// SPDX-License-Identifier: GPL-2.0-or-later /* * Coda multi-standard codec IP - JPEG support functions * * Copyright (C) 2014 Philipp Zabel, Pengutronix */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "coda.h" #include "trace.h" #define SOI_MARKER 0xffd8 #define APP9_MARKER 0xffe9 #define DRI_MARKER 0xffdd #define DQT_MARKER 0xffdb #define DHT_MARKER 0xffc4 #define SOF_MARKER 0xffc0 #define SOS_MARKER 0xffda #define EOI_MARKER 0xffd9 enum { CODA9_JPEG_FORMAT_420, CODA9_JPEG_FORMAT_422, CODA9_JPEG_FORMAT_224, CODA9_JPEG_FORMAT_444, CODA9_JPEG_FORMAT_400, }; struct coda_huff_tab { u8 luma_dc[16 + 12]; u8 chroma_dc[16 + 12]; u8 luma_ac[16 + 162]; u8 chroma_ac[16 + 162]; /* DC Luma, DC Chroma, AC Luma, AC Chroma */ s16 min[4 * 16]; s16 max[4 * 16]; s8 ptr[4 * 16]; }; #define CODA9_JPEG_ENC_HUFF_DATA_SIZE (256 + 256 + 16 + 16) /* * Typical Huffman tables for 8-bit precision luminance and * chrominance from JPEG ITU-T.81 (ISO/IEC 10918-1) Annex K.3 */ static const unsigned char luma_dc[16 + 12] = { /* bits */ 0x00, 0x01, 0x05, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* values */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, }; static const unsigned char chroma_dc[16 + 12] = { /* bits */ 0x00, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, /* values */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, }; static const unsigned char luma_ac[16 + 162 + 2] = { /* bits */ 0x00, 0x02, 0x01, 0x03, 0x03, 0x02, 0x04, 0x03, 0x05, 0x05, 0x04, 0x04, 0x00, 0x00, 0x01, 0x7d, /* values */ 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07, 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08, 0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0, 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, /* padded to 32-bit */ }; static const unsigned char chroma_ac[16 + 162 + 2] = { /* bits */ 0x00, 0x02, 0x01, 0x02, 0x04, 0x04, 0x03, 0x04, 0x07, 0x05, 0x04, 0x04, 0x00, 0x01, 0x02, 0x77, /* values */ 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71, 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, 0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0, 0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34, 0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, /* padded to 32-bit */ }; /* * Quantization tables for luminance and chrominance components in * zig-zag scan order from the Freescale i.MX VPU libraries */ static unsigned char luma_q[64] = { 0x06, 0x04, 0x04, 0x04, 0x05, 0x04, 0x06, 0x05, 0x05, 0x06, 0x09, 0x06, 0x05, 0x06, 0x09, 0x0b, 0x08, 0x06, 0x06, 0x08, 0x0b, 0x0c, 0x0a, 0x0a, 0x0b, 0x0a, 0x0a, 0x0c, 0x10, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x10, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, }; static unsigned char chroma_q[64] = { 0x07, 0x07, 0x07, 0x0d, 0x0c, 0x0d, 0x18, 0x10, 0x10, 0x18, 0x14, 0x0e, 0x0e, 0x0e, 0x14, 0x14, 0x0e, 0x0e, 0x0e, 0x0e, 0x14, 0x11, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x11, 0x11, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x11, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, }; static const unsigned char width_align[] = { [CODA9_JPEG_FORMAT_420] = 16, [CODA9_JPEG_FORMAT_422] = 16, [CODA9_JPEG_FORMAT_224] = 8, [CODA9_JPEG_FORMAT_444] = 8, [CODA9_JPEG_FORMAT_400] = 8, }; static const unsigned char height_align[] = { [CODA9_JPEG_FORMAT_420] = 16, [CODA9_JPEG_FORMAT_422] = 8, [CODA9_JPEG_FORMAT_224] = 16, [CODA9_JPEG_FORMAT_444] = 8, [CODA9_JPEG_FORMAT_400] = 8, }; static int coda9_jpeg_chroma_format(u32 pixfmt) { switch (pixfmt) { case V4L2_PIX_FMT_YUV420: case V4L2_PIX_FMT_NV12: return CODA9_JPEG_FORMAT_420; case V4L2_PIX_FMT_YUV422P: return CODA9_JPEG_FORMAT_422; case V4L2_PIX_FMT_YUV444: return CODA9_JPEG_FORMAT_444; case V4L2_PIX_FMT_GREY: return CODA9_JPEG_FORMAT_400; } return -EINVAL; } struct coda_memcpy_desc { int offset; const void *src; size_t len; }; static void coda_memcpy_parabuf(void *parabuf, const struct coda_memcpy_desc *desc) { u32 *dst = parabuf + desc->offset; const u32 *src = desc->src; int len = desc->len / 4; int i; for (i = 0; i < len; i += 2) { dst[i + 1] = swab32(src[i]); dst[i] = swab32(src[i + 1]); } } int coda_jpeg_write_tables(struct coda_ctx *ctx) { int i; static const struct coda_memcpy_desc huff[8] = { { 0, luma_dc, sizeof(luma_dc) }, { 32, luma_ac, sizeof(luma_ac) }, { 216, chroma_dc, sizeof(chroma_dc) }, { 248, chroma_ac, sizeof(chroma_ac) }, }; struct coda_memcpy_desc qmat[3] = { { 512, ctx->params.jpeg_qmat_tab[0], 64 }, { 576, ctx->params.jpeg_qmat_tab[1], 64 }, { 640, ctx->params.jpeg_qmat_tab[1], 64 }, }; /* Write huffman tables to parameter memory */ for (i = 0; i < ARRAY_SIZE(huff); i++) coda_memcpy_parabuf(ctx->parabuf.vaddr, huff + i); /* Write Q-matrix to parameter memory */ for (i = 0; i < ARRAY_SIZE(qmat); i++) coda_memcpy_parabuf(ctx->parabuf.vaddr, qmat + i); return 0; } bool coda_jpeg_check_buffer(struct coda_ctx *ctx, struct vb2_buffer *vb) { void *vaddr = vb2_plane_vaddr(vb, 0); u16 soi, eoi; int len, i; soi = be16_to_cpup((__be16 *)vaddr); if (soi != SOI_MARKER) return false; len = vb2_get_plane_payload(vb, 0); vaddr += len - 2; for (i = 0; i < 32; i++) { eoi = be16_to_cpup((__be16 *)(vaddr - i)); if (eoi == EOI_MARKER) { if (i > 0) vb2_set_plane_payload(vb, 0, len - i); return true; } } return false; } static int coda9_jpeg_gen_dec_huff_tab(struct coda_ctx *ctx, int tab_num); int coda_jpeg_decode_header(struct coda_ctx *ctx, struct vb2_buffer *vb) { struct coda_dev *dev = ctx->dev; u8 *buf = vb2_plane_vaddr(vb, 0); size_t len = vb2_get_plane_payload(vb, 0); struct v4l2_jpeg_scan_header scan_header; struct v4l2_jpeg_reference quantization_tables[4] = { }; struct v4l2_jpeg_reference huffman_tables[4] = { }; struct v4l2_jpeg_header header = { .scan = &scan_header, .quantization_tables = quantization_tables, .huffman_tables = huffman_tables, }; struct coda_q_data *q_data_src; struct coda_huff_tab *huff_tab; int i, j, ret; ret = v4l2_jpeg_parse_header(buf, len, &header); if (ret < 0) { v4l2_err(&dev->v4l2_dev, "failed to parse header\n"); return ret; } ctx->params.jpeg_restart_interval = header.restart_interval; /* check frame header */ if (header.frame.height > ctx->codec->max_h || header.frame.width > ctx->codec->max_w) { v4l2_err(&dev->v4l2_dev, "invalid dimensions: %dx%d\n", header.frame.width, header.frame.height); return -EINVAL; } q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT); if (header.frame.height != q_data_src->height || header.frame.width != q_data_src->width) { v4l2_err(&dev->v4l2_dev, "dimensions don't match format: %dx%d\n", header.frame.width, header.frame.height); return -EINVAL; } if (header.frame.num_components != 3) { v4l2_err(&dev->v4l2_dev, "unsupported number of components: %d\n", header.frame.num_components); return -EINVAL; } /* install quantization tables */ if (quantization_tables[3].start) { v4l2_err(&dev->v4l2_dev, "only 3 quantization tables supported\n"); return -EINVAL; } for (i = 0; i < 3; i++) { if (!quantization_tables[i].start) continue; if (quantization_tables[i].length != 64) { v4l2_err(&dev->v4l2_dev, "only 8-bit quantization tables supported\n"); continue; } if (!ctx->params.jpeg_qmat_tab[i]) { ctx->params.jpeg_qmat_tab[i] = kmalloc(64, GFP_KERNEL); if (!ctx->params.jpeg_qmat_tab[i]) return -ENOMEM; } memcpy(ctx->params.jpeg_qmat_tab[i], quantization_tables[i].start, 64); } /* install Huffman tables */ for (i = 0; i < 4; i++) { if (!huffman_tables[i].start) { v4l2_err(&dev->v4l2_dev, "missing Huffman table\n"); return -EINVAL; } /* AC tables should be between 17 -> 178, DC between 17 -> 28 */ if (huffman_tables[i].length < 17 || huffman_tables[i].length > 178 || ((i & 2) == 0 && huffman_tables[i].length > 28)) { v4l2_err(&dev->v4l2_dev, "invalid Huffman table %d length: %zu\n", i, huffman_tables[i].length); return -EINVAL; } } huff_tab = ctx->params.jpeg_huff_tab; if (!huff_tab) { huff_tab = kzalloc(sizeof(struct coda_huff_tab), GFP_KERNEL); if (!huff_tab) return -ENOMEM; ctx->params.jpeg_huff_tab = huff_tab; } memset(huff_tab, 0, sizeof(*huff_tab)); memcpy(huff_tab->luma_dc, huffman_tables[0].start, huffman_tables[0].length); memcpy(huff_tab->chroma_dc, huffman_tables[1].start, huffman_tables[1].length); memcpy(huff_tab->luma_ac, huffman_tables[2].start, huffman_tables[2].length); memcpy(huff_tab->chroma_ac, huffman_tables[3].start, huffman_tables[3].length); /* check scan header */ for (i = 0; i < scan_header.num_components; i++) { struct v4l2_jpeg_scan_component_spec *scan_component; scan_component = &scan_header.component[i]; for (j = 0; j < header.frame.num_components; j++) { if (header.frame.component[j].component_identifier == scan_component->component_selector) break; } if (j == header.frame.num_components) continue; ctx->params.jpeg_huff_dc_index[j] = scan_component->dc_entropy_coding_table_selector; ctx->params.jpeg_huff_ac_index[j] = scan_component->ac_entropy_coding_table_selector; } /* Generate Huffman table information */ for (i = 0; i < 4; i++) coda9_jpeg_gen_dec_huff_tab(ctx, i); /* start of entropy coded segment */ ctx->jpeg_ecs_offset = header.ecs_offset; switch (header.frame.subsampling) { case V4L2_JPEG_CHROMA_SUBSAMPLING_420: case V4L2_JPEG_CHROMA_SUBSAMPLING_422: ctx->params.jpeg_chroma_subsampling = header.frame.subsampling; break; default: v4l2_err(&dev->v4l2_dev, "chroma subsampling not supported: %d", header.frame.subsampling); return -EINVAL; } return 0; } static inline void coda9_jpeg_write_huff_values(struct coda_dev *dev, u8 *bits, int num_values) { s8 *values = (s8 *)(bits + 16); int huff_length, i; for (huff_length = 0, i = 0; i < 16; i++) huff_length += bits[i]; for (i = huff_length; i < num_values; i++) values[i] = -1; for (i = 0; i < num_values; i++) coda_write(dev, (s32)values[i], CODA9_REG_JPEG_HUFF_DATA); } static int coda9_jpeg_dec_huff_setup(struct coda_ctx *ctx) { struct coda_huff_tab *huff_tab = ctx->params.jpeg_huff_tab; struct coda_dev *dev = ctx->dev; s16 *huff_min = huff_tab->min; s16 *huff_max = huff_tab->max; s8 *huff_ptr = huff_tab->ptr; int i; /* MIN Tables */ coda_write(dev, 