// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2013 - 2018 Intel Corporation. */ #include "i40e.h" /*********************notification routines***********************/ /** * i40e_vc_vf_broadcast * @pf: pointer to the PF structure * @v_opcode: operation code * @v_retval: return value * @msg: pointer to the msg buffer * @msglen: msg length * * send a message to all VFs on a given PF **/ static void i40e_vc_vf_broadcast(struct i40e_pf *pf, enum virtchnl_ops v_opcode, i40e_status v_retval, u8 *msg, u16 msglen) { struct i40e_hw *hw = &pf->hw; struct i40e_vf *vf = pf->vf; int i; for (i = 0; i < pf->num_alloc_vfs; i++, vf++) { int abs_vf_id = vf->vf_id + (int)hw->func_caps.vf_base_id; /* Not all vfs are enabled so skip the ones that are not */ if (!test_bit(I40E_VF_STATE_INIT, &vf->vf_states) && !test_bit(I40E_VF_STATE_ACTIVE, &vf->vf_states)) continue; /* Ignore return value on purpose - a given VF may fail, but * we need to keep going and send to all of them */ i40e_aq_send_msg_to_vf(hw, abs_vf_id, v_opcode, v_retval, msg, msglen, NULL); } } /** * i40e_vc_link_speed2mbps * converts i40e_aq_link_speed to integer value of Mbps * @link_speed: the speed to convert * * return the speed as direct value of Mbps. **/ static u32 i40e_vc_link_speed2mbps(enum i40e_aq_link_speed link_speed) { switch (link_speed) { case I40E_LINK_SPEED_100MB: return SPEED_100; case I40E_LINK_SPEED_1GB: return SPEED_1000; case I40E_LINK_SPEED_2_5GB: return SPEED_2500; case I40E_LINK_SPEED_5GB: return SPEED_5000; case I40E_LINK_SPEED_10GB: return SPEED_10000; case I40E_LINK_SPEED_20GB: return SPEED_20000; case I40E_LINK_SPEED_25GB: return SPEED_25000; case I40E_LINK_SPEED_40GB: return SPEED_40000; case I40E_LINK_SPEED_UNKNOWN: return SPEED_UNKNOWN; } return SPEED_UNKNOWN; } /** * i40e_set_vf_link_state * @vf: pointer to the VF structure * @pfe: pointer to PF event structure * @ls: pointer to link status structure * * set a link state on a single vf **/ static void i40e_set_vf_link_state(struct i40e_vf *vf, struct virtchnl_pf_event *pfe, struct i40e_link_status *ls) { u8 link_status = ls->link_info & I40E_AQ_LINK_UP; if (vf->link_forced) link_status = vf->link_up; if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) { pfe->event_data.link_event_adv.link_speed = link_status ? i40e_vc_link_speed2mbps(ls->link_speed) : 0; pfe->event_data.link_event_adv.link_status = link_status; } else { pfe->event_data.link_event.link_speed = link_status ? i40e_virtchnl_link_speed(ls->link_speed) : 0; pfe->event_data.link_event.link_status = link_status; } } /** * i40e_vc_notify_vf_link_state * @vf: pointer to the VF structure * * send a link status message to a single VF **/ static void i40e_vc_notify_vf_link_state(struct i40e_vf *vf) { struct virtchnl_pf_event pfe; struct i40e_pf *pf = vf->pf; struct i40e_hw *hw = &pf->hw; struct i40e_link_status *ls = &pf->hw.phy.link_info; int abs_vf_id = vf->vf_id + (int)hw->func_caps.vf_base_id; pfe.event = VIRTCHNL_EVENT_LINK_CHANGE; pfe.severity = PF_EVENT_SEVERITY_INFO; i40e_set_vf_link_state(vf, &pfe, ls); i40e_aq_send_msg_to_vf(hw, abs_vf_id, VIRTCHNL_OP_EVENT, 0, (u8 *)&pfe, sizeof(pfe), NULL); } /** * i40e_vc_notify_link_state * @pf: pointer to the PF structure * * send a link status message to all VFs on a given PF **/ void i40e_vc_notify_link_state(struct i40e_pf *pf) { int i; for (i = 0; i < pf->num_alloc_vfs; i++) i40e_vc_notify_vf_link_state(&pf->vf[i]); } /** * i40e_vc_notify_reset * @pf: pointer to the PF structure * * indicate a pending reset to all VFs on a given PF **/ void i40e_vc_notify_reset(struct i40e_pf *pf) { struct virtchnl_pf_event pfe; pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING; pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM; i40e_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, 0, (u8 *)&pfe, sizeof(struct virtchnl_pf_event)); } /** * i40e_vc_notify_vf_reset * @vf: pointer to the VF structure * * indicate a pending reset to the given VF **/ void i40e_vc_notify_vf_reset(struct i40e_vf *vf) { struct virtchnl_pf_event pfe; int abs_vf_id; /* validate the request */ if (!vf || vf->vf_id >= vf->pf->num_alloc_vfs) return; /* verify if the VF is in either init or active before proceeding */ if (!test_bit(I40E_VF_STATE_INIT, &vf->vf_states) && !test_bit(I40E_VF_STATE_ACTIVE, &vf->vf_states)) return; abs_vf_id = vf->vf_id + (int)vf->pf->hw.func_caps.vf_base_id; pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING; pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM; i40e_aq_send_msg_to_vf(&vf->pf->hw, abs_vf_id, VIRTCHNL_OP_EVENT, 0, (u8 *)&pfe, sizeof(struct virtchnl_pf_event), NULL); } /***********************misc routines*****************************/ /** * i40e_vc_reset_vf * @vf: pointer to the VF info * @notify_vf: notify vf about reset or not * Reset VF handler. **/ static void i40e_vc_reset_vf(struct i40e_vf *vf, bool notify_vf) { struct i40e_pf *pf = vf->pf; int i; if (notify_vf) i40e_vc_notify_vf_reset(vf); /* We want to ensure that an actual reset occurs initiated after this * function was called. However, we do not want to wait forever, so * we'll give a reasonable time and print a message if we failed to * ensure a reset. */ for (i = 0; i < 20; i++) { /* If PF is in VFs releasing state reset VF is impossible, * so leave it. */ if (test_bit(__I40E_VFS_RELEASING, pf->state)) return; if (i40e_reset_vf(vf, false)) return; usleep_range(10000, 20000); } if (notify_vf) dev_warn(&vf->pf->pdev->dev, "Failed to initiate reset for VF %d after 200 milliseconds\n", vf->vf_id); else dev_dbg(&vf->pf->pdev->dev, "Failed to initiate reset for VF %d after 200 milliseconds\n", vf->vf_id); } /** * i40e_vc_isvalid_vsi_id * @vf: pointer to the VF info * @vsi_id: VF relative VSI id * * check for the valid VSI id **/ static inline bool i40e_vc_isvalid_vsi_id(struct i40e_vf *vf, u16 vsi_id) { struct i40e_pf *pf = vf->pf; struct i40e_vsi *vsi = i40e_find_vsi_from_id(pf, vsi_id); return (vsi && (vsi->vf_id == vf->vf_id)); } /** * i40e_vc_isvalid_queue_id * @vf: pointer to the VF info * @vsi_id: vsi id * @qid: vsi relative queue id * * check for the valid queue id **/ static inline bool i40e_vc_isvalid_queue_id(struct i40e_vf *vf, u16 vsi_id, u16 qid) { struct i40e_pf *pf = vf->pf; struct i40e_vsi *vsi = i40e_find_vsi_from_id(pf, vsi_id); return (vsi && (qid < vsi->alloc_queue_pairs)); } /** * i40e_vc_isvalid_vector_id * @vf: pointer to the VF info * @vector_id: VF relative vector id * * check for the valid vector id **/ static inline bool i40e_vc_isvalid_vector_id(struct i40e_vf *vf, u32 vector_id) { struct i40e_pf *pf = vf->pf; return vector_id < pf->hw.func_caps.num_msix_vectors_vf; } /***********************vf resource mgmt routines*****************/ /** * i40e_vc_get_pf_queue_id * @vf: pointer to the VF info * @vsi_id: id of VSI as provided by the FW * @vsi_queue_id: vsi relative queue id * * return PF relative queue id **/ static u16 i40e_vc_get_pf_queue_id(struct i40e_vf *vf, u16 vsi_id, u8 vsi_queue_id) { struct i40e_pf *pf = vf->pf; struct i40e_vsi *vsi = i40e_find_vsi_from_id(pf, vsi_id); u16 pf_queue_id = I40E_QUEUE_END_OF_LIST; if (!vsi) return pf_queue_id; if (le16_to_cpu(vsi->info.mapping_flags) & I40E_AQ_VSI_QUE_MAP_NONCONTIG) pf_queue_id = le16_to_cpu(vsi->info.queue_mapping[vsi_queue_id]); else pf_queue_id = le16_to_cpu(vsi->info.queue_mapping[0]) + vsi_queue_id; return pf_queue_id; } /** * i40e_get_real_pf_qid * @vf: pointer to the VF info * @vsi_id: vsi id * @queue_id: queue number * * wrapper function to get pf_queue_id handling ADq code as well **/ static u16 i40e_get_real_pf_qid(struct i40e_vf *vf, u16 vsi_id, u16 queue_id) { int i; if (vf->adq_enabled) { /* Although VF considers all the queues(can be 1 to 16) as its * own but they may actually belong to different VSIs(up to 4). * We need to find which queues belongs to which VSI. */ for (i = 0; i < vf->num_tc; i++) { if (queue_id < vf->ch[i].num_qps) { vsi_id = vf->ch[i].vsi_id; break; } /* find right queue id which is relative to a * given VSI. */ queue_id -= vf->ch[i].num_qps; } } return i40e_vc_get_pf_queue_id(vf, vsi_id, queue_id); } /** * i40e_config_irq_link_list * @vf: pointer to the VF info * @vsi_id: id of VSI as given by the FW * @vecmap: irq map info * * configure irq link list from the map **/ static void i40e_config_irq_link_list(struct i40e_vf *vf, u16 vsi_id, struct virtchnl_vector_map *vecmap) { unsigned long linklistmap = 0, tempmap; struct i40e_pf *pf = vf->pf; struct i40e_hw *hw = &pf->hw; u16 vsi_queue_id, pf_queue_id; enum i40e_queue_type qtype; u16 next_q, vector_id, size; u32 