap = isc->regmap; struct isc_ctrls *ctrls = &isc->ctrls; if (enable) { regmap_write(regmap, ISC_HIS_CFG + isc->offsets.his, ISC_HIS_CFG_MODE_GR | (isc->config.sd_format->cfa_baycfg << ISC_HIS_CFG_BAYSEL_SHIFT) | ISC_HIS_CFG_RAR); regmap_write(regmap, ISC_HIS_CTRL + isc->offsets.his, ISC_HIS_CTRL_EN); regmap_write(regmap, ISC_INTEN, ISC_INT_HISDONE); ctrls->hist_id = ISC_HIS_CFG_MODE_GR; isc_update_profile(isc); regmap_write(regmap, ISC_CTRLEN, ISC_CTRL_HISREQ); ctrls->hist_stat = HIST_ENABLED; } else { regmap_write(regmap, ISC_INTDIS, ISC_INT_HISDONE); regmap_write(regmap, ISC_HIS_CTRL + isc->offsets.his, ISC_HIS_CTRL_DIS); ctrls->hist_stat = HIST_DISABLED; } } static int isc_configure(struct isc_device *isc) { struct regmap *regmap = isc->regmap; u32 pfe_cfg0, dcfg, mask, pipeline; struct isc_subdev_entity *subdev = isc->current_subdev; pfe_cfg0 = isc->config.sd_format->pfe_cfg0_bps; pipeline = isc->config.bits_pipeline; dcfg = isc->config.dcfg_imode | isc->dcfg; pfe_cfg0 |= subdev->pfe_cfg0 | ISC_PFE_CFG0_MODE_PROGRESSIVE; mask = ISC_PFE_CFG0_BPS_MASK | ISC_PFE_CFG0_HPOL_LOW | ISC_PFE_CFG0_VPOL_LOW | ISC_PFE_CFG0_PPOL_LOW | ISC_PFE_CFG0_MODE_MASK | ISC_PFE_CFG0_CCIR_CRC | ISC_PFE_CFG0_CCIR656 | ISC_PFE_CFG0_MIPI; regmap_update_bits(regmap, ISC_PFE_CFG0, mask, pfe_cfg0); isc->config_rlp(isc); regmap_write(regmap, ISC_DCFG + isc->offsets.dma, dcfg); /* Set the pipeline */ isc_set_pipeline(isc, pipeline); /* * The current implemented histogram is available for RAW R, B, GB, GR * channels. We need to check if sensor is outputting RAW BAYER */ if (isc->ctrls.awb && ISC_IS_FORMAT_RAW(isc->config.sd_format->mbus_code)) isc_set_histogram(isc, true); else isc_set_histogram(isc, false); /* Update profile */ return isc_update_profile(isc); } static int isc_start_streaming(struct vb2_queue *vq, unsigned int count) { struct isc_device *isc = vb2_get_drv_priv(vq); struct regmap *regmap = isc->regmap; struct isc_buffer *buf; unsigned long flags; int ret; /* Enable stream on the sub device */ ret = v4l2_subdev_call(isc->current_subdev->sd, video, s_stream, 1); if (ret && ret != -ENOIOCTLCMD) { v4l2_err(&isc->v4l2_dev, "stream on failed in subdev %d\n", ret); goto err_start_stream; } ret = pm_runtime_resume_and_get(isc->dev); if (ret < 0) { v4l2_err(&isc->v4l2_dev, "RPM resume failed in subdev %d\n", ret); goto err_pm_get; } ret = isc_configure(isc); if (unlikely(ret)) goto err_configure; /* Enable DMA interrupt */ regmap_write(regmap, ISC_INTEN, ISC_INT_DDONE); spin_lock_irqsave(&isc->dma_queue_lock, flags); isc->sequence = 0; isc->stop = false; reinit_completion(&isc->comp); isc->cur_frm = list_first_entry(&isc->dma_queue, struct isc_buffer, list); list_del(&isc->cur_frm->list); isc_start_dma(isc); spin_unlock_irqrestore(&isc->dma_queue_lock, flags); /* if we streaming from RAW, we can do one-shot white balance adj */ if (ISC_IS_FORMAT_RAW(isc->config.sd_format->mbus_code)) v4l2_ctrl_activate(isc->do_wb_ctrl, true); return 0; err_configure: pm_runtime_put_sync(isc->dev); err_pm_get: v4l2_subdev_call(isc->current_subdev->sd, video, s_stream, 0); err_start_stream: spin_lock_irqsave(&isc->dma_queue_lock, flags); list_for_each_entry(buf, &isc->dma_queue, list) vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_QUEUED); INIT_LIST_HEAD(&isc->dma_queue); spin_unlock_irqrestore(&isc->dma_queue_lock, flags); return ret; } static void isc_stop_streaming(struct vb2_queue *vq) { struct isc_device *isc = vb2_get_drv_priv(vq); unsigned long flags; struct isc_buffer *buf; int ret; v4l2_ctrl_activate(isc->do_wb_ctrl, false); isc->stop = true; /* Wait until the end of the current frame */ if (isc->cur_frm && !wait_for_completion_timeout(&isc->comp, 5 * HZ)) v4l2_err(&isc->v4l2_dev, "Timeout waiting for end of the capture\n"); /* Disable DMA interrupt */ regmap_write(isc->regmap, ISC_INTDIS, ISC_INT_DDONE); pm_runtime_put_sync(isc->dev); /* Disable stream on the sub device */ ret = v4l2_subdev_call(isc->current_subdev->sd, video, s_stream, 0); if (ret && ret != -ENOIOCTLCMD) v4l2_err(&isc->v4l2_dev, "stream off failed in subdev\n"); /* Release all active buffers */ spin_lock_irqsave(&isc->dma_queue_lock, flags); if (unlikely(isc->cur_frm)) { vb2_buffer_done(&isc->cur_frm->vb.vb2_buf, VB2_BUF_STATE_ERROR); isc->cur_frm = NULL; } list_for_each_entry(buf, &isc->dma_queue, list) vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_ERROR); INIT_LIST_HEAD(&isc->dma_queue); spin_unlock_irqrestore(&isc->dma_queue_lock, flags); } static void isc_buffer_queue(struct vb2_buffer *vb) { struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); struct isc_buffer *buf = container_of(vbuf, struct isc_buffer, vb); struct isc_device *isc = vb2_get_drv_priv(vb->vb2_queue); unsigned long flags; spin_lock_irqsave(&isc->dma_queue_lock, flags); if (!isc->cur_frm && list_empty(&isc->dma_queue) && vb2_is_streaming(vb->vb2_queue)) { isc->cur_frm = buf; isc_start_dma(isc); } else list_add_tail(&buf->list, &isc->dma_queue); spin_unlock_irqrestore(&isc->dma_queue_lock, flags); } static struct isc_format *find_format_by_fourcc(struct isc_device *isc, unsigned int fourcc) { unsigned int num_formats = isc->num_user_formats; struct isc_format *fmt; unsigned int i; for (i = 0; i < num_formats; i++) { fmt = isc->user_formats[i]; if (fmt->fourcc == fourcc) return fmt; } return NULL; } static const struct vb2_ops isc_vb2_ops = { .queue_setup = isc_queue_setup, .wait_prepare = vb2_ops_wait_prepare, .wait_finish = vb2_ops_wait_finish, .buf_prepare = isc_buffer_prepare, .start_streaming = isc_start_streaming, .stop_streaming = isc_stop_streaming, .buf_queue = isc_buffer_queue, }; static int isc_querycap(struct file *file, void *priv, struct v4l2_capability *cap) { struct isc_device *isc = video_drvdata(file); strscpy(cap->driver, "microchip-isc", sizeof(cap->driver)); strscpy(cap->card, "Atmel Image Sensor Controller", sizeof(cap->card)); snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s", isc->v4l2_dev.name); return 0; } static int isc_enum_fmt_vid_cap(struct file *file, void *priv, struct v4l2_fmtdesc *f) { struct isc_device *isc = video_drvdata(file); u32 index = f->index; u32 i, supported_index; if (index < isc->controller_formats_size) { f->pixelformat = isc->controller_formats[index].fourcc; return 0; } index -= isc->controller_formats_size; supported_index = 0; for (i = 0; i < isc->formats_list_size; i++) { if (!ISC_IS_FORMAT_RAW(isc->formats_list[i].mbus_code) || !isc->formats_list[i].sd_support) continue; if (supported_index == index) { f->pixelformat = isc->formats_list[i].fourcc; return 0; } supported_index++; } return -EINVAL; } static int isc_g_fmt_vid_cap(struct file *file, void *priv, struct v4l2_format *fmt) { struct isc_device *isc = video_drvdata(file); *fmt = isc->fmt; return 0; } /* * Checks the current configured format, if ISC can output it, * considering which type of format the ISC receives from the sensor */ static int isc_try_validate_formats(struct isc_device *isc) { int ret; bool bayer = false, yuv = false, rgb = false, grey = false; /* all formats supported by the RLP module are OK */ switch (isc->try_config.fourcc) { case V4L2_PIX_FMT_SBGGR8: case V4L2_PIX_FMT_SGBRG8: case V4L2_PIX_FMT_SGRBG8: case V4L2_PIX_FMT_SRGGB8: case V4L2_PIX_FMT_SBGGR10: case V4L2_PIX_FMT_SGBRG10: case V4L2_PIX_FMT_SGRBG10: case V4L2_PIX_FMT_SRGGB10: case V4L2_PIX_FMT_SBGGR12: case V4L2_PIX_FMT_SGBRG12: case V4L2_PIX_FMT_SGRBG12: case V4L2_PIX_FMT_SRGGB12: ret = 0; bayer = true; break; case V4L2_PIX_FMT_YUV420: case V4L2_PIX_FMT_YUV422P: case V4L2_PIX_FMT_YUYV: case V4L2_PIX_FMT_UYVY: case V4L2_PIX_FMT_VYUY: ret = 0; yuv = true; break; case V4L2_PIX_FMT_RGB565: case V4L2_PIX_FMT_ABGR32: case V4L2_PIX_FMT_XBGR32: case V4L2_PIX_FMT_ARGB444: case V4L2_PIX_FMT_ARGB555: ret = 0; rgb = true; break; case V4L2_PIX_FMT_GREY: case V4L2_PIX_FMT_Y10: case V4L2_PIX_FMT_Y16: ret = 0; grey = true; break; default: /* any other different formats are not supported */ ret = -EINVAL; } v4l2_dbg(1, debug, &isc->v4l2_dev, "Format validation, requested rgb=%u, yuv=%u, grey=%u, bayer=%u\n", rgb, yuv, grey, bayer); /* we cannot output RAW if we do not receive RAW */ if ((bayer) && !ISC_IS_FORMAT_RAW(isc->try_config.sd_format->mbus_code)) return -EINVAL; /* we cannot output GREY if we do not receive RAW/GREY */ if (grey && !ISC_IS_FORMAT_RAW(isc->try_config.sd_format->mbus_code) && !ISC_IS_FORMAT_GREY(isc->try_config.sd_format->mbus_code)) return -EINVAL; return ret; } /* * Configures the RLP and DMA modules, depending on the output format * configured for the ISC. * If direct_dump == true, just dump raw data 8/16 bits depending on format. */ static int isc_try_configure_rlp_dma(struct isc_device *isc, bool direct_dump) { isc->try_config.rlp_cfg_mode = 0; switch (isc->try_config.fourcc) { case V4L2_PIX_FMT_SBGGR8: case V4L2_PIX_FMT_SGBRG8: case V4L2_PIX_FMT_SGRBG8: case V4L2_PIX_FMT_SRGGB8: isc->try_config.rlp_cfg_mode = ISC_RLP_CFG_MODE_DAT8; isc->try_config.dcfg_imode = ISC_DCFG_IMODE_PACKED8; isc->try_config.dctrl_dview = ISC_DCTRL_DVIEW_PACKED; isc->try_config.bpp = 8; break; case V4L2_PIX_FMT_SBGGR10: case V4L2_PIX_FMT_SGBRG10: case V4L2_PIX_FMT_SGRBG10: case V4L2_PIX_FMT_SRGGB10: isc->try_config.rlp_cfg_mode = ISC_RLP_CFG_MODE_DAT10; isc->try_config.dcfg_imode = ISC_DCFG_IMODE_PACKED16; isc->try_config.dctrl_dview = ISC_DCTRL_DVIEW_PACKED; isc->try_config.bpp = 16; break; case V4L2_PIX_FMT_SBGGR12: case V4L2_PIX_FMT_SGBRG12: case V4L2_PIX_FMT_SGRBG12: case V4L2_PIX_FMT_SRGGB12: isc->try_config.rlp_cfg_mode = ISC_RLP_CFG_MODE_DAT12; isc->try_config.dcfg_imode = ISC_DCFG_IMODE_PACKED16; isc->try_config.dctrl_dview = ISC_DCTRL_DVIEW_PACKED; isc->try_config.bpp = 16; break; case V4L2_PIX_FMT_RGB565: isc->try_config.rlp_cfg_mode = ISC_RLP_CFG_MODE_RGB565; isc->try_config.dcfg_imode = ISC_DCFG_IMODE_PACKED16; isc->try_config.dctrl_dview = ISC_DCTRL_DVIEW_PACKED; isc->try_config.bpp = 16; break; case V4L2_PIX_FMT_ARGB444: isc->try_config.rlp_cfg_mode = ISC_RLP_CFG_MODE_ARGB444; isc->try_config.dcfg_imode = ISC_DCFG_IMODE_PACKED16; isc->try_config.dctrl_dview = ISC_DCTRL_DVIEW_PACKED; isc->try_config.bpp = 16; break; case V4L2_PIX_FMT_ARGB555: isc->try_config.rlp_cfg_mode = ISC_RLP_CFG_MODE_ARGB555; isc->try_config.dcfg_imode = ISC_DCFG_IMODE_PACKED16; isc->try_config.dctrl_dview = ISC_DCTRL_DVIEW_PACKED; isc->try_config.bpp = 16; break; case V4L2_PIX_FMT_ABGR32: case V4L2_PIX_FMT_XBGR32: isc->try_config.rlp_cfg_mode = ISC_RLP_CFG_MODE_ARGB32; isc->try_config.dcfg_imode = ISC_DCFG_IMODE_PACKED32; isc->try_config.dctrl_dview = ISC_DCTRL_DVIEW_PACKED; isc->try_config.bpp = 32; break; case V4L2_PIX_FMT_YUV420: isc->try_config.rlp_cfg_mode = ISC_RLP_CFG_MODE_YYCC; isc->try_config.dcfg_imode = ISC_DCFG_IMODE_YC420P; isc->try_config.dctrl_dview = ISC_DCTRL_DVIEW_PLANAR; isc->try_config.bpp = 12; break; case V4L2_PIX_FMT_YUV422P: isc->try_config.rlp_cfg_mode = ISC_RLP_CFG_MODE_YYCC; isc->try_config.dcfg_imode = ISC_DCFG_IMODE_YC422P; isc->try_config.dctrl_dview = ISC_DCTRL_DVIEW_PLANAR; isc->try_config.bpp = 16; break; case V4L2_PIX_FMT_YUYV: isc->try_config.rlp_cfg_mode = ISC_RLP_CFG_MODE_YCYC | ISC_RLP_CFG_YMODE_YUYV; isc->try_config.dcfg_imode = ISC_DCFG_IMODE_PACKED32; isc->try_config.dctrl_dview = ISC_DCTRL_DVIEW_PACKED; isc->try_config.bpp = 16; break; case V4L2_PIX_FMT_UYVY: isc->try_config.rlp_cfg_mode = ISC_RLP_CFG_MODE_YCYC | ISC_RLP_CFG_YMODE_UYVY; isc->try_config.dcfg_imode = ISC_DCFG_IMODE_PACKED32; isc->try_config.dctrl_dview = ISC_DCTRL_DVIEW_PACKED; isc->try_config.bpp = 16; break; case V4L2_PIX_FMT_VYUY: isc->try_config.rlp_cfg_mode = ISC_RLP_CFG_MODE_YCYC | ISC_RLP_CFG_YMODE_VYUY; isc->try_config.dcfg_imode = ISC_DCFG_IMODE_PACKED32; isc->try_config.dctrl_dview = ISC_DCTRL_DVIEW_PACKED; isc->try_config.bpp = 16; break; case V4L2_PIX_FMT_GREY: isc->try_config.rlp_cfg_mode = ISC_RLP_CFG_MODE_DATY8; isc->try_config.dcfg_imode = ISC_DCFG_IMODE_PACKED8; isc->try_config.dctrl_dview = ISC_DCTRL_DVIEW_PACKED; isc->try_config.bpp = 8; break; case V4L2_PIX_FMT_Y16: isc->try_config.rlp_cfg_mode = ISC_RLP_CFG_MODE_DATY10 | ISC_RLP_CFG_LSH; fallthrough; case V4L2_PIX_FMT_Y10: isc->try_config.rlp_cfg_mode |= ISC_RLP_CFG_MODE_DATY10; isc->try_config.dcfg_imode = ISC_DCFG_IMODE_PACKED16; isc->try_config.dctrl_dview = ISC_DCTRL_DVIEW_PACKED; isc->try_config.bpp = 16; break; default: return -EINVAL; } if (direct_dump) { isc->try_config.rlp_cfg_mode = ISC_RLP_CFG_MODE_DAT8; isc->try_config.dcfg_imode = ISC_DCFG_IMODE_PACKED8; isc->try_config.dctrl_dview = ISC_DCTRL_DVIEW_PACKED; return 0; } return 0; } /* * Configuring pipeline modules, depending on which format the ISC outputs * and considering which format it has as input from the sensor. */ static int isc_try_configure_pipeline(struct isc_device *isc) { switch (isc->try_config.fourcc) { case V4L2_PIX_FMT_RGB565: case V4L2_PIX_FMT_ARGB555: case V4L2_PIX_FMT_ARGB444: case V4L2_PIX_FMT_ABGR32: case V4L2_PIX_FMT_XBGR32: /* if sensor format is RAW, we convert inside ISC */ if (ISC_IS_FORMAT_RAW(isc->try_config.sd_format->mbus_code)) { isc->try_config.bits_pipeline = CFA_ENABLE | WB_ENABLE | GAM_ENABLES | DPC_BLCENABLE | CC_ENABLE; } else { isc->try_config.bits_pipeline = 0x0; } break; case V4L2_PIX_FMT_YUV420: /* if sensor format is RAW, we convert inside ISC */ if (ISC_IS_FORMAT_RAW(isc->try_config.sd_format->mbus_code)) { isc->try_config.bits_pipeline = CFA_ENABLE | CSC_ENABLE | GAM_ENABLES | WB_ENABLE | SUB420_ENABLE | SUB422_ENABLE | CBC_ENABLE | DPC_BLCENABLE; } else { isc->try_config.bits_pipeline = 0x0; } break; case V4L2_PIX_FMT_YUV422P: /* if sensor format is RAW, we convert inside ISC */ if (ISC_IS_FORMAT_RAW(isc->try_config.sd_format->mbus_code)) { isc->try_config.bits_pipeline = CFA_ENABLE | CSC_ENABLE | WB_ENABLE | GAM_ENABLES | SUB422_ENABLE | CBC_ENABLE | DPC_BLCENABLE; } else { isc->try_config.bits_pipeline = 0x0; } break; case V4L2_PIX_FMT_YUYV: case V4L2_PIX_FMT_UYVY: case V4L2_PIX_FMT_VYUY: /* if sensor format is RAW, we convert inside ISC */ if (ISC_IS_FORMAT_RAW(isc->try_config.sd_format->mbus_code)) { isc->try_config.bits_pipeline = CFA_ENABLE | CSC_ENABLE | WB_ENABLE | GAM_ENABLES | SUB422_ENABLE | CBC_ENABLE | DPC_BLCENABLE; } else { isc->try_config.bits_pipeline = 0x0; } break; case V4L2_PIX_FMT_GREY: case V4L2_PIX_FMT_Y16: /* if sensor format is RAW, we convert inside ISC */ if (ISC_IS_FORMAT_RAW(isc->try_config.sd_format->mbus_code)) { isc->try_config.bits_pipeline = CFA_ENABLE | CSC_ENABLE | WB_ENABLE | GAM_ENABLES | CBC_ENABLE | DPC_BLCENABLE; } else { isc->try_config.bits_pipeline = 0x0; } break; default: if (ISC_IS_FORMAT_RAW(isc->try_config.sd_format->mbus_code)) isc->try_config.bits_pipeline = WB_ENABLE | DPC_BLCENABLE; else isc->try_config.bits_pipeline = 0x0; } /* Tune the pipeline to product specific */ isc->adapt_pipeline(isc); return 0; } static void isc_try_fse(struct isc_device *isc, struct v4l2_subdev_state *sd_state) { int ret; struct v4l2_subdev_frame_size_enum fse = {}; /* * If we do not know yet which format the subdev is using, we cannot * do anything. */ if (!isc->try_config.sd_format) return; fse.code = isc->try_config.sd_format->mbus_code; fse.which = V4L2_SUBDEV_FORMAT_TRY; ret = v4l2_subdev_call(isc->current_subdev->sd, pad, enum_frame_size, sd_state, &fse); /* * Attempt to obtain format size from subdev. If not available, * just use the maximum ISC can receive. */ if (ret) { sd_state->pads->try_crop.width = isc->max_width; sd_state->pads->try_crop.height = isc->max_height; } else { sd_state->pads->try_crop.width = fse.max_width; sd_state->pads->try_crop.height = fse.max_height; } } static int isc_try_fmt(struct isc_device *isc, struct v4l2_format *f, u32 *code) { int i; struct isc_format *sd_fmt = NULL, *direct_fmt = NULL; struct v4l2_pix_format *pixfmt = &f->fmt.pix; struct v4l2_subdev_pad_config pad_cfg = {}; struct v4l2_subdev_state pad_state = { .pads = &pad_cfg }; struct v4l2_subdev_format format = { .which = V4L2_SUBDEV_FORMAT_TRY, }; u32 mbus_code; int ret; bool rlp_dma_direct_dump = false; if (f->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; /* Step 1: find a RAW format that is supported */ for (i = 0; i < isc->num_user_formats; i++) { if (ISC_IS_FORMAT_RAW(isc->user_formats[i]->mbus_code)) { sd_fmt = isc->user_formats[i]; break; } } /* Step 2: We can continue with this RAW format, or we can look * for better: maybe sensor supports directly what we need. */ direct_fmt = find_format_by_fourcc(isc, pixfmt->pixelformat); /* Step 3: We have both. We decide given the module parameter which * one to use. */ if (direct_fmt && sd_fmt && sensor_preferred) sd_fmt = direct_fmt; /* Step 4: we do not have RAW but we have a direct format. Use it. */ if (direct_fmt && !sd_fmt) sd_fmt = direct_fmt; /* Step 5: if we are using a direct format, we need to package * everything as 8 bit data and just dump it */ if (sd_fmt == direct_fmt) rlp_dma_direct_dump = true; /* Step 6: We have no format. This can happen if the userspace * requests some weird/invalid format. * In this case, default to whatever we have */ if (!sd_fmt && !direct_fmt) { sd_fmt = isc->user_formats[isc->num_user_formats - 1]; v4l2_dbg(1, debug, &isc->v4l2_dev, "Sensor not supporting %.4s, using %.4s\n", (char *)&pixfmt->pixelformat, (char *)&sd_fmt->fourcc); } if (!sd_fmt) { ret = -EINVAL; goto isc_try_fmt_err; } /* Step 7: Print out what we decided for debugging */ v4l2_dbg(1, debug, &isc->v4l2_dev, "Preferring to have sensor using format %.4s\n", (char *)&sd_fmt->fourcc); /* Step 8: at this moment we decided which format the subdev will use */ isc->try_config.sd_format = sd_fmt; /* Limit to Atmel ISC hardware capabilities */ if (pixfmt->width > isc->max_width) pixfmt->width = isc->max_width; if (pixfmt->height > isc->max_height) pixfmt->height = isc->max_height; /* * The mbus format is the one the subdev outputs. * The pixels will be transferred in this format Sensor -> ISC */ mbus_code = sd_fmt->mbus_code; /* * Validate formats. If the required format is not OK, default to raw. */ isc->try_config.fourcc = pixfmt->pixelformat; if (isc_try_validate_formats(isc)) { pixfmt->pixelformat = isc->try_config.fourcc = sd_fmt->fourcc; /* Re-try to validate the new format */ ret = isc_try_validate_formats(isc); if (ret) goto isc_try_fmt_err; } ret = isc_try_configure_rlp_dma(isc, rlp_dma_direct_dump); if (ret) goto isc_try_fmt_err; ret = isc_try_configure_pipeline(isc); if (ret) goto isc_try_fmt_err; /* Obtain frame sizes if possible to have crop requirements ready */ isc_try_fse(isc, &pad_state); v4l2_fill_mbus_format(&format.format, pixfmt, mbus_code); ret = v4l2_subdev_call(isc->current_subdev->sd, pad, set_fmt, &pad_state, &format); if (ret < 0) goto isc_try_fmt_subdev_err; v4l2_fill_pix_format(pixfmt, &format.format); /* Limit to Atmel ISC hardware capabilities */ if (pixfmt->width > isc->max_width) pixfmt->width = isc->max_width; if (pixfmt->height > isc->max_height) pixfmt->height = isc->max_height; pixfmt->field = V4L2_FIELD_NONE; pixfmt->bytesperline = (pixfmt->width * isc->try_config.bpp) >> 3; pixfmt->sizeimage = pixfmt->bytesperline * pixfmt->height; if (code) *code = mbus_code; return 0; isc_try_fmt_err: v4l2_err(&isc->v4l2_dev, "Could not find any possible format for a working pipeline\n"); isc_try_fmt_subdev_err: memset(&isc->try_config, 0, sizeof(isc->try_config)); return ret; } static int isc_set_fmt(struct isc_device *isc, struct v4l2_format *f) { struct v4l2_subdev_format format = { .which = V4L2_SUBDEV_FORMAT_ACTIVE, }; u32 mbus_code = 0; int ret; ret = isc_try_fmt(isc, f, &mbus_code); if (ret) return ret; v4l2_fill_mbus_format(&format.format, &f->fmt.pix, mbus_code); ret = v4l2_subdev_call(isc->current_subdev->sd, pad, set_fmt, NULL, &format); if (ret < 0) return ret; /* Limit to Atmel ISC hardware capabilities */ if (f->fmt.pix.width > isc->max_width) f->fmt.pix.width = isc->max_width; if (f->fmt.pix.height > isc->max_height) f->fmt.pix.height = isc->max_height; isc->fmt = *f; if (isc->try_config.sd_format && isc->config.sd_format && isc->try_config.sd_format != isc->config.sd_format) { isc->ctrls.hist_stat = HIST_INIT; isc_reset_awb_ctrls(isc); isc_update_v4l2_ctrls(isc); } /* make the try configuration active */ isc->config = isc->try_config; v4l2_dbg(1, debug, &isc->v4l2_dev, "New ISC configuration in place\n"); return 0; } static int isc_s_fmt_vid_cap(struct file *file, void *priv, struct v4l2_format *f) { struct isc_device *isc = video_drvdata(file); if (vb2_is_streaming(&isc->vb2_vidq)) return -EBUSY; return isc_set_fmt(isc, f); } static int isc_try_fmt_vid_cap(struct file *file, void *priv, struct v4l2_format *f) { struct isc_device *isc = video_drvdata(file); return isc_try_fmt(isc, f, NULL); } static int isc_enum_input(struct file *file, void *priv, struct v4l2_input *inp) { if (inp->index != 0) return -EINVAL; inp->type = V4L2_INPUT_TYPE_CAMERA; inp->std = 0; strscpy(inp->name, "Camera", sizeof(inp->name)); return 0; } static int isc_g_input(struct file *file, void *priv, unsigned int *i) { *i = 0; return 0; } static int isc_s_input(struct file *file, void *priv, unsigned int i) { if (i > 0) return -EINVAL; return 0; } static int isc_g_parm(struct file *file, void *fh, struct v4l2_streamparm *a) { struct isc_device *isc = video_drvdata(file); return v4l2_g_parm_cap(video_devdata(file), isc->current_subdev->sd, a); } static int isc_s_parm(struct file *file, void *fh, struct v4l2_streamparm *a) { struct isc_device *isc = video_drvdata(file); return v4l2_s_parm_cap(video_devdata(file), isc->current_subdev->sd, a); } static int isc_enum_framesizes(struct file *file, void *fh, struct v4l2_frmsizeenum *fsize) { struct isc_device *isc = video_drvdata(file); int ret = -EINVAL; int i; if (fsize->index) return -EINVAL; for (i = 0; i < isc->num_user_formats; i++) if (isc->user_formats[i]->fourcc == fsize->pixel_format) ret = 0; for (i = 0; i < isc->controller_formats_size; i++) if (isc->controller_formats[i].fourcc == fsize->pixel_format) ret = 0; if (ret) return ret; fsize->type = V4L2_FRMSIZE_TYPE_CONTINUOUS; fsize->stepwise.min_width = 16; fsize->stepwise.max_width = isc->max_width; fsize->stepwise.min_height = 16; fsize->stepwise.max_height = isc->max_height; fsize->stepwise.step_width = 1; fsize->stepwise.step_height = 1; return 0; } static int