0x003, CODA9_REG_JPEG_HUFF_CTRL); coda_write(dev, 0x000, CODA9_REG_JPEG_HUFF_ADDR); for (i = 0; i < 4 * 16; i++) coda_write(dev, (s32)huff_min[i], CODA9_REG_JPEG_HUFF_DATA); /* MAX Tables */ coda_write(dev, 0x403, CODA9_REG_JPEG_HUFF_CTRL); coda_write(dev, 0x440, CODA9_REG_JPEG_HUFF_ADDR); for (i = 0; i < 4 * 16; i++) coda_write(dev, (s32)huff_max[i], CODA9_REG_JPEG_HUFF_DATA); /* PTR Tables */ coda_write(dev, 0x803, CODA9_REG_JPEG_HUFF_CTRL); coda_write(dev, 0x880, CODA9_REG_JPEG_HUFF_ADDR); for (i = 0; i < 4 * 16; i++) coda_write(dev, (s32)huff_ptr[i], CODA9_REG_JPEG_HUFF_DATA); /* VAL Tables: DC Luma, DC Chroma, AC Luma, AC Chroma */ coda_write(dev, 0xc03, CODA9_REG_JPEG_HUFF_CTRL); coda9_jpeg_write_huff_values(dev, huff_tab->luma_dc, 12); coda9_jpeg_write_huff_values(dev, huff_tab->chroma_dc, 12); coda9_jpeg_write_huff_values(dev, huff_tab->luma_ac, 162); coda9_jpeg_write_huff_values(dev, huff_tab->chroma_ac, 162); coda_write(dev, 0x000, CODA9_REG_JPEG_HUFF_CTRL); return 0; } static inline void coda9_jpeg_write_qmat_tab(struct coda_dev *dev, u8 *qmat, int index) { int i; coda_write(dev, index | 0x3, CODA9_REG_JPEG_QMAT_CTRL); for (i = 0; i < 64; i++) coda_write(dev, qmat[i], CODA9_REG_JPEG_QMAT_DATA); coda_write(dev, 0, CODA9_REG_JPEG_QMAT_CTRL); } static void coda9_jpeg_qmat_setup(struct coda_ctx *ctx) { struct coda_dev *dev = ctx->dev; int *qmat_index = ctx->params.jpeg_qmat_index; u8 **qmat_tab = ctx->params.jpeg_qmat_tab; coda9_jpeg_write_qmat_tab(dev, qmat_tab[qmat_index[0]], 0x00); coda9_jpeg_write_qmat_tab(dev, qmat_tab[qmat_index[1]], 0x40); coda9_jpeg_write_qmat_tab(dev, qmat_tab[qmat_index[2]], 0x80); } static void coda9_jpeg_dec_bbc_gbu_setup(struct coda_ctx *ctx, struct vb2_buffer *buf, u32 ecs_offset) { struct coda_dev *dev = ctx->dev; int page_ptr, word_ptr, bit_ptr; u32 bbc_base_addr, end_addr; int bbc_cur_pos; int ret, val; bbc_base_addr = vb2_dma_contig_plane_dma_addr(buf, 0); end_addr = bbc_base_addr + vb2_get_plane_payload(buf, 0); page_ptr = ecs_offset / 256; word_ptr = (ecs_offset % 256) / 4; if (page_ptr & 1) word_ptr += 64; bit_ptr = (ecs_offset % 4) * 8; if (word_ptr & 1) bit_ptr += 32; word_ptr &= ~0x1; coda_write(dev, end_addr, CODA9_REG_JPEG_BBC_WR_PTR); coda_write(dev, bbc_base_addr, CODA9_REG_JPEG_BBC_BAS_ADDR); /* Leave 3 256-byte page margin to avoid a BBC interrupt */ coda_write(dev, end_addr + 256 * 3 + 256, CODA9_REG_JPEG_BBC_END_ADDR); val = DIV_ROUND_UP(vb2_plane_size(buf, 0), 256) + 3; coda_write(dev, BIT(31) | val, CODA9_REG_JPEG_BBC_STRM_CTRL); bbc_cur_pos = page_ptr; coda_write(dev, bbc_cur_pos, CODA9_REG_JPEG_BBC_CUR_POS); coda_write(dev, bbc_base_addr + (bbc_cur_pos << 8), CODA9_REG_JPEG_BBC_EXT_ADDR); coda_write(dev, (bbc_cur_pos & 1) << 6, CODA9_REG_JPEG_BBC_INT_ADDR); coda_write(dev, 64, CODA9_REG_JPEG_BBC_DATA_CNT); coda_write(dev, 0, CODA9_REG_JPEG_BBC_COMMAND); do { ret = coda_read(dev, CODA9_REG_JPEG_BBC_BUSY); } while (ret == 1); bbc_cur_pos++; coda_write(dev, bbc_cur_pos, CODA9_REG_JPEG_BBC_CUR_POS); coda_write(dev, bbc_base_addr + (bbc_cur_pos << 8), CODA9_REG_JPEG_BBC_EXT_ADDR); coda_write(dev, (bbc_cur_pos & 1) << 6, CODA9_REG_JPEG_BBC_INT_ADDR); coda_write(dev, 64, CODA9_REG_JPEG_BBC_DATA_CNT); coda_write(dev, 0, CODA9_REG_JPEG_BBC_COMMAND); do { ret = coda_read(dev, CODA9_REG_JPEG_BBC_BUSY); } while (ret == 1); bbc_cur_pos++; coda_write(dev, bbc_cur_pos, CODA9_REG_JPEG_BBC_CUR_POS); coda_write(dev, 1, CODA9_REG_JPEG_BBC_CTRL); coda_write(dev, 0, CODA9_REG_JPEG_GBU_TT_CNT); coda_write(dev, word_ptr, CODA9_REG_JPEG_GBU_WD_PTR); coda_write(dev, 0, CODA9_REG_JPEG_GBU_BBSR); coda_write(dev, 127, CODA9_REG_JPEG_GBU_BBER); if (page_ptr & 1) { coda_write(dev, 0, CODA9_REG_JPEG_GBU_BBIR); coda_write(dev, 0, CODA9_REG_JPEG_GBU_BBHR); } else { coda_write(dev, 64, CODA9_REG_JPEG_GBU_BBIR); coda_write(dev, 64, CODA9_REG_JPEG_GBU_BBHR); } coda_write(dev, 4, CODA9_REG_JPEG_GBU_CTRL); coda_write(dev, bit_ptr, CODA9_REG_JPEG_GBU_FF_RPTR); coda_write(dev, 3, CODA9_REG_JPEG_GBU_CTRL); } static const int bus_req_num[] = { [CODA9_JPEG_FORMAT_420] = 2, [CODA9_JPEG_FORMAT_422] = 3, [CODA9_JPEG_FORMAT_224] = 3, [CODA9_JPEG_FORMAT_444] = 4, [CODA9_JPEG_FORMAT_400] = 4, }; #define MCU_INFO(mcu_block_num, comp_num, comp0_info, comp1_info, comp2_info) \ (((mcu_block_num) << CODA9_JPEG_MCU_BLOCK_NUM_OFFSET) | \ ((comp_num) << CODA9_JPEG_COMP_NUM_OFFSET) | \ ((comp0_info) << CODA9_JPEG_COMP0_INFO_OFFSET) | \ ((comp1_info) << CODA9_JPEG_COMP1_INFO_OFFSET) | \ ((comp2_info) << CODA9_JPEG_COMP2_INFO_OFFSET)) static const u32 mcu_info[] = { [CODA9_JPEG_FORMAT_420] = MCU_INFO(6, 3, 10, 5, 5), [CODA9_JPEG_FORMAT_422] = MCU_INFO(4, 3, 9, 5, 5), [CODA9_JPEG_FORMAT_224] = MCU_INFO(4, 3, 6, 5, 5), [CODA9_JPEG_FORMAT_444] = MCU_INFO(3, 3, 5, 5, 5), [CODA9_JPEG_FORMAT_400] = MCU_INFO(1, 1, 5, 0, 0), }; /* * Convert Huffman table specifcations to tables of codes and code lengths. * For reference, see JPEG ITU-T.81 (ISO/IEC 10918-1) [1] * * [1] https://www.w3.org/Graphics/JPEG/itu-t81.pdf */ static int coda9_jpeg_gen_enc_huff_tab(struct coda_ctx *ctx, int tab_num, int *ehufsi, int *ehufco) { int i, j, k, lastk, si, code, maxsymbol; const u8 *bits, *huffval; struct { int size[256]; int code[256]; } *huff; static const unsigned char *huff_tabs[4] = { luma_dc, luma_ac, chroma_dc, chroma_ac, }; int ret = -EINVAL; huff = kzalloc(sizeof(*huff), GFP_KERNEL); if (!huff) return -ENOMEM; bits = huff_tabs[tab_num]; huffval = huff_tabs[tab_num] + 16; maxsymbol = tab_num & 1 ? 