reg, reg_idx; u16 itr_idx = 0; vector_id = vecmap->vector_id; /* setup the head */ if (0 == vector_id) reg_idx = I40E_VPINT_LNKLST0(vf->vf_id); else reg_idx = I40E_VPINT_LNKLSTN( ((pf->hw.func_caps.num_msix_vectors_vf - 1) * vf->vf_id) + (vector_id - 1)); if (vecmap->rxq_map == 0 && vecmap->txq_map == 0) { /* Special case - No queues mapped on this vector */ wr32(hw, reg_idx, I40E_VPINT_LNKLST0_FIRSTQ_INDX_MASK); goto irq_list_done; } tempmap = vecmap->rxq_map; for_each_set_bit(vsi_queue_id, &tempmap, I40E_MAX_VSI_QP) { linklistmap |= (BIT(I40E_VIRTCHNL_SUPPORTED_QTYPES * vsi_queue_id)); } tempmap = vecmap->txq_map; for_each_set_bit(vsi_queue_id, &tempmap, I40E_MAX_VSI_QP) { linklistmap |= (BIT(I40E_VIRTCHNL_SUPPORTED_QTYPES * vsi_queue_id + 1)); } size = I40E_MAX_VSI_QP * I40E_VIRTCHNL_SUPPORTED_QTYPES; next_q = find_first_bit(&linklistmap, size); if (unlikely(next_q == size)) goto irq_list_done; vsi_queue_id = next_q / I40E_VIRTCHNL_SUPPORTED_QTYPES; qtype = next_q % I40E_VIRTCHNL_SUPPORTED_QTYPES; pf_queue_id = i40e_get_real_pf_qid(vf, vsi_id, vsi_queue_id); reg = ((qtype << I40E_VPINT_LNKLSTN_FIRSTQ_TYPE_SHIFT) | pf_queue_id); wr32(hw, reg_idx, reg); while (next_q < size) { switch (qtype) { case I40E_QUEUE_TYPE_RX: reg_idx = I40E_QINT_RQCTL(pf_queue_id); itr_idx = vecmap->rxitr_idx; break; case I40E_QUEUE_TYPE_TX: reg_idx = I40E_QINT_TQCTL(pf_queue_id); itr_idx = vecmap->txitr_idx; break; default: break; } next_q = find_next_bit(&linklistmap, size, next_q + 1); if (next_q < size) { vsi_queue_id = next_q / I40E_VIRTCHNL_SUPPORTED_QTYPES; qtype = next_q % I40E_VIRTCHNL_SUPPORTED_QTYPES; pf_queue_id = i40e_get_real_pf_qid(vf, vsi_id, vsi_queue_id); } else { pf_queue_id = I40E_QUEUE_END_OF_LIST; qtype = 0; } /* format for the RQCTL & TQCTL regs is same */ reg = (vector_id) | (qtype << I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT) | (pf_queue_id << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) | BIT(I40E_QINT_RQCTL_CAUSE_ENA_SHIFT) | (itr_idx << I40E_QINT_RQCTL_ITR_INDX_SHIFT); wr32(hw, reg_idx, reg); } /* if the vf is running in polling mode and using interrupt zero, * need to disable auto-mask on enabling zero interrupt for VFs. */ if ((vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING) && (vector_id == 0)) { reg = rd32(hw, I40E_GLINT_CTL); if (!(reg & I40E_GLINT_CTL_DIS_AUTOMASK_VF0_MASK)) { reg |= I40E_GLINT_CTL_DIS_AUTOMASK_VF0_MASK; wr32(hw, I40E_GLINT_CTL, reg); } } irq_list_done: i40e_flush(hw); } /** * i40e_release_iwarp_qvlist * @vf: pointer to the VF. * **/ static void i40e_release_iwarp_qvlist(struct i40e_vf *vf) { struct i40e_pf *pf = vf->pf; struct virtchnl_iwarp_qvlist_info *qvlist_info = vf->qvlist_info; u32 msix_vf; u32 i; if (!vf->qvlist_info) return; msix_vf = pf->hw.func_caps.num_msix_vectors_vf; for (i = 0; i < qvlist_info->num_vectors; i++) { struct virtchnl_iwarp_qv_info *qv_info; u32 next_q_index, next_q_type; struct i40e_hw *hw = &pf->hw; u32 v_idx, reg_idx, reg; qv_info = &qvlist_info->qv_info[i]; if (!qv_info) continue; v_idx = qv_info->v_idx; if (qv_info->ceq_idx != I40E_QUEUE_INVALID_IDX) { /* Figure out the queue after CEQ and make that the * first queue. */ reg_idx = (msix_vf - 1) * vf->vf_id + qv_info->ceq_idx; reg = rd32(hw, I40E_VPINT_CEQCTL(reg_idx)); next_q_index = (reg & I40E_VPINT_CEQCTL_NEXTQ_INDX_MASK) >> I40E_VPINT_CEQCTL_NEXTQ_INDX_SHIFT; next_q_type = (reg & I40E_VPINT_CEQCTL_NEXTQ_TYPE_MASK) >> I40E_VPINT_CEQCTL_NEXTQ_TYPE_SHIFT; reg_idx = ((msix_vf - 1) * vf->vf_id) + (v_idx - 1); reg = (next_q_index & I40E_VPINT_LNKLSTN_FIRSTQ_INDX_MASK) | (next_q_type << I40E_VPINT_LNKLSTN_FIRSTQ_TYPE_SHIFT); wr32(hw, I40E_VPINT_LNKLSTN(reg_idx), reg); } } kfree(vf->qvlist_info); vf->qvlist_info = NULL; } /** * i40e_config_iwarp_qvlist * @vf: pointer to the VF info * @qvlist_info: queue and vector list * * Return 0 on success or < 0 on error **/ static int i40e_config_iwarp_qvlist(struct i40e_vf *vf, struct virtchnl_iwarp_qvlist_info *qvlist_info) { struct i40e_pf *pf = vf->pf; struct i40e_hw *hw = &pf->hw; struct virtchnl_iwarp_qv_info *qv_info; u32 v_idx, i, reg_idx, reg; u32 next_q_idx, next_q_type; u32 msix_vf; int ret = 0; msix_vf = pf->hw.func_caps.num_msix_vectors_vf; if (qvlist_info->num_vectors > msix_vf) { dev_warn(&pf->pdev->dev, "Incorrect number of iwarp vectors %u. Maximum %u allowed.