isc_enum_frameintervals(struct file *file, void *fh, struct v4l2_frmivalenum *fival) { struct isc_device *isc = video_drvdata(file); struct v4l2_subdev_frame_interval_enum fie = { .code = isc->config.sd_format->mbus_code, .index = fival->index, .width = fival->width, .height = fival->height, .which = V4L2_SUBDEV_FORMAT_ACTIVE, }; int ret = -EINVAL; unsigned int i; for (i = 0; i < isc->num_user_formats; i++) if (isc->user_formats[i]->fourcc == fival->pixel_format) ret = 0; for (i = 0; i < isc->controller_formats_size; i++) if (isc->controller_formats[i].fourcc == fival->pixel_format) ret = 0; if (ret) return ret; ret = v4l2_subdev_call(isc->current_subdev->sd, pad, enum_frame_interval, NULL, &fie); if (ret) return ret; fival->type = V4L2_FRMIVAL_TYPE_DISCRETE; fival->discrete = fie.interval; return 0; } static const struct v4l2_ioctl_ops isc_ioctl_ops = { .vidioc_querycap = isc_querycap, .vidioc_enum_fmt_vid_cap = isc_enum_fmt_vid_cap, .vidioc_g_fmt_vid_cap = isc_g_fmt_vid_cap, .vidioc_s_fmt_vid_cap = isc_s_fmt_vid_cap, .vidioc_try_fmt_vid_cap = isc_try_fmt_vid_cap, .vidioc_enum_input = isc_enum_input, .vidioc_g_input = isc_g_input, .vidioc_s_input = isc_s_input, .vidioc_reqbufs = vb2_ioctl_reqbufs, .vidioc_querybuf = vb2_ioctl_querybuf, .vidioc_qbuf = vb2_ioctl_qbuf, .vidioc_expbuf = vb2_ioctl_expbuf, .vidioc_dqbuf = vb2_ioctl_dqbuf, .vidioc_create_bufs = vb2_ioctl_create_bufs, .vidioc_prepare_buf = vb2_ioctl_prepare_buf, .vidioc_streamon = vb2_ioctl_streamon, .vidioc_streamoff = vb2_ioctl_streamoff, .vidioc_g_parm = isc_g_parm, .vidioc_s_parm = isc_s_parm, .vidioc_enum_framesizes = isc_enum_framesizes, .vidioc_enum_frameintervals = isc_enum_frameintervals, .vidioc_log_status = v4l2_ctrl_log_status, .vidioc_subscribe_event = v4l2_ctrl_subscribe_event, .vidioc_unsubscribe_event = v4l2_event_unsubscribe, }; static int isc_open(struct file *file) { struct isc_device *isc = video_drvdata(file); struct v4l2_subdev *sd = isc->current_subdev->sd; int ret; if (mutex_lock_interruptible(&isc->lock)) return -ERESTARTSYS; ret = v4l2_fh_open(file); if (ret < 0) goto unlock; if (!v4l2_fh_is_singular_file(file)) goto unlock; ret = v4l2_subdev_call(sd, core, s_power, 1); if (ret < 0 && ret != -ENOIOCTLCMD) { v4l2_fh_release(file); goto unlock; } ret = isc_set_fmt(isc, &isc->fmt); if (ret) { v4l2_subdev_call(sd, core, s_power, 0); v4l2_fh_release(file); } unlock: mutex_unlock(&isc->lock); return ret; } static int isc_release(struct file *file) { struct isc_device *isc = video_drvdata(file); struct v4l2_subdev *sd = isc->current_subdev->sd; bool fh_singular; int ret; mutex_lock(&isc->lock); fh_singular = v4l2_fh_is_singular_file(file); ret = _vb2_fop_release(file, NULL); if (fh_singular) v4l2_subdev_call(sd, core, s_power, 0); mutex_unlock(&isc->lock); return ret; } static const struct v4l2_file_operations isc_fops = { .owner = THIS_MODULE, .open = isc_open, .release = isc_release, .unlocked_ioctl = video_ioctl2, .read = vb2_fop_read, .mmap = vb2_fop_mmap, .poll = vb2_fop_poll, }; irqreturn_t isc_interrupt(int irq, void *dev_id) { struct isc_device *isc = (struct isc_device *)dev_id; struct regmap *regmap = isc->regmap; u32 isc_intsr, isc_intmask, pending; irqreturn_t ret = IRQ_NONE; regmap_read(regmap, ISC_INTSR, &isc_intsr); regmap_read(regmap, ISC_INTMASK, &isc_intmask); pending = isc_intsr & isc_intmask; if (likely(pending & ISC_INT_DDONE)) { spin_lock(&isc->dma_queue_lock); if (isc->cur_frm) { struct vb2_v4l2_buffer *vbuf = &isc->cur_frm->vb; struct vb2_buffer *vb = &vbuf->vb2_buf; vb->timestamp = ktime_get_ns(); vbuf->sequence = isc->sequence++; vb2_buffer_done(vb, VB2_BUF_STATE_DONE); isc->cur_frm = NULL; } if (!list_empty(&isc->dma_queue) && !isc->stop) { isc->cur_frm = list_first_entry(&isc->dma_queue, struct isc_buffer, list); list_del(&isc->cur_frm->list); isc_start_dma(isc); } if (isc->stop) complete(&isc->comp); ret = IRQ_HANDLED; spin_unlock(&isc->dma_queue_lock); } if (pending & ISC_INT_HISDONE) { schedule_work(&isc->awb_work); ret = IRQ_HANDLED; } return ret; } EXPORT_SYMBOL_GPL(isc_interrupt); static void isc_hist_count(struct isc_device *isc, u32 *min, u32 *max) { struct regmap *regmap = isc->regmap; struct isc_ctrls *ctrls = &isc->ctrls; u32 *hist_count = &ctrls->hist_count[ctrls->hist_id]; u32 *hist_entry = &ctrls->hist_entry[0]; u32 i; *min = 0; *max = HIST_ENTRIES; regmap_bulk_read(regmap, ISC_HIS_ENTRY + isc->offsets.his_entry, hist_entry, HIST_ENTRIES); *hist_count = 0; /* * we deliberately ignore the end of the histogram, * the most white pixels */ for (i = 1; i < HIST_ENTRIES; i++) { if (*hist_entry && !*min) *min = i; if (*hist_entry) *max = i; *hist_count += i * (*hist_entry++); } if (!*min) *min = 1; } static void isc_wb_update(struct isc_ctrls *ctrls) { u32 *hist_count = &ctrls->hist_count[0]; u32 c, offset[4]; u64 avg = 0; /* We compute two gains, stretch gain and grey world gain */ u32 s_gain[4], gw_gain[4]; /* * According to Grey World, we need to set gains for R/B to normalize * them towards the green channel. * Thus we want to keep Green as fixed and adjust only Red/Blue * Compute the average of the both green channels first */ avg = (u64)hist_count[ISC_HIS_CFG_MODE_GR] + (u64)hist_count[ISC_HIS_CFG_MODE_GB]; avg >>= 1; /* Green histogram is null, nothing to do */ if (!avg) return; for (c = ISC_HIS_CFG_MODE_GR; c <= ISC_HIS_CFG_MODE_B; c++) { /* * the color offset is the minimum value of the histogram. * we stretch this color to the full range by substracting * this value from the color component. */ offset[c] = ctrls->hist_minmax[c][HIST_MIN_INDEX]; /* * The offset