256 : 16; /* Figure C.1 - Generation of table of Huffman code sizes */ k = 0; for (i = 1; i <= 16; i++) { j = bits[i - 1]; if (k + j > maxsymbol) goto out; while (j--) huff->size[k++] = i; } lastk = k; /* Figure C.2 - Generation of table of Huffman codes */ k = 0; code = 0; si = huff->size[0]; while (k < lastk) { while (huff->size[k] == si) { huff->code[k++] = code; code++; } if (code >= (1 << si)) goto out; code <<= 1; si++; } /* Figure C.3 - Ordering procedure for encoding procedure code tables */ for (k = 0; k < lastk; k++) { i = huffval[k]; if (i >= maxsymbol || ehufsi[i]) goto out; ehufco[i] = huff->code[k]; ehufsi[i] = huff->size[k]; } ret = 0; out: kfree(huff); return ret; } #define DC_TABLE_INDEX0 0 #define AC_TABLE_INDEX0 1 #define DC_TABLE_INDEX1 2 #define AC_TABLE_INDEX1 3 static u8 *coda9_jpeg_get_huff_bits(struct coda_ctx *ctx, int tab_num) { struct coda_huff_tab *huff_tab = ctx->params.jpeg_huff_tab; if (!huff_tab) return NULL; switch (tab_num) { case DC_TABLE_INDEX0: return huff_tab->luma_dc; case AC_TABLE_INDEX0: return huff_tab->luma_ac; case DC_TABLE_INDEX1: return huff_tab->chroma_dc; case AC_TABLE_INDEX1: return huff_tab->chroma_ac; } return NULL; } static int coda9_jpeg_gen_dec_huff_tab(struct coda_ctx *ctx, int tab_num) { int ptr_cnt = 0, huff_code = 0, zero_flag = 0, data_flag = 0; u8 *huff_bits; s16 *huff_max; s16 *huff_min; s8 *huff_ptr; int ofs; int i; huff_bits = coda9_jpeg_get_huff_bits(ctx, tab_num); if (!huff_bits) return -EINVAL; /* DC/AC Luma, DC/AC Chroma -> DC Luma/Chroma, AC Luma/Chroma */ ofs = ((tab_num & 1) << 1) | ((tab_num >> 1) & 1); ofs *= 16; huff_ptr = ctx->params.jpeg_huff_tab->ptr + ofs; huff_max = ctx->params.jpeg_huff_tab->max + ofs; huff_min = ctx->params.jpeg_huff_tab->min + ofs; for (i = 0; i < 16; i++) { if (huff_bits[i]) { huff_ptr[i] = ptr_cnt; ptr_cnt += huff_bits[i]; huff_min[i] = huff_code; huff_max[i] = huff_code + (huff_bits[i] - 1); data_flag = 1; zero_flag = 0; } else { huff_ptr[i] = -1; huff_min[i] = -1; huff_max[i] = -1; zero_flag = 1; } if (data_flag == 1) { if (zero_flag == 1) huff_code <<= 1; else huff_code = (huff_max[i] + 1) << 1; } } return 0; } static int coda9_jpeg_load_huff_tab(struct coda_ctx *ctx) { struct { int size[4][256]; int code[4][256]; } *huff; u32 *huff_data; int i, j; int ret; huff = kzalloc(sizeof(*huff), GFP_KERNEL); if (!huff) return -ENOMEM; /* Generate all four (luma/chroma DC/AC) code/size lookup tables */ for (i = 0; i < 4; i++) { ret = coda9_jpeg_gen_enc_huff_tab(ctx, i, huff->size[i], huff->code[i]); if (ret) goto out; } if (!ctx->params.jpeg_huff_data) { ctx->params.jpeg_huff_data = kzalloc(sizeof(u32) * CODA9_JPEG_ENC_HUFF_DATA_SIZE, GFP_KERNEL); if (!ctx->params.jpeg_huff_data) { ret = -ENOMEM; goto out; } } huff_data = ctx->params.jpeg_huff_data; for (j = 0; j < 4; j++) { /* Store Huffman lookup tables in AC0, AC1, DC0, DC1 order */ int t = (j == 0) ? AC_TABLE_INDEX0 : (j == 1) ? AC_TABLE_INDEX1 : (j == 2) ? DC_TABLE_INDEX0 : DC_TABLE_INDEX1; /* DC tables only have 16 entries */ int len = (j < 2) ? 256 : 16; for (i = 0; i < len; i++) { if (huff->size[t][i] == 0 && huff->code[t][i] == 0) *(huff_data++) = 0; else *(huff_data++) = ((huff->size[t][i] - 1) << 16) | huff->code[t][i]; } } ret = 0; out: kfree(huff); return ret; } static void coda9_jpeg_write_huff_tab(struct coda_ctx *ctx) { struct coda_dev *dev = ctx->dev; u32 *huff_data = ctx->params.jpeg_huff_data; int i; /* Write Huffman size/code lookup tables in AC0, AC1, DC0, DC1 order */ coda_write(dev, 0x3, CODA9_REG_JPEG_HUFF_CTRL); for (i = 0; i < CODA9_JPEG_ENC_HUFF_DATA_SIZE; i++) coda_write(dev, *(huff_data++), CODA9_REG_JPEG_HUFF_DATA); coda_write(dev, 0x0, CODA9_REG_JPEG_HUFF_CTRL); } static inline void coda9_jpeg_write_qmat_quotients(struct coda_dev *dev, u8 *qmat, int index) { int i; coda_write(dev, index | 0x3, CODA9_REG_JPEG_QMAT_CTRL); for (i = 0; i < 64; i++) coda_write(dev, 0x80000 / qmat[i], CODA9_REG_JPEG_QMAT_DATA); coda_write(dev, index, CODA9_REG_JPEG_QMAT_CTRL); } static void coda9_jpeg_load_qmat_tab(struct coda_ctx *ctx) { struct coda_dev *dev = ctx->dev; u8 *luma_tab; u8 *chroma_tab; luma_tab = ctx->params.jpeg_qmat_tab[0]; if (!luma_tab) luma_tab = luma_q; chroma_tab = ctx->params.jpeg_qmat_tab[1]; if (!chroma_tab) chroma_tab = chroma_q; coda9_jpeg_write_qmat_quotients(dev, luma_tab, 0x00); coda9_jpeg_write_qmat_quotients(dev, chroma_tab, 0x40); coda9_jpeg_write_qmat_quotients(dev, chroma_tab, 0x80); } struct coda_jpeg_stream { u8 *curr; u8 *end; }; static inline int coda_jpeg_put_byte(u8 byte, struct coda_jpeg_stream *stream) { if (stream->curr >= stream->end) return -EINVAL; *stream->curr++ = byte; return 0; } static inline int coda_jpeg_put_word(u16 word, struct coda_jpeg_stream *stream) { if (stream->curr + sizeof(__be16) > stream->end) return -EINVAL; put_unaligned_be16(word, stream->curr); stream->curr += sizeof(__be16); return 0; } static int coda_jpeg_put_table(u16 marker, u8 index, const u8 *table, size_t len, struct coda_jpeg_stream *stream) { int i, ret; ret = coda_jpeg_put_word(marker, stream); if (ret < 0) return ret; ret = coda_jpeg_put_word(3 + len, stream); if (ret < 0) return ret; ret = coda_jpeg_put_byte(index, stream); for (i = 0; i < len && ret == 0; i++) ret = coda_jpeg_put_byte(table[i], stream); return ret; } static int coda_jpeg_define_quantization_table(struct coda_ctx *ctx, u8 index, struct coda_jpeg_stream *stream) { return coda_jpeg_put_table(DQT_MARKER, index, ctx->params.jpeg_qmat_tab[index], 64, stream); } static int coda_jpeg_define_huffman_table(u8 index, const u8 *table, size_t len, struct coda_jpeg_stream *stream) { return coda_jpeg_put_table(DHT_MARKER, index, table, len, stream); } static int coda9_jpeg_encode_header(struct coda_ctx *ctx, int len, u8 *buf) { struct coda_jpeg_stream stream = { buf, buf + len }; struct coda_q_data *q_data_src; int chroma_format, comp_num; int i, ret, pad; q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT); chroma_format = coda9_jpeg_chroma_format(q_data_src->fourcc); if (chroma_format < 0) return 0; /* Start Of Image */ ret = coda_jpeg_put_word(SOI_MARKER, &stream); if (ret < 0) return ret; /* Define Restart Interval */ if (ctx->params.jpeg_restart_interval) { ret = coda_jpeg_put_word(DRI_MARKER, &stream); if (ret < 0) return ret; ret = coda_jpeg_put_word(4, &stream); if (ret < 0) return ret; ret = coda_jpeg_put_word(ctx->params.jpeg_restart_interval, &stream); if (ret < 0) return ret; } /* Define Quantization Tables */ ret = coda_jpeg_define_quantization_table(ctx, 0x00, &stream); if (ret < 0) return ret; if (chroma_format != CODA9_JPEG_FORMAT_400) { ret = coda_jpeg_define_quantization_table(ctx, 0x01, &stream); if (ret < 0) return ret; } /* Define Huffman Tables */ ret = coda_jpeg_define_huffman_table(0x00, luma_dc, 16 + 12, &stream); if (ret < 0) return ret; ret = coda_jpeg_define_huffman_table(0x10, luma_ac, 16 + 162, &stream); if (ret < 0) return ret; if (chroma_format != CODA9_JPEG_FORMAT_400) { ret = coda_jpeg_define_huffman_table(0x01, chroma_dc, 16 + 12, &stream); if (ret < 0) return ret; ret = coda_jpeg_define_huffman_table(0x11, chroma_ac, 16 + 162, &stream); if (ret < 0) return ret; } /* Start Of Frame */ ret = coda_jpeg_put_word(SOF_MARKER, &stream); if (ret < 0) return ret; comp_num = (chroma_format == CODA9_JPEG_FORMAT_400) ? 1 : 3; ret = coda_jpeg_put_word(8 + comp_num * 3, &stream); if (ret < 0) return ret; ret = coda_jpeg_put_byte(0x08, &stream); if (ret < 0) return ret; ret = coda_jpeg_put_word(q_data_src->height, &stream); if (ret < 0) return ret; ret = coda_jpeg_put_word(q_data_src->width, &stream); if (ret < 0) return ret; ret = coda_jpeg_put_byte(comp_num, &stream); if (ret < 0) return ret; for (i = 0; i < comp_num; i++) { static unsigned char subsampling[5][3] = { [CODA9_JPEG_FORMAT_420] = { 0x22, 0x11, 0x11 }, [CODA9_JPEG_FORMAT_422] = { 0x21, 0x11, 0x11 }, [CODA9_JPEG_FORMAT_224] = { 0x12, 0x11, 0x11 }, [CODA9_JPEG_FORMAT_444] = { 0x11, 0x11, 0x11 }, [CODA9_JPEG_FORMAT_400] = { 0x11 }, }; /* Component identifier, matches SOS */ ret = coda_jpeg_put_byte(i + 1, &stream); if (ret < 0) return ret; ret = coda_jpeg_put_byte(subsampling[chroma_format][i], &stream); if (ret < 0) return ret; /* Chroma table index */ ret = coda_jpeg_put_byte((i == 0) ? 0 : 1, &stream); if (ret < 0) return ret; } /* Pad to multiple of 8 bytes */ pad = (stream.curr - buf) % 8; if (pad) { pad = 8 - pad; while (pad--) { ret = coda_jpeg_put_byte(0x00, &stream); if (ret < 0) return ret; } } return stream.curr - buf; } /* * Scale quantization table using nonlinear scaling factor * u8 qtab[64], scale [50,190] */ static void coda_scale_quant_table(u8 *q_tab, int scale) { unsigned int temp; int i; for (i = 0; i < 64; i++) { temp = DIV_ROUND_CLOSEST((unsigned int)q_tab[i] * scale, 100); if (temp <= 0) temp = 1; if (temp > 255) temp = 255; q_tab[i] = (unsigned char)temp; } } void coda_set_jpeg_compression_quality(struct coda_ctx *ctx, int quality) { unsigned int scale; ctx->params.jpeg_quality = quality; /* Clip quality setting to [5,100] interval */ if (quality > 100) quality = 100; if (quality < 5) quality = 5; /* * Non-linear scaling factor: * [5,50] -> [1000..100], [51,100] -> [98..0] */ if (quality < 50) scale = 5000 / quality; else scale = 200 - 2 * quality; if (ctx->params.jpeg_qmat_tab[0]) { memcpy(ctx->params.jpeg_qmat_tab[0], luma_q, 64); coda_scale_quant_table(ctx->params.jpeg_qmat_tab[0], scale); } if (ctx->params.jpeg_qmat_tab[1]) { memcpy(ctx->params.jpeg_qmat_tab[1], chroma_q, 64); coda_scale_quant_table(ctx->params.jpeg_qmat_tab[1], scale); } } /* * Encoder context operations */ static int