\n", qvlist_info->num_vectors, msix_vf); ret = -EINVAL; goto err_out; } kfree(vf->qvlist_info); vf->qvlist_info = kzalloc(struct_size(vf->qvlist_info, qv_info, qvlist_info->num_vectors - 1), GFP_KERNEL); if (!vf->qvlist_info) { ret = -ENOMEM; goto err_out; } vf->qvlist_info->num_vectors = qvlist_info->num_vectors; msix_vf = pf->hw.func_caps.num_msix_vectors_vf; for (i = 0; i < qvlist_info->num_vectors; i++) { qv_info = &qvlist_info->qv_info[i]; if (!qv_info) continue; /* Validate vector id belongs to this vf */ if (!i40e_vc_isvalid_vector_id(vf, qv_info->v_idx)) { ret = -EINVAL; goto err_free; } v_idx = qv_info->v_idx; vf->qvlist_info->qv_info[i] = *qv_info; reg_idx = ((msix_vf - 1) * vf->vf_id) + (v_idx - 1); /* We might be sharing the interrupt, so get the first queue * index and type, push it down the list by adding the new * queue on top. Also link it with the new queue in CEQCTL. */ reg = rd32(hw, I40E_VPINT_LNKLSTN(reg_idx)); next_q_idx = ((reg & I40E_VPINT_LNKLSTN_FIRSTQ_INDX_MASK) >> I40E_VPINT_LNKLSTN_FIRSTQ_INDX_SHIFT); next_q_type = ((reg & I40E_VPINT_LNKLSTN_FIRSTQ_TYPE_MASK) >> I40E_VPINT_LNKLSTN_FIRSTQ_TYPE_SHIFT); if (qv_info->ceq_idx != I40E_QUEUE_INVALID_IDX) { reg_idx = (msix_vf - 1) * vf->vf_id + qv_info->ceq_idx; reg = (I40E_VPINT_CEQCTL_CAUSE_ENA_MASK | (v_idx << I40E_VPINT_CEQCTL_MSIX_INDX_SHIFT) | (qv_info->itr_idx << I40E_VPINT_CEQCTL_ITR_INDX_SHIFT) | (next_q_type << I40E_VPINT_CEQCTL_NEXTQ_TYPE_SHIFT) | (next_q_idx << I40E_VPINT_CEQCTL_NEXTQ_INDX_SHIFT)); wr32(hw, I40E_VPINT_CEQCTL(reg_idx), reg); reg_idx = ((msix_vf - 1) * vf->vf_id) + (v_idx - 1); reg = (qv_info->ceq_idx & I40E_VPINT_LNKLSTN_FIRSTQ_INDX_MASK) | (I40E_QUEUE_TYPE_PE_CEQ << I40E_VPINT_LNKLSTN_FIRSTQ_TYPE_SHIFT); wr32(hw, I40E_VPINT_LNKLSTN(reg_idx), reg); } if (qv_info->aeq_idx != I40E_QUEUE_INVALID_IDX) { reg = (I40E_VPINT_AEQCTL_CAUSE_ENA_MASK | (v_idx << I40E_VPINT_AEQCTL_MSIX_INDX_SHIFT) | (qv_info->itr_idx << I40E_VPINT_AEQCTL_ITR_INDX_SHIFT)); wr32(hw, I40E_VPINT_AEQCTL(vf->vf_id), reg); } } return 0; err_free: kfree(vf->qvlist_info); vf->qvlist_info = NULL; err_out: return ret; } /** * i40e_config_vsi_tx_queue * @vf: pointer to the VF info * @vsi_id: id of VSI as provided by the FW * @vsi_queue_id: vsi relative queue index * @info: config. info * * configure tx queue **/ static int i40e_config_vsi_tx_queue(struct i40e_vf *vf, u16 vsi_id, u16 vsi_queue_id, struct virtchnl_txq_info *info) { struct i40e_pf *pf = vf->pf; struct i40e_hw *hw = &pf->hw; struct i40e_hmc_obj_txq tx_ctx; struct i40e_vsi *vsi; u16 pf_queue_id; u32 qtx_ctl; int ret = 0; if (!i40e_vc_isvalid_vsi_id(vf, info->vsi_id)) { ret = -ENOENT; goto error_context; } pf_queue_id = i40e_vc_get_pf_queue_id(vf, vsi_id, vsi_queue_id); vsi = i40e_find_vsi_from_id(pf, vsi_id); if (!vsi) { ret = -ENOENT; goto error_context; } /* clear the context structure first */ memset(&tx_ctx, 0, sizeof(struct i40e_hmc_obj_txq)); /* only set the required fields */ tx_ctx.base = info->dma_ring_addr / 128; tx_ctx.qlen = info->ring_len; tx_ctx.rdylist = le16_to_cpu(vsi->info.qs_handle[0]); tx_ctx.rdylist_act = 0; tx_ctx.head_wb_ena = info->headwb_enabled; tx_ctx.head_wb_addr = info->dma_headwb_addr; /* clear the context in the HMC */ ret = i40e_clear_lan_tx_queue_context(hw, pf_queue_id); if (ret) { dev_err(&pf->pdev->dev, "Failed to clear VF LAN Tx queue context %d, error: %d\n", pf_queue_id, ret); ret = -ENOENT; goto error_context; } /* set the context in the HMC */ ret = i40e_set_lan_tx_queue_context(hw, pf_queue_id, &tx_ctx); if (ret) { dev_err(&pf->pdev->dev, "Failed to set VF LAN Tx queue context %d error: %d\n", pf_queue_id, ret); ret = -ENOENT; goto error_context; } /* associate this queue with the PCI VF function */ qtx_ctl = I40E_QTX_CTL_VF_QUEUE; qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) & I40E_QTX_CTL_PF_INDX_MASK); qtx_ctl |= (((vf->vf_id + hw->func_caps.vf_base_id) << I40E_QTX_CTL_VFVM_INDX_SHIFT) & I40E_QTX_CTL_VFVM_INDX_MASK); wr32(hw, I40E_QTX_CTL(pf_queue_id), qtx_ctl); i40e_flush(hw); error_context: return ret; } /** * i40e_config_vsi_rx_queue * @vf: pointer to the VF info * @vsi_id: id of VSI as provided by the FW * @vsi_queue_id: vsi relative queue index * @info: config. info * * configure rx queue **/ static int i40e_config_vsi_rx_queue(struct i40e_vf *vf, u16 vsi_id, u16 vsi_queue_id, struct virtchnl_rxq_info *info) { u16 pf_queue_id = i40e_vc_get_pf_queue_id(vf, vsi_id, vsi_queue_id); struct i40e_pf *pf = vf->pf; struct i40e_vsi *vsi = pf->vsi[vf->lan_vsi_idx]; struct i40e_hw *hw = &pf->hw; struct i40e_hmc_obj_rxq rx_ctx; int ret = 0; /* clear the context structure first */ memset(&rx_ctx, 0, sizeof(struct i40e_hmc_obj_rxq)); /* only set the required fields */ rx_ctx.base = info->dma_ring_addr / 128; rx_ctx.qlen = info->ring_len; if (info->splithdr_enabled) { rx_ctx.hsplit_0 = I40E_RX_SPLIT_L2 | I40E_RX_SPLIT_IP | I40E_RX_SPLIT_TCP_UDP | I40E_RX_SPLIT_SCTP; /* header length validation */ if (info->hdr_size > ((2 * 1024) - 64)) { ret = -EINVAL; goto error_param; } rx_ctx.hbuff = info->hdr_size >> I40E_RXQ_CTX_HBUFF_SHIFT; /* set split mode 10b */ rx_ctx.dtype = I40E_RX_DTYPE_HEADER_SPLIT; } /* databuffer length validation */ if (info->databuffer_size > ((16 * 1024) - 128)) { ret = -EINVAL; goto error_param; } rx_ctx.dbuff = info->databuffer_size >> I40E_RXQ_CTX_DBUFF_SHIFT; /* max pkt. length validation */ if (info->max_pkt_size >= (16 * 1024) || info->max_pkt_size < 64) { ret = -EINVAL; goto error_param; } rx_ctx.rxmax = info->max_pkt_size; /* if port VLAN is configured increase the max packet size */ if (vsi->info.pvid) rx_ctx.rxmax += VLAN_HLEN; /* enable 32bytes desc always */ rx_ctx.dsize = 1; /* default values */ rx_ctx.lrxqthresh = 1; rx_ctx.crcstrip = 1; rx_ctx.prefena = 1; rx_ctx.l2tsel = 1; /* clear the context in the HMC */ ret = i40e_clear_lan_rx_queue_context(hw, pf_queue_id); if (ret) { dev_err(&pf->pdev->dev, "Failed to clear VF LAN Rx queue context %d, error: %d\n", pf_queue_id, ret); ret = -ENOENT; goto error_param; } /* set the context in the HMC */ ret = i40e_set_lan_rx_queue_context(hw, pf_queue_id, &rx_ctx); if (ret) { dev_err(&pf->pdev->dev, "Failed to set VF LAN Rx queue context %d error: %d\n", pf_queue_id, ret); ret = -ENOENT; goto error_param; } error_param: return ret; } /** * i40e_alloc_vsi_res * @vf: pointer to the VF info * @idx: VSI index, applies only for ADq mode, zero otherwise * * alloc VF vsi context & resources **/ static int i40e_alloc_vsi_res(struct i40e_vf *vf, u8 idx) { struct i40e_mac_filter *f = NULL; struct i40e_pf *pf = vf->pf; struct i40e_vsi *vsi; u64 max_tx_rate = 0; int ret = 0; vsi = i40e_vsi_setup(pf, I40E_VSI_SRIOV, pf->vsi[pf->lan_vsi]->seid, vf->vf_id); if (!vsi) { dev_err(&pf->pdev->dev, "add vsi failed for VF %d, aq_err %d\n", vf->vf_id, pf->hw.aq.asq_last_status); ret = -ENOENT; goto error_alloc_vsi_res; } if (!idx) { u64 hena = i40e_pf_get_default_rss_hena(pf); u8 broadcast[ETH_ALEN]; vf->lan_vsi_idx = vsi->idx; vf->lan_vsi_id = vsi->id; /* If the port VLAN has been configured and then the * VF driver was removed then the VSI port VLAN * configuration was destroyed. Check if there is * a port VLAN and restore the VSI configuration if * needed. */ if (vf->port_vlan_id) i40e_vsi_add_pvid(vsi, vf->port_vlan_id); spin_lock_bh(&vsi->mac_filter_hash_lock); if (is_valid_ether_addr(vf->default_lan_addr.addr)) { f = i40e_add_mac_filter(vsi, vf->default_lan_addr.addr); if (!f) dev_info(&pf->pdev->dev, "Could not add MAC filter %pM for VF %d\n", vf->default_lan_addr.addr, vf->vf_id); } eth_broadcast_addr(broadcast); f = i40e_add_mac_filter(vsi, broadcast); if (!f) dev_info(&pf->pdev->dev, "Could not allocate VF broadcast filter\n"); spin_unlock_bh(&vsi->mac_filter_hash_lock); wr32(&pf->hw, I40E_VFQF_HENA1(0, vf->vf_id), (u32)hena); wr32(&pf->hw, I40E_VFQF_HENA1(1, vf->vf_id), (u32)(hena >> 32)); /* program mac filter only for VF VSI */ ret = i40e_sync_vsi_filters(vsi); if (ret) dev_err(&pf->pdev->dev, "Unable to program ucast filters\n"); } /* storing VSI index and id for ADq and don't apply the mac filter */ if (vf->adq_enabled) { vf->ch[idx].vsi_idx = vsi->idx; vf->ch[idx].vsi_id = vsi->id; } /* Set VF bandwidth if specified */ if (vf->tx_rate) { max_tx_rate = vf->tx_rate; } else if (vf->ch[idx].max_tx_rate) { max_tx_rate = vf->ch[idx].max_tx_rate; } if (max_tx_rate) { max_tx_rate = div_u64(max_tx_rate, I40E_BW_CREDIT_DIVISOR); ret = i40e_aq_config_vsi_bw_limit(&pf->hw, vsi->seid, max_tx_rate, 0, NULL); if (ret) dev_err(&pf->pdev->dev, "Unable to set tx rate, VF %d, error code %d.