is always at least 1. If the offset is 1, we do * not need to adjust it, so our result must be zero. * the offset is computed in a histogram on 9 bits (0..512) * but the offset in register is based on * 12 bits pipeline (0..4096). * we need to shift with the 3 bits that the histogram is * ignoring */ ctrls->offset[c] = (offset[c] - 1) << 3; /* * the offset is then taken and converted to 2's complements, * and must be negative, as we subtract this value from the * color components */ ctrls->offset[c] = -ctrls->offset[c]; /* * the stretch gain is the total number of histogram bins * divided by the actual range of color component (Max - Min) * If we compute gain like this, the actual color component * will be stretched to the full histogram. * We need to shift 9 bits for precision, we have 9 bits for * decimals */ s_gain[c] = (HIST_ENTRIES << 9) / (ctrls->hist_minmax[c][HIST_MAX_INDEX] - ctrls->hist_minmax[c][HIST_MIN_INDEX] + 1); /* * Now we have to compute the gain w.r.t. the average. * Add/lose gain to the component towards the average. * If it happens that the component is zero, use the * fixed point value : 1.0 gain. */ if (hist_count[c]) gw_gain[c] = div_u64(avg << 9, hist_count[c]); else gw_gain[c] = 1 << 9; /* multiply both gains and adjust for decimals */ ctrls->gain[c] = s_gain[c] * gw_gain[c]; ctrls->gain[c] >>= 9; } } static void isc_awb_work(struct work_struct *w) { struct isc_device *isc = container_of(w, struct isc_device, awb_work); struct regmap *regmap = isc->regmap; struct isc_ctrls *ctrls = &isc->ctrls; u32 hist_id = ctrls->hist_id; u32 baysel; unsigned long flags; u32 min, max; int ret; /* streaming is not active anymore */ if (isc->stop) return; if (ctrls->hist_stat != HIST_ENABLED) return; isc_hist_count(isc, &min, &max); ctrls->hist_minmax[hist_id][HIST_MIN_INDEX] = min; ctrls->hist_minmax[hist_id][HIST_MAX_INDEX] = max; if (hist_id != ISC_HIS_CFG_MODE_B) { hist_id++; } else { isc_wb_update(ctrls); hist_id = ISC_HIS_CFG_MODE_GR; } ctrls->hist_id = hist_id; baysel = isc->config.sd_format->cfa_baycfg << ISC_HIS_CFG_BAYSEL_SHIFT; ret = pm_runtime_resume_and_get(isc->dev); if (ret < 0) return; /* * only update if we have all the required histograms and controls * if awb has been disabled, we need to reset registers as well. */ if (hist_id == ISC_HIS_CFG_MODE_GR || ctrls->awb == ISC_WB_NONE) { /* * It may happen that DMA Done IRQ will trigger while we are * updating white balance registers here. * In that case, only parts of the controls have been updated. * We can avoid that by locking the section. */ spin_lock_irqsave(&isc->awb_lock, flags); isc_update_awb_ctrls(isc); spin_unlock_irqrestore(&isc->awb_lock, flags); /* * if we are doing just the one time white balance adjustment, * we are basically done. */ if (ctrls->awb == ISC_WB_ONETIME) { v4l2_info(&isc->v4l2_dev, "Completed one time white-balance adjustment.\n"); /* update the v4l2 controls values */ isc_update_v4l2_ctrls(isc); ctrls->awb = ISC_WB_NONE; } } regmap_write(regmap, ISC_HIS_CFG + isc->offsets.his, hist_id | baysel | ISC_HIS_CFG_RAR); isc_update_profile(isc); /* if awb has been disabled, we don't need to start another histogram */ if (ctrls->awb) regmap_write(regmap, ISC_CTRLEN, ISC_CTRL_HISREQ); pm_runtime_put_sync(isc->dev); } static int isc_s_ctrl(struct v4l2_ctrl *ctrl) { struct isc_device *isc = container_of(ctrl->handler, struct isc_device, ctrls.handler); struct isc_ctrls *ctrls = &isc->ctrls; if (ctrl->flags & V4L2_CTRL_FLAG_INACTIVE) return 0; switch (ctrl->id) { case V4L2_CID_BRIGHTNESS: ctrls->brightness = ctrl->val & ISC_CBC_BRIGHT_MASK; break; case V4L2_CID_CONTRAST: ctrls->contrast = ctrl->val & ISC_CBC_CONTRAST_MASK; break; case V4L2_CID_GAMMA: ctrls->gamma_index = ctrl->val; break; default: return -EINVAL; } return 0; } static const struct v4l2_ctrl_ops isc_ctrl_ops = { .s_ctrl = isc_s_ctrl, }; static int isc_s_awb_ctrl(struct v4l2_ctrl *ctrl) { struct isc_device *isc = container_of(ctrl->handler, struct isc_device, ctrls.handler); struct isc_ctrls *ctrls = &isc->ctrls; if (ctrl->flags & V4L2_CTRL_FLAG_INACTIVE) return 0; switch (ctrl->id) { case V4L2_CID_AUTO_WHITE_BALANCE: if (ctrl->val == 1) ctrls->awb = ISC_WB_AUTO; else ctrls->awb = ISC_WB_NONE; /* we did not configure ISC yet */ if (!isc->config.sd_format) break; /* configure the controls with new values from v4l2 */ if (ctrl->cluster[ISC_CTRL_R_GAIN]->is_new) ctrls->gain[ISC_HIS_CFG_MODE_R] = isc->r_gain_ctrl->val; if (ctrl->cluster[ISC_CTRL_B_GAIN]->is_new) ctrls->gain[ISC_HIS_CFG_MODE_B] = isc->b_gain_ctrl->val; if (ctrl->cluster[ISC_CTRL_GR_GAIN]->is_new) ctrls->gain[ISC_HIS_CFG_MODE_GR] = isc->gr_gain_ctrl->val; if (ctrl->cluster[ISC_CTRL_GB_GAIN]->is_new) ctrls->gain[ISC_HIS_CFG_MODE_GB] = isc->gb_gain_ctrl->val; if (ctrl->cluster[ISC_CTRL_R_OFF]->is_new) ctrls->offset[ISC_HIS_CFG_MODE_R] = isc->r_off_ctrl->val; if (ctrl->cluster[ISC_CTRL_B_OFF]->is_new) ctrls->offset[ISC_HIS_CFG_MODE_B] = isc->b_off_ctrl->val; if (ctrl->cluster[ISC_CTRL_GR_OFF]->is_new) ctrls->offset[ISC_HIS_CFG_MODE_GR] = isc->gr_off_ctrl->val; if (ctrl->cluster[ISC_CTRL_GB_OFF]->is_new) ctrls->offset[ISC_HIS_CFG_MODE_GB] = isc->gb_off_ctrl->val; isc_update_awb_ctrls(isc); if (vb2_is_streaming(&isc->vb2_vidq)) { /* * If we are streaming, we can update profile to * have the new settings in place. */ isc_update_profile(isc); } else { /* * The auto cluster will activate automatically this * control. This has to be deactivated when not * streaming. */ v4l2_ctrl_activate(isc->do_wb_ctrl, false); } /* if we have autowhitebalance on, start histogram procedure */ if (ctrls->awb == ISC_WB_AUTO && vb2_is_streaming(&isc->vb2_vidq) && ISC_IS_FORMAT_RAW(isc->config.sd_format->mbus_code)) isc_set_histogram(isc, true); /* * for one time whitebalance adjustment, check the button, * if it's pressed, perform the one time operation. */ if (ctrls->awb == ISC_WB_NONE && ctrl->cluster[ISC_CTRL_DO_WB]->is_new && !