coda9_jpeg_start_encoding(struct coda_ctx *ctx) { struct coda_dev *dev = ctx->dev; int ret; ret = coda9_jpeg_load_huff_tab(ctx); if (ret < 0) { v4l2_err(&dev->v4l2_dev, "error loading Huffman tables\n"); return ret; } if (!ctx->params.jpeg_qmat_tab[0]) { ctx->params.jpeg_qmat_tab[0] = kmalloc(64, GFP_KERNEL); if (!ctx->params.jpeg_qmat_tab[0]) return -ENOMEM; } if (!ctx->params.jpeg_qmat_tab[1]) { ctx->params.jpeg_qmat_tab[1] = kmalloc(64, GFP_KERNEL); if (!ctx->params.jpeg_qmat_tab[1]) return -ENOMEM; } coda_set_jpeg_compression_quality(ctx, ctx->params.jpeg_quality); return 0; } static int coda9_jpeg_prepare_encode(struct coda_ctx *ctx) { struct coda_q_data *q_data_src; struct vb2_v4l2_buffer *src_buf, *dst_buf; struct coda_dev *dev = ctx->dev; u32 start_addr, end_addr; u16 aligned_width, aligned_height; bool chroma_interleave; int chroma_format; int header_len; int ret; ktime_t timeout; src_buf = v4l2_m2m_next_src_buf(ctx->fh.m2m_ctx); dst_buf = v4l2_m2m_next_dst_buf(ctx->fh.m2m_ctx); q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT); if (vb2_get_plane_payload(&src_buf->vb2_buf, 0) == 0) vb2_set_plane_payload(&src_buf->vb2_buf, 0, vb2_plane_size(&src_buf->vb2_buf, 0)); src_buf->sequence = ctx->osequence; dst_buf->sequence = ctx->osequence; ctx->osequence++; src_buf->flags |= V4L2_BUF_FLAG_KEYFRAME; src_buf->flags &= ~V4L2_BUF_FLAG_PFRAME; coda_set_gdi_regs(ctx); start_addr = vb2_dma_contig_plane_dma_addr(&dst_buf->vb2_buf, 0); end_addr = start_addr + vb2_plane_size(&dst_buf->vb2_buf, 0); chroma_format = coda9_jpeg_chroma_format(q_data_src->fourcc); if (chroma_format < 0) return chroma_format; /* Round image dimensions to multiple of MCU size */ aligned_width = round_up(q_data_src->width, width_align[chroma_format]); aligned_height = round_up(q_data_src->height, height_align[chroma_format]); if (aligned_width != q_data_src->bytesperline) { v4l2_err(&dev->v4l2_dev, "wrong stride: %d instead of %d\n", aligned_width, q_data_src->bytesperline); } header_len = coda9_jpeg_encode_header(ctx, vb2_plane_size(&dst_buf->vb2_buf, 0), vb2_plane_vaddr(&dst_buf->vb2_buf, 0)); if (header_len < 0) return header_len; coda_write(dev, start_addr + header_len, CODA9_REG_JPEG_BBC_BAS_ADDR); coda_write(dev, end_addr, CODA9_REG_JPEG_BBC_END_ADDR); coda_write(dev, start_addr + header_len, CODA9_REG_JPEG_BBC_WR_PTR); coda_write(dev, start_addr + header_len, CODA9_REG_JPEG_BBC_RD_PTR); coda_write(dev, 0, CODA9_REG_JPEG_BBC_CUR_POS); /* 64 words per 256-byte page */ coda_write(dev, 64, CODA9_REG_JPEG_BBC_DATA_CNT); coda_write(dev, start_addr, CODA9_REG_JPEG_BBC_EXT_ADDR); coda_write(dev, 0, CODA9_REG_JPEG_BBC_INT_ADDR); coda_write(dev, 0, CODA9_REG_JPEG_GBU_BT_PTR); coda_write(dev, 0, CODA9_REG_JPEG_GBU_WD_PTR); coda_write(dev, 0, CODA9_REG_JPEG_GBU_BBSR); coda_write(dev, BIT(31) | ((end_addr - start_addr - header_len) / 256), CODA9_REG_JPEG_BBC_STRM_CTRL); coda_write(dev, 0, CODA9_REG_JPEG_GBU_CTRL); coda_write(dev, 0, CODA9_REG_JPEG_GBU_FF_RPTR); coda_write(dev, 127, CODA9_REG_JPEG_GBU_BBER); coda_write(dev, 64, CODA9_REG_JPEG_GBU_BBIR); coda_write(dev, 64, CODA9_REG_JPEG_GBU_BBHR); chroma_interleave = (q_data_src->fourcc == V4L2_PIX_FMT_NV12); coda_write(dev, CODA9_JPEG_PIC_CTRL_TC_DIRECTION | CODA9_JPEG_PIC_CTRL_ENCODER_EN, CODA9_REG_JPEG_PIC_CTRL); coda_write(dev, 0, CODA9_REG_JPEG_SCL_INFO); coda_write(dev, chroma_interleave, CODA9_REG_JPEG_DPB_CONFIG); coda_write(dev, ctx->params.jpeg_restart_interval, CODA9_REG_JPEG_RST_INTVAL); coda_write(dev, 1, CODA9_REG_JPEG_BBC_CTRL); coda_write(dev, bus_req_num[chroma_format], CODA9_REG_JPEG_OP_INFO); coda9_jpeg_write_huff_tab(ctx); coda9_jpeg_load_qmat_tab(ctx); if (ctx->params.rot_mode & CODA_ROT_90) { aligned_width = aligned_height; aligned_height = q_data_src->bytesperline; if (chroma_format == CODA9_JPEG_FORMAT_422) chroma_format = CODA9_JPEG_FORMAT_224; else if (chroma_format == CODA9_JPEG_FORMAT_224) chroma_format = CODA9_JPEG_FORMAT_422; } /* These need to be multiples of MCU size */ coda_write(dev, aligned_width << 16 | aligned_height, CODA9_REG_JPEG_PIC_SIZE); coda_write(dev, ctx->params.rot_mode ? (CODA_ROT_MIR_ENABLE | ctx->params.rot_mode) : 0, CODA9_REG_JPEG_ROT_INFO); coda_write(dev, mcu_info[chroma_format], CODA9_REG_JPEG_MCU_INFO); coda_write(dev, 1, CODA9_GDI_CONTROL); timeout = ktime_add_us(ktime_get(), 100000); do { ret = coda_read(dev, CODA9_GDI_STATUS); if (ktime_compare(ktime_get(), timeout) > 0) { v4l2_err(&dev->v4l2_dev, "timeout waiting for GDI\n"); return -ETIMEDOUT; } } while (!ret); coda_write(dev, (chroma_format << 17) | (chroma_interleave << 16) | q_data_src->bytesperline, CODA9_GDI_INFO_CONTROL); /* The content of this register seems to be irrelevant: */ coda_write(dev, aligned_width << 16 | aligned_height, CODA9_GDI_INFO_PIC_SIZE); coda_write_base(ctx, q_data_src, src_buf, CODA9_GDI_INFO_BASE_Y); coda_write(dev, 0, CODA9_REG_JPEG_DPB_BASE00); coda_write(dev, 0, CODA9_GDI_CONTROL); coda_write(dev, 1, CODA9_GDI_PIC_INIT_HOST); coda_write(dev, 1, CODA9_GDI_WPROT_ERR_CLR); coda_write(dev, 