\n", vf->vf_id, ret); } error_alloc_vsi_res: return ret; } /** * i40e_map_pf_queues_to_vsi * @vf: pointer to the VF info * * PF maps LQPs to a VF by programming VSILAN_QTABLE & VPLAN_QTABLE. This * function takes care of first part VSILAN_QTABLE, mapping pf queues to VSI. **/ static void i40e_map_pf_queues_to_vsi(struct i40e_vf *vf) { struct i40e_pf *pf = vf->pf; struct i40e_hw *hw = &pf->hw; u32 reg, num_tc = 1; /* VF has at least one traffic class */ u16 vsi_id, qps; int i, j; if (vf->adq_enabled) num_tc = vf->num_tc; for (i = 0; i < num_tc; i++) { if (vf->adq_enabled) { qps = vf->ch[i].num_qps; vsi_id = vf->ch[i].vsi_id; } else { qps = pf->vsi[vf->lan_vsi_idx]->alloc_queue_pairs; vsi_id = vf->lan_vsi_id; } for (j = 0; j < 7; j++) { if (j * 2 >= qps) { /* end of list */ reg = 0x07FF07FF; } else { u16 qid = i40e_vc_get_pf_queue_id(vf, vsi_id, j * 2); reg = qid; qid = i40e_vc_get_pf_queue_id(vf, vsi_id, (j * 2) + 1); reg |= qid << 16; } i40e_write_rx_ctl(hw, I40E_VSILAN_QTABLE(j, vsi_id), reg); } } } /** * i40e_map_pf_to_vf_queues * @vf: pointer to the VF info * * PF maps LQPs to a VF by programming VSILAN_QTABLE & VPLAN_QTABLE. This * function takes care of the second part VPLAN_QTABLE & completes VF mappings. **/ static void i40e_map_pf_to_vf_queues(struct i40e_vf *vf) { struct i40e_pf *pf = vf->pf; struct i40e_hw *hw = &pf->hw; u32 reg, total_qps = 0; u32 qps, num_tc = 1; /* VF has at least one traffic class */ u16 vsi_id, qid; int i, j; if (vf->adq_enabled) num_tc = vf->num_tc; for (i = 0; i < num_tc; i++) { if (vf->adq_enabled) { qps = vf->ch[i].num_qps; vsi_id = vf->ch[i].vsi_id; } else { qps = pf->vsi[vf->lan_vsi_idx]->alloc_queue_pairs; vsi_id = vf->lan_vsi_id; } for (j = 0; j < qps; j++) { qid = i40e_vc_get_pf_queue_id(vf, vsi_id, j); reg = (qid & I40E_VPLAN_QTABLE_QINDEX_MASK); wr32(hw, I40E_VPLAN_QTABLE(total_qps, vf->vf_id), reg); total_qps++; } } } /** * i40e_enable_vf_mappings * @vf: pointer to the VF info * * enable VF mappings **/ static void i40e_enable_vf_mappings(struct i40e_vf *vf) { struct i40e_pf *pf = vf->pf; struct i40e_hw *hw = &pf->hw; u32 reg; /* Tell the hardware we're using noncontiguous mapping. HW requires * that VF queues be mapped using this method, even when they are * contiguous in real life */ i40e_write_rx_ctl(hw, I40E_VSILAN_QBASE(vf->lan_vsi_id), I40E_VSILAN_QBASE_VSIQTABLE_ENA_MASK); /* enable VF vplan_qtable mappings */ reg = I40E_VPLAN_MAPENA_TXRX_ENA_MASK; wr32(hw, I40E_VPLAN_MAPENA(vf->vf_id), reg); i40e_map_pf_to_vf_queues(vf); i40e_map_pf_queues_to_vsi(vf); i40e_flush(hw); } /** * i40e_disable_vf_mappings * @vf: pointer to the VF info * * disable VF mappings **/ static void i40e_disable_vf_mappings(struct i40e_vf *vf) { struct i40e_pf *pf = vf->pf; struct i40e_hw *hw = &pf->hw; int i; /* disable qp mappings */ wr32(hw, I40E_VPLAN_MAPENA(vf->vf_id), 0); for (i = 0; i < I40E_MAX_VSI_QP; i++) wr32(hw, I40E_VPLAN_QTABLE(i, vf->vf_id), I40E_QUEUE_END_OF_LIST); i40e_flush(hw); } /** * i40e_free_vf_res * @vf: pointer to the VF info * * free VF resources **/ static void i40e_free_vf_res(struct i40e_vf *vf) { struct i40e_pf *pf = vf->pf; struct i40e_hw *hw = &pf->hw; u32 reg_idx, reg; int i, j, msix_vf; /* Start by disabling VF's configuration API to prevent the OS from * accessing the VF's VSI after it's freed / invalidated. */ clear_bit(I40E_VF_STATE_INIT, &vf->vf_states); /* It's possible the VF had requeuested more queues than the default so * do the accounting here when we're about to free them. */ if (vf->num_queue_pairs > I40E_DEFAULT_QUEUES_PER_VF) { pf->queues_left += vf->num_queue_pairs - I40E_DEFAULT_QUEUES_PER_VF; } /* free vsi & disconnect it from the parent uplink */ if (vf->lan_vsi_idx) { i40e_vsi_release(pf->vsi[vf->lan_vsi_idx]); vf->lan_vsi_idx = 0; vf->lan_vsi_id = 0; } /* do the accounting and remove additional ADq VSI's */ if (vf->adq_enabled && vf->ch[0].vsi_idx) { for (j = 0; j < vf->num_tc; j++) { /* At this point VSI0 is already released so don't * release it again and only clear their values in * structure variables */ if (j) i40e_vsi_release(pf->vsi[vf->ch[j].vsi_idx]); vf->ch[j].vsi_idx = 0; vf->ch[j].vsi_id = 0; } } msix_vf = pf->hw.func_caps.num_msix_vectors_vf; /* disable interrupts