(ctrl->cluster[ISC_CTRL_DO_WB]->flags & V4L2_CTRL_FLAG_INACTIVE)) { ctrls->awb = ISC_WB_ONETIME; isc_set_histogram(isc, true); v4l2_dbg(1, debug, &isc->v4l2_dev, "One time white-balance started.\n"); } return 0; } return 0; } static int isc_g_volatile_awb_ctrl(struct v4l2_ctrl *ctrl) { struct isc_device *isc = container_of(ctrl->handler, struct isc_device, ctrls.handler); struct isc_ctrls *ctrls = &isc->ctrls; switch (ctrl->id) { /* being a cluster, this id will be called for every control */ case V4L2_CID_AUTO_WHITE_BALANCE: ctrl->cluster[ISC_CTRL_R_GAIN]->val = ctrls->gain[ISC_HIS_CFG_MODE_R]; ctrl->cluster[ISC_CTRL_B_GAIN]->val = ctrls->gain[ISC_HIS_CFG_MODE_B]; ctrl->cluster[ISC_CTRL_GR_GAIN]->val = ctrls->gain[ISC_HIS_CFG_MODE_GR]; ctrl->cluster[ISC_CTRL_GB_GAIN]->val = ctrls->gain[ISC_HIS_CFG_MODE_GB]; ctrl->cluster[ISC_CTRL_R_OFF]->val = ctrls->offset[ISC_HIS_CFG_MODE_R]; ctrl->cluster[ISC_CTRL_B_OFF]->val = ctrls->offset[ISC_HIS_CFG_MODE_B]; ctrl->cluster[ISC_CTRL_GR_OFF]->val = ctrls->offset[ISC_HIS_CFG_MODE_GR]; ctrl->cluster[ISC_CTRL_GB_OFF]->val = ctrls->offset[ISC_HIS_CFG_MODE_GB]; break; } return 0; } static const struct v4l2_ctrl_ops isc_awb_ops = { .s_ctrl = isc_s_awb_ctrl, .g_volatile_ctrl = isc_g_volatile_awb_ctrl, }; #define ISC_CTRL_OFF(_name, _id, _name_str) \ static const struct v4l2_ctrl_config _name = { \ .ops = &isc_awb_ops, \ .id = _id, \ .name = _name_str, \ .type = V4L2_CTRL_TYPE_INTEGER, \ .flags = V4L2_CTRL_FLAG_SLIDER, \ .min = -4095, \ .max = 4095, \ .step = 1, \ .def = 0, \ } ISC_CTRL_OFF(isc_r_off_ctrl, ISC_CID_R_OFFSET, "Red Component Offset"); ISC_CTRL_OFF(isc_b_off_ctrl, ISC_CID_B_OFFSET, "Blue Component Offset"); ISC_CTRL_OFF(isc_gr_off_ctrl, ISC_CID_GR_OFFSET, "Green Red Component Offset"); ISC_CTRL_OFF(isc_gb_off_ctrl, ISC_CID_GB_OFFSET, "Green Blue Component Offset"); #define ISC_CTRL_GAIN(_name, _id, _name_str) \ static const struct v4l2_ctrl_config _name = { \ .ops = &isc_awb_ops, \ .id = _id, \ .name = _name_str, \ .type = V4L2_CTRL_TYPE_INTEGER, \ .flags = V4L2_CTRL_FLAG_SLIDER, \ .min = 0, \ .max = 8191, \ .step = 1, \ .def = 512, \ } ISC_CTRL_GAIN(isc_r_gain_ctrl, ISC_CID_R_GAIN, "Red Component Gain"); ISC_CTRL_GAIN(isc_b_gain_ctrl, ISC_CID_B_GAIN, "Blue Component Gain"); ISC_CTRL_GAIN(isc_gr_gain_ctrl, ISC_CID_GR_GAIN, "Green Red Component Gain"); ISC_CTRL_GAIN(isc_gb_gain_ctrl, ISC_CID_GB_GAIN, "Green Blue Component Gain"); static int isc_ctrl_init(struct isc_device *isc) { const struct v4l2_ctrl_ops *ops = &isc_ctrl_ops; struct isc_ctrls *ctrls = &isc->ctrls; struct v4l2_ctrl_handler *hdl = &ctrls->handler; int ret; ctrls->hist_stat = HIST_INIT; isc_reset_awb_ctrls(isc); ret = v4l2_ctrl_handler_init(hdl, 13); if (ret < 0) return ret; /* Initialize product specific controls. For example, contrast */ isc->config_ctrls(isc, ops); ctrls->brightness = 0; v4l2_ctrl_new_std(hdl, ops, V4L2_CID_BRIGHTNESS, -1024, 1023, 1, 0); v4l2_ctrl_new_std(hdl, ops, V4L2_CID_GAMMA, 0, isc->gamma_max, 1, isc->gamma_max); isc->awb_ctrl = v4l2_ctrl_new_std(hdl, &isc_awb_ops, V4L2_CID_AUTO_WHITE_BALANCE, 0, 1, 1, 1); /* do_white_balance is a button, so min,max,step,default are ignored */ isc->do_wb_ctrl = v4l2_ctrl_new_std(hdl, &isc_awb_ops, V4L2_CID_DO_WHITE_BALANCE, 0, 0, 0, 0); if (!isc->do_wb_ctrl) { ret = hdl->error; v4l2_ctrl_handler_free(hdl); return ret; } v4l2_ctrl_activate(isc->do_wb_ctrl, false); isc->r_gain_ctrl = v4l2_ctrl_new_custom(hdl, &isc_r_gain_ctrl, NULL); isc->b_gain_ctrl = v4l2_ctrl_new_custom(hdl, &isc_b_gain_ctrl, NULL); isc->gr_gain_ctrl = v4l2_ctrl_new_custom(hdl, &isc_gr_gain_ctrl, NULL); isc->gb_gain_ctrl = v4l2_ctrl_new_custom(hdl, &isc_gb_gain_ctrl, NULL); isc->r_off_ctrl = v4l2_ctrl_new_custom(hdl, &isc_r_off_ctrl, NULL); isc->b_off_ctrl = v4l2_ctrl_new_custom(hdl, &isc_b_off_ctrl, NULL); isc->gr_off_ctrl = v4l2_ctrl_new_custom(hdl, &isc_gr_off_ctrl, NULL); isc->gb_off_ctrl = v4l2_ctrl_new_custom(hdl, &isc_gb_off_ctrl, NULL); /* * The cluster is in auto mode with autowhitebalance enabled * and manual mode otherwise. */ v4l2_ctrl_auto_cluster(10, &isc->awb_ctrl, 0, true); v4l2_ctrl_handler_setup(hdl); return 0; } static int isc_async_bound(struct v4l2_async_notifier *notifier, struct v4l2_subdev *subdev, struct v4l2_async_subdev *asd) { struct isc_device *isc = container_of(notifier->v4l2_dev, struct isc_device, v4l2_dev); struct isc_subdev_entity *subdev_entity = container_of(notifier, struct isc_subdev_entity, notifier); if (video_is_registered(&isc->video_dev)) { v4l2_err(&isc->v4l2_dev, "only supports one sub-device.