0, CODA9_GDI_WPROT_RGN_EN); trace_coda_jpeg_run(ctx, src_buf); coda_write(dev, 1, CODA9_REG_JPEG_PIC_START); return 0; } static void coda9_jpeg_finish_encode(struct coda_ctx *ctx) { struct vb2_v4l2_buffer *src_buf, *dst_buf; struct coda_dev *dev = ctx->dev; u32 wr_ptr, start_ptr; u32 err_mb; if (ctx->aborting) { coda_write(ctx->dev, 0, CODA9_REG_JPEG_BBC_FLUSH_CMD); return; } /* * Lock to make sure that an encoder stop command running in parallel * will either already have marked src_buf as last, or it will wake up * the capture queue after the buffers are returned. */ mutex_lock(&ctx->wakeup_mutex); src_buf = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx); dst_buf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx); trace_coda_jpeg_done(ctx, dst_buf); /* * Set plane payload to the number of bytes written out * by the JPEG processing unit */ start_ptr = vb2_dma_contig_plane_dma_addr(&dst_buf->vb2_buf, 0); wr_ptr = coda_read(dev, CODA9_REG_JPEG_BBC_WR_PTR); vb2_set_plane_payload(&dst_buf->vb2_buf, 0, wr_ptr - start_ptr); err_mb = coda_read(dev, CODA9_REG_JPEG_PIC_ERRMB); if (err_mb) coda_dbg(1, ctx, "ERRMB: 0x%x\n", err_mb); coda_write(dev, 0, CODA9_REG_JPEG_BBC_FLUSH_CMD); dst_buf->flags &= ~(V4L2_BUF_FLAG_PFRAME | V4L2_BUF_FLAG_LAST); dst_buf->flags |= V4L2_BUF_FLAG_KEYFRAME; dst_buf->flags |= src_buf->flags & V4L2_BUF_FLAG_LAST; v4l2_m2m_buf_copy_metadata(src_buf, dst_buf, false); v4l2_m2m_buf_done(src_buf, VB2_BUF_STATE_DONE); coda_m2m_buf_done(ctx, dst_buf, err_mb ? VB2_BUF_STATE_ERROR : VB2_BUF_STATE_DONE); mutex_unlock(&ctx->wakeup_mutex); coda_dbg(1, ctx, "job finished: encoded frame (%u)%s\n", dst_buf->sequence, (dst_buf->flags & V4L2_BUF_FLAG_LAST) ? " (last)" : ""); /* * Reset JPEG processing unit after each encode run to work * around hangups when switching context between encoder and * decoder. */ coda_hw_reset(ctx); } static void coda9_jpeg_encode_timeout(struct coda_ctx *ctx) { struct coda_dev *dev = ctx->dev; u32 end_addr, wr_ptr; /* Handle missing BBC overflow interrupt via timeout */ end_addr = coda_read(dev, CODA9_REG_JPEG_BBC_END_ADDR); wr_ptr = coda_read(dev, CODA9_REG_JPEG_BBC_WR_PTR); if (wr_ptr >= end_addr - 256) { v4l2_err(&dev->v4l2_dev, "JPEG too large for capture buffer\n"); coda9_jpeg_finish_encode(ctx); return; } coda_hw_reset(ctx); } static void coda9_jpeg_release(struct coda_ctx *ctx) { int i; if (ctx->params.jpeg_qmat_tab[0] == luma_q) ctx->params.jpeg_qmat_tab[0] = NULL; if (ctx->params.jpeg_qmat_tab[1] == chroma_q) ctx->params.jpeg_qmat_tab[1] = NULL; for (i = 0; i < 3; i++) kfree(ctx->params.jpeg_qmat_tab[i]); kfree(ctx->params.jpeg_huff_data); kfree(ctx->params.jpeg_huff_tab); } const struct coda_context_ops coda9_jpeg_encode_ops = { .queue_init = coda_encoder_queue_init, .start_streaming = coda9_jpeg_start_encoding, .prepare_run = coda9_jpeg_prepare_encode, .finish_run = coda9_jpeg_finish_encode, .run_timeout = coda9_jpeg_encode_timeout, .release = coda9_jpeg_release, }; /* * Decoder context operations */ static int coda9_jpeg_start_decoding(struct coda_ctx *ctx) { ctx->params.jpeg_qmat_index[0] = 0; ctx->params.jpeg_qmat_index[1] = 1; ctx->params.jpeg_qmat_index[2] = 1; ctx->params.jpeg_qmat_tab[0] = luma_q; ctx->params.jpeg_qmat_tab[1] = chroma_q; /* nothing more to do here */ /* TODO: we could already scan the first header to get the chroma * format. */ return 0; } static int coda9_jpeg_prepare_decode(struct coda_ctx *ctx) { struct coda_dev *dev = ctx->dev; int aligned_width, aligned_height; int chroma_format; int ret; u32 val, dst_fourcc; struct coda_q_data *q_data_src, *q_data_dst; struct vb2_v4l2_buffer *src_buf, *dst_buf; int chroma_interleave; src_buf = v4l2_m2m_next_src_buf(ctx->fh.m2m_ctx); dst_buf = v4l2_m2m_next_dst_buf(ctx->fh.m2m_ctx); q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT); q_data_dst = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE); dst_fourcc = q_data_dst->fourcc; if (vb2_get_plane_payload(&src_buf->vb2_buf, 0) == 0) vb2_set_plane_payload(&src_buf->vb2_buf, 0, vb2_plane_size(&src_buf->vb2_buf, 0)); chroma_format = coda9_jpeg_chroma_format(q_data_dst->fourcc); if (chroma_format < 0) { v4l2_m2m_job_finish(ctx->dev->m2m_dev, ctx->fh.m2m_ctx); return chroma_format; } ret = coda_jpeg_decode_header(ctx, &src_buf->vb2_buf); if (ret < 0) { v4l2_err(&dev->v4l2_dev, "failed to decode JPEG header: %d\n", ret); src_buf = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx); dst_buf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx); v4l2_m2m_buf_done(src_buf, VB2_BUF_STATE_DONE); v4l2_m2m_buf_done(dst_buf, VB2_BUF_STATE_DONE); v4l2_m2m_job_finish(ctx->dev->m2m_dev, ctx->fh.m2m_ctx); return ret; } /* Round image dimensions to multiple of MCU size */ aligned_width = round_up(q_data_src->width, width_align[chroma_format]); aligned_height = round_up(q_data_src->height, height_align[chroma_format]); if (aligned_width != q_data_dst->bytesperline) { v4l2_err(&dev->v4l2_dev, "stride mismatch: %d != %d\n", aligned_width, q_data_dst->bytesperline); } coda_set_gdi_regs(ctx); val = ctx->params.jpeg_huff_ac_index[0] << 12 | ctx->params.jpeg_huff_ac_index[1] << 11 | ctx->params.jpeg_huff_ac_index[2] << 10 | ctx->params.jpeg_huff_dc_index[0] << 9 | ctx->params.jpeg_huff_dc_index[1] << 8 | ctx->params.jpeg_huff_dc_index[2] << 7; if (ctx->params.jpeg_huff_tab) val |= CODA9_JPEG_PIC_CTRL_USER_HUFFMAN_EN; coda_write(dev, val, CODA9_REG_JPEG_PIC_CTRL); coda_write(dev, aligned_width << 16 | aligned_height, CODA9_REG_JPEG_PIC_SIZE); chroma_interleave = (dst_fourcc == V4L2_PIX_FMT_NV12); coda_write(dev, 0, CODA9_REG_JPEG_ROT_INFO); coda_write(dev, bus_req_num[chroma_format], CODA9_REG_JPEG_OP_INFO); coda_write(dev, mcu_info[chroma_format], CODA9_REG_JPEG_MCU_INFO); coda_write(dev, 0, CODA9_REG_JPEG_SCL_INFO); coda_write(dev, chroma_interleave, CODA9_REG_JPEG_DPB_CONFIG); coda_write(dev, ctx->params.jpeg_restart_interval, CODA9_REG_JPEG_RST_INTVAL); if (ctx->params.jpeg_huff_tab) { ret = coda9_jpeg_dec_huff_setup(ctx); if (ret < 0) { v4l2_err(&dev->v4l2_dev, "failed to set up Huffman tables: %d\n", ret); v4l2_m2m_job_finish(ctx->dev->m2m_dev, ctx->fh.m2m_ctx); return ret; } } coda9_jpeg_qmat_setup(ctx); coda9_jpeg_dec_bbc_gbu_setup(ctx, &src_buf->vb2_buf, ctx->jpeg_ecs_offset); coda_write(dev, 0, CODA9_REG_JPEG_RST_INDEX); coda_write(dev, 0, CODA9_REG_JPEG_RST_COUNT); coda_write(dev, 0, CODA9_REG_JPEG_DPCM_DIFF_Y); coda_write(dev, 0, CODA9_REG_JPEG_DPCM_DIFF_CB); coda_write(dev, 0, CODA9_REG_JPEG_DPCM_DIFF_CR); coda_write(dev, 0, CODA9_REG_JPEG_ROT_INFO); coda_write(dev, 1, CODA9_GDI_CONTROL); do { ret = coda_read(dev, CODA9_GDI_STATUS); } while (!ret); val = (chroma_format << 17) | (chroma_interleave << 16) | q_data_dst->bytesperline; if (ctx->tiled_map_type == GDI_TILED_FRAME_MB_RASTER_MAP) val |= 3 << 20; coda_write(dev, val, CODA9_GDI_INFO_CONTROL); coda_write(dev, aligned_width << 16 | aligned_height, CODA9_GDI_INFO_PIC_SIZE); coda_write_base(ctx, q_data_dst, dst_buf, CODA9_GDI_INFO_BASE_Y); coda_write(dev, 0, CODA9_REG_JPEG_DPB_BASE00); coda_write(dev, 0, CODA9_GDI_CONTROL); coda_write(dev, 1, CODA9_GDI_PIC_INIT_HOST); trace_coda_jpeg_run(ctx, src_buf); coda_write(dev, 1, CODA9_REG_JPEG_PIC_START); return 0; } static void coda9_jpeg_finish_decode(struct coda_ctx *ctx) { struct coda_dev *dev = ctx->dev; struct vb2_v4l2_buffer *dst_buf, *src_buf; struct coda_q_data *q_data_dst; u32 err_mb; err_mb = coda_read(dev, CODA9_REG_JPEG_PIC_ERRMB); if (err_mb) v4l2_err(&dev->v4l2_dev, "ERRMB: 0x%x\n", err_mb); coda_write(dev, 0, CODA9_REG_JPEG_BBC_FLUSH_CMD); /* * Lock to make sure that a decoder stop command running in parallel * will either already have marked src_buf as last, or it will wake up * the capture queue after the buffers are returned. */ mutex_lock(&ctx->wakeup_mutex); src_buf = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx); dst_buf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx); dst_buf->sequence = ctx->osequence++; trace_coda_jpeg_done(ctx, dst_buf); dst_buf->flags &= ~(V4L2_BUF_FLAG_PFRAME | V4L2_BUF_FLAG_LAST); dst_buf->flags |= V4L2_BUF_FLAG_KEYFRAME; dst_buf->flags |= src_buf->flags & V4L2_BUF_FLAG_LAST; v4l2_m2m_buf_copy_metadata(src_buf, dst_buf, false); q_data_dst = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE); vb2_set_plane_payload(&dst_buf->vb2_buf, 0, q_data_dst->sizeimage); v4l2_m2m_buf_done(src_buf, VB2_BUF_STATE_DONE); coda_m2m_buf_done(ctx, dst_buf, err_mb ? VB2_BUF_STATE_ERROR : VB2_BUF_STATE_DONE); mutex_unlock(&ctx->wakeup_mutex); coda_dbg(1, ctx, "job finished: decoded frame (%u)%s\n", dst_buf->sequence, (dst_buf->flags & V4L2_BUF_FLAG_LAST) ? " (last)" : ""); /* * Reset JPEG processing unit after each decode run to work * around hangups when switching context between encoder and * decoder. */ coda_hw_reset(ctx); } const struct coda_context_ops coda9_jpeg_decode_ops = { .queue_init = coda_encoder_queue_init, /* non-bitstream operation */ .start_streaming = coda9_jpeg_start_decoding, .prepare_run = coda9_jpeg_prepare_decode, .finish_run = coda9_jpeg_finish_decode, .release = coda9_jpeg_release, }; irqreturn_t coda9_jpeg_irq_handler(int irq, void *data) { struct coda_dev *dev = data; struct coda_ctx *ctx; int status; int err_mb; status = coda_read(dev, CODA9_REG_JPEG_PIC_STATUS); if (status == 0) return IRQ_HANDLED; coda_write(dev, status, CODA9_REG_JPEG_PIC_STATUS); if (status & CODA9_JPEG_STATUS_OVERFLOW) v4l2_err(&dev->v4l2_dev, "JPEG overflow\n"); if (status & CODA9_JPEG_STATUS_BBC_INT) v4l2_err(&dev->v4l2_dev, "JPEG BBC interrupt\n"); if (status & CODA9_JPEG_STATUS_ERROR) { v4l2_err(&dev->v4l2_dev, "JPEG error\n"); err_mb = coda_read(dev, CODA9_REG_JPEG_PIC_ERRMB); if (err_mb) { v4l2_err(&dev->v4l2_dev, "ERRMB: 0x%x: rst idx %d, mcu pos (%d,%d)\n", err_mb, err_mb >> 24, (err_mb >> 12) & 0xfff, err_mb & 0xfff); } } ctx = v4l2_m2m_get_curr_priv(dev->m2m_dev); if (!ctx) { v4l2_err(&dev->v4l2_dev, "Instance released before the end of transaction\n"); mutex_unlock(&dev->coda_mutex); return IRQ_HANDLED; } complete(&ctx->completion); return IRQ_HANDLED; }