so the VF starts in a known state */ for (i = 0; i < msix_vf; i++) { /* format is same for both registers */ if (0 == i) reg_idx = I40E_VFINT_DYN_CTL0(vf->vf_id); else reg_idx = I40E_VFINT_DYN_CTLN(((msix_vf - 1) * (vf->vf_id)) + (i - 1)); wr32(hw, reg_idx, I40E_VFINT_DYN_CTLN_CLEARPBA_MASK); i40e_flush(hw); } /* clear the irq settings */ for (i = 0; i < msix_vf; i++) { /* format is same for both registers */ if (0 == i) reg_idx = I40E_VPINT_LNKLST0(vf->vf_id); else reg_idx = I40E_VPINT_LNKLSTN(((msix_vf - 1) * (vf->vf_id)) + (i - 1)); reg = (I40E_VPINT_LNKLSTN_FIRSTQ_TYPE_MASK | I40E_VPINT_LNKLSTN_FIRSTQ_INDX_MASK); wr32(hw, reg_idx, reg); i40e_flush(hw); } /* reset some of the state variables keeping track of the resources */ vf->num_queue_pairs = 0; clear_bit(I40E_VF_STATE_MC_PROMISC, &vf->vf_states); clear_bit(I40E_VF_STATE_UC_PROMISC, &vf->vf_states); } /** * i40e_alloc_vf_res * @vf: pointer to the VF info * * allocate VF resources **/ static int i40e_alloc_vf_res(struct i40e_vf *vf) { struct i40e_pf *pf = vf->pf; int total_queue_pairs = 0; int ret, idx; if (vf->num_req_queues && vf->num_req_queues <= pf->queues_left + I40E_DEFAULT_QUEUES_PER_VF) pf->num_vf_qps = vf->num_req_queues; else pf->num_vf_qps = I40E_DEFAULT_QUEUES_PER_VF; /* allocate hw vsi context & associated resources */ ret = i40e_alloc_vsi_res(vf, 0); if (ret) goto error_alloc; total_queue_pairs += pf->vsi[vf->lan_vsi_idx]->alloc_queue_pairs; /* allocate additional VSIs based on tc information for ADq */ if (vf->adq_enabled) { if (pf->queues_left >= (I40E_MAX_VF_QUEUES - I40E_DEFAULT_QUEUES_PER_VF)) { /* TC 0 always belongs to VF VSI */ for (idx = 1; idx < vf->num_tc; idx++) { ret = i40e_alloc_vsi_res(vf, idx); if (ret) goto error_alloc; } /* send correct number of queues */ total_queue_pairs = I40E_MAX_VF_QUEUES; } else { dev_info(&pf->pdev->dev, "VF %d: Not enough queues to allocate, disabling ADq\n", vf->vf_id); vf->adq_enabled = false; } } /* We account for each VF to get a default number of queue pairs. If * the VF has now requested more, we need to account for that to make * certain we never request more queues than we actually have left in * HW. */ if (total_queue_pairs > I40E_DEFAULT_QUEUES_PER_VF) pf->queues_left -= total_queue_pairs - I40E_DEFAULT_QUEUES_PER_VF; if (vf->trusted) set_bit(I40E_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps); else clear_bit(I40E_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps); /* store the total qps number for the runtime * VF req validation */ vf->num_queue_pairs = total_queue_pairs; /* VF is now completely initialized */ set_bit(I40E_VF_STATE_INIT, &vf->vf_states); error_alloc: if (ret) i40e_free_vf_res(vf); return ret; } #define VF_DEVICE_STATUS 0xAA #define VF_TRANS_PENDING_MASK 0x20 /** * i40e_quiesce_vf_pci * @vf: pointer to the VF structure * * Wait for VF PCI transactions to be cleared after reset. Returns -EIO * if the transactions never clear. **/ static int i40e_quiesce_vf_pci(struct i40e_vf *vf) { struct i40e_pf *pf = vf->pf; struct i40e_hw *hw = &pf->hw; int vf_abs_id, i; u32 reg; vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id; wr32(hw, I40E_PF_PCI_CIAA, VF_DEVICE_STATUS | (vf_abs_id << I40E_PF_PCI_CIAA_VF_NUM_SHIFT)); for (i = 0; i < 100; i++) { reg = rd32(hw, I40E_PF_PCI_CIAD); if ((reg & VF_TRANS_PENDING_MASK) == 0) return 0; udelay(1); } return -EIO; } /** * __i40e_getnum_vf_vsi_vlan_filters * @vsi: pointer to the vsi * * called to get the number of VLANs offloaded on this VF **/ static int __i40e_getnum_vf_vsi_vlan_filters(struct i40e_vsi *vsi) { struct i40e_mac_filter *f; u16 num_vlans = 0, bkt; hash_for_each(vsi->mac_filter_hash, bkt, f, hlist) { if (f->vlan >= 0 && f->vlan <= I40E_MAX_VLANID) num_vlans++; } return num_vlans; } /** * i40e_getnum_vf_vsi_vlan_filters * @vsi: pointer to the vsi * * wrapper for __i40e_getnum_vf_vsi_vlan_filters() with spinlock held **/ static int i40e_getnum_vf_vsi_vlan_filters(struct i40e_vsi *vsi) { int num_vlans; spin_lock_bh(&vsi->mac_filter_hash_lock); num_vlans = __i40e_getnum_vf_vsi_vlan_filters(vsi); spin_unlock_bh(&vsi->mac_filter_hash_lock); return num_vlans; } /** * i40e_get_vlan_list_sync * @vsi: pointer to the VSI * @num_vlans: number of VLANs in mac_filter_hash, returned to caller * @vlan_list: list of VLANs present in mac_filter_hash, returned to caller. * This array is allocated here, but has to be freed in caller. * * Called to get number of VLANs and VLAN list present in mac_filter_hash. **/ static void i40e_get_vlan_list_sync(struct i40e_vsi *vsi, u16 *num_vlans, s16 **vlan_list) { struct i40e_mac_filter *f; int i = 0; int bkt; spin_lock_bh(&vsi->mac_filter_hash_lock); *num_vlans = __i40e_getnum_vf_vsi_vlan_filters(vsi); *vlan_list = kcalloc(*num_vlans, sizeof(**vlan_list), GFP_ATOMIC); if (!