\n"); return -EBUSY; } subdev_entity->sd = subdev; return 0; } static void isc_async_unbind(struct v4l2_async_notifier *notifier, struct v4l2_subdev *subdev, struct v4l2_async_subdev *asd) { struct isc_device *isc = container_of(notifier->v4l2_dev, struct isc_device, v4l2_dev); cancel_work_sync(&isc->awb_work); video_unregister_device(&isc->video_dev); v4l2_ctrl_handler_free(&isc->ctrls.handler); } static struct isc_format *find_format_by_code(struct isc_device *isc, unsigned int code, int *index) { struct isc_format *fmt = &isc->formats_list[0]; unsigned int i; for (i = 0; i < isc->formats_list_size; i++) { if (fmt->mbus_code == code) { *index = i; return fmt; } fmt++; } return NULL; } static int isc_formats_init(struct isc_device *isc) { struct isc_format *fmt; struct v4l2_subdev *subdev = isc->current_subdev->sd; unsigned int num_fmts, i, j; u32 list_size = isc->formats_list_size; struct v4l2_subdev_mbus_code_enum mbus_code = { .which = V4L2_SUBDEV_FORMAT_ACTIVE, }; num_fmts = 0; while (!v4l2_subdev_call(subdev, pad, enum_mbus_code, NULL, &mbus_code)) { mbus_code.index++; fmt = find_format_by_code(isc, mbus_code.code, &i); if (!fmt) { v4l2_warn(&isc->v4l2_dev, "Mbus code %x not supported\n", mbus_code.code); continue; } fmt->sd_support = true; num_fmts++; } if (!num_fmts) return -ENXIO; isc->num_user_formats = num_fmts; isc->user_formats = devm_kcalloc(isc->dev, num_fmts, sizeof(*isc->user_formats), GFP_KERNEL); if (!isc->user_formats) return -ENOMEM; fmt = &isc->formats_list[0]; for (i = 0, j = 0; i < list_size; i++) { if (fmt->sd_support) isc->user_formats[j++] = fmt; fmt++; } return 0; } static int isc_set_default_fmt(struct isc_device *isc) { struct v4l2_format f = { .type = V4L2_BUF_TYPE_VIDEO_CAPTURE, .fmt.pix = { .width = VGA_WIDTH, .height = VGA_HEIGHT, .field = V4L2_FIELD_NONE, .pixelformat = isc->user_formats[0]->fourcc, }, }; int ret; ret = isc_try_fmt(isc, &f, NULL); if (ret) return ret; isc->fmt = f; return 0; } static int isc_async_complete(struct v4l2_async_notifier *notifier) { struct isc_device *isc = container_of(notifier->v4l2_dev, struct isc_device, v4l2_dev); struct video_device *vdev = &isc->video_dev; struct vb2_queue *q = &isc->vb2_vidq; int ret = 0; INIT_WORK(&isc->awb_work, isc_awb_work); ret = v4l2_device_register_subdev_nodes(&isc->v4l2_dev); if (ret < 0) { v4l2_err(&isc->v4l2_dev, "Failed to register subdev nodes\n"); return ret; } isc->current_subdev = container_of(notifier, struct isc_subdev_entity, notifier); mutex_init(&isc->lock); init_completion(&isc->comp); /* Initialize videobuf2 queue */ q->type = V4L2_BUF_TYPE_VIDEO_CAPTURE; q->io_modes = VB2_MMAP | VB2_DMABUF | VB2_READ; q->drv_priv = isc; q->buf_struct_size = sizeof(struct isc_buffer); q->ops = &isc_vb2_ops; q->mem_ops = &vb2_dma_contig_memops; q->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC; q->lock = &isc->lock; q->min_buffers_needed = 1; q->dev = isc->dev; ret = vb2_queue_init(q); if (ret < 0) { v4l2_err(&isc->v4l2_dev, "vb2_queue_init() failed: %d\n", ret); goto isc_async_complete_err; } /* Init video dma queues */ INIT_LIST_HEAD(&isc->dma_queue); spin_lock_init(&isc->dma_queue_lock); spin_lock_init(&isc->awb_lock); ret = isc_formats_init(isc); if (ret < 0) { v4l2_err(&isc->v4l2_dev, "Init format failed: %d\n", ret); goto isc_async_complete_err; } ret = isc_set_default_fmt(isc); if (ret) { v4l2_err(&isc->v4l2_dev, "Could not set default format\n"); goto isc_async_complete_err; } ret = isc_ctrl_init(isc); if (ret) { v4l2_err(&isc->v4l2_dev, "Init isc ctrols failed: %d\n", ret); goto isc_async_complete_err; } /* Register video device */ strscpy(vdev->name, "microchip-isc", sizeof(vdev->name)); vdev->release = video_device_release_empty; vdev->fops = &isc_fops; vdev->ioctl_ops = &isc_ioctl_ops; vdev->v4l2_dev = &isc->v4l2_dev; vdev->vfl_dir = VFL_DIR_RX; vdev->queue = q; vdev->lock = &isc->lock; vdev->ctrl_handler = &isc->ctrls.handler; vdev->device_caps = V4L2_CAP_STREAMING | V4L2_CAP_VIDEO_CAPTURE; video_set_drvdata(vdev, isc); ret = video_register_device(vdev, VFL_TYPE_VIDEO, -1); if (ret < 0) { v4l2_err(&isc->v4l2_dev, "video_register_device failed: %d\n", ret); goto isc_async_complete_err; } return 0; isc_async_complete_err: mutex_destroy(&isc->lock); return ret; } const struct v4l2_async_notifier_operations isc_async_ops = { .bound = isc_async_bound, .unbind = isc_async_unbind, .complete = isc_async_complete, }; EXPORT_SYMBOL_GPL(isc_async_ops); void isc_subdev_cleanup(struct isc_device *isc) { struct isc_subdev_entity *subdev_entity; list_for_each_entry(subdev_entity, &isc->subdev_entities, list) { v4l2_async_notifier_unregister(&subdev_entity->notifier); v4l2_async_notifier_cleanup(&subdev_entity->notifier); } INIT_LIST_HEAD(&isc->subdev_entities); } EXPORT_SYMBOL_GPL(isc_subdev_cleanup); int isc_pipeline_init(struct isc_device *isc) { struct device *dev = isc->dev; struct regmap *regmap = isc->regmap; struct regmap_field *regs; unsigned int i; /* * DPCEN-->GDCEN-->BLCEN-->WB-->CFA-->CC--> * GAM-->VHXS-->CSC-->CBC-->SUB422-->SUB420 */ const struct reg_field regfields[ISC_PIPE_LINE_NODE_NUM] = { REG_FIELD(ISC_DPC_CTRL, 0, 0), REG_FIELD(ISC_DPC_CTRL, 1, 1), REG_FIELD(ISC_DPC_CTRL, 2, 2), REG_FIELD(ISC_WB_CTRL, 0, 0), REG_FIELD(ISC_CFA_CTRL, 0, 0), REG_FIELD(ISC_CC_CTRL, 0, 0), REG_FIELD(ISC_GAM_CTRL, 0, 0), REG_FIELD(ISC_GAM_CTRL, 1, 1), REG_FIELD(ISC_GAM_CTRL, 2, 2), REG_FIELD(ISC_GAM_CTRL, 3, 3), REG_FIELD(ISC_VHXS_CTRL, 0, 0), REG_FIELD(ISC_CSC_CTRL + isc->offsets.csc, 0, 0), REG_FIELD(ISC_CBC_CTRL + isc->offsets.cbc, 0, 0), REG_FIELD(ISC_SUB422_CTRL + isc->offsets.sub422, 0, 0), REG_FIELD(ISC_SUB420_CTRL + isc->offsets.sub420, 0, 0), }; for (i = 0; i < ISC_PIPE_LINE_NODE_NUM; i++) { regs = devm_regmap_field_alloc(dev, regmap, regfields[i]); if (IS_ERR(regs)) return PTR_ERR(regs); isc->pipeline[i] = regs; } return 0; } EXPORT_SYMBOL_GPL(isc_pipeline_init); /* regmap configuration */ #define ATMEL_ISC_REG_MAX 0xd5c const struct regmap_config isc_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = ATMEL_ISC_REG_MAX, }; EXPORT_SYMBOL_GPL(isc_regmap_config); MODULE_AUTHOR("Songjun Wu"); MODULE_AUTHOR("Eugen Hristev"); MODULE_DESCRIPTION("Atmel ISC common code base"); MODULE_LICENSE("GPL v2");