(*vlan_list)) goto err; hash_for_each(vsi->mac_filter_hash, bkt, f, hlist) { if (f->vlan < 0 || f->vlan > I40E_MAX_VLANID) continue; (*vlan_list)[i++] = f->vlan; } err: spin_unlock_bh(&vsi->mac_filter_hash_lock); } /** * i40e_set_vsi_promisc * @vf: pointer to the VF struct * @seid: VSI number * @multi_enable: set MAC L2 layer multicast promiscuous enable/disable * for a given VLAN * @unicast_enable: set MAC L2 layer unicast promiscuous enable/disable * for a given VLAN * @vl: List of VLANs - apply filter for given VLANs * @num_vlans: Number of elements in @vl **/ static i40e_status i40e_set_vsi_promisc(struct i40e_vf *vf, u16 seid, bool multi_enable, bool unicast_enable, s16 *vl, u16 num_vlans) { i40e_status aq_ret, aq_tmp = 0; struct i40e_pf *pf = vf->pf; struct i40e_hw *hw = &pf->hw; int i; /* No VLAN to set promisc on, set on VSI */ if (!num_vlans || !vl) { aq_ret = i40e_aq_set_vsi_multicast_promiscuous(hw, seid, multi_enable, NULL); if (aq_ret) { int aq_err = pf->hw.aq.asq_last_status; dev_err(&pf->pdev->dev, "VF %d failed to set multicast promiscuous mode err %s aq_err %s\n", vf->vf_id, i40e_stat_str(&pf->hw, aq_ret), i40e_aq_str(&pf->hw, aq_err)); return aq_ret; } aq_ret = i40e_aq_set_vsi_unicast_promiscuous(hw, seid, unicast_enable, NULL, true); if (aq_ret) { int aq_err = pf->hw.aq.asq_last_status; dev_err(&pf->pdev->dev, "VF %d failed to set unicast promiscuous mode err %s aq_err %s\n", vf->vf_id, i40e_stat_str(&pf->hw, aq_ret), i40e_aq_str(&pf->hw, aq_err)); } return aq_ret; } for (i = 0; i < num_vlans; i++) { aq_ret = i40e_aq_set_vsi_mc_promisc_on_vlan(hw, seid, multi_enable, vl[i], NULL); if (aq_ret) { int aq_err = pf->hw.aq.asq_last_status; dev_err(&pf->pdev->dev, "VF %d failed to set multicast promiscuous mode err %s aq_err %s\n", vf->vf_id, i40e_stat_str(&pf->hw, aq_ret), i40e_aq_str(&pf->hw, aq_err)); if (!aq_tmp) aq_tmp = aq_ret; } aq_ret = i40e_aq_set_vsi_uc_promisc_on_vlan(hw, seid, unicast_enable, vl[i], NULL); if (aq_ret) { int aq_err = pf->hw.aq.asq_last_status; dev_err(&pf->pdev->dev, "VF %d failed to set unicast promiscuous mode err %s aq_err %s\n", vf->vf_id, i40e_stat_str(&pf->hw, aq_ret), i40e_aq_str(&pf->hw, aq_err)); if (!aq_tmp) aq_tmp = aq_ret; } } if (aq_tmp) aq_ret = aq_tmp; return aq_ret; } /** * i40e_config_vf_promiscuous_mode * @vf: pointer to the VF info * @vsi_id: VSI id * @allmulti: set MAC L2 layer multicast promiscuous enable/disable * @alluni: set MAC L2 layer unicast promiscuous enable/disable * * Called from the VF to configure the promiscuous mode of * VF vsis and from the VF reset path to reset promiscuous mode. **/ static i40e_status i40e_config_vf_promiscuous_mode(struct i40e_vf *vf, u16 vsi_id, bool allmulti, bool alluni) { i40e_status aq_ret = I40E_SUCCESS; struct i40e_pf *pf = vf->pf; struct i40e_vsi *vsi; u16 num_vlans; s16 *vl; vsi = i40e_find_vsi_from_id(pf, vsi_id); if (!i40e_vc_isvalid_vsi_id(vf, vsi_id) || !vsi) return I40E_ERR_PARAM; if (vf->port_vlan_id) { aq_ret = i40e_set_vsi_promisc(vf, vsi->seid, allmulti, alluni, &vf->port_vlan_id, 1); return aq_ret; } else if (i40e_getnum_vf_vsi_vlan_filters(vsi)) { i40e_get_vlan_list_sync(vsi, &num_vlans, &vl); if (!vl) return I40E_ERR_NO_MEMORY; aq_ret = i40e_set_vsi_promisc(vf, vsi->seid, allmulti, alluni, vl, num_vlans); kfree(vl); return aq_ret; } /* no VLANs to set on, set on VSI */ aq_ret = i40e_set_vsi_promisc(vf, vsi->seid, allmulti, alluni, NULL, 0); return aq_ret; } /** * i40e_sync_vfr_reset * @hw: pointer to hw struct * @vf_id: VF identifier * * Before trigger hardware reset, we need to know if no other process has * reserved the hardware for any reset operations. This check is done by * examining the status of the RSTAT1 register used to signal the reset. **/ static int i40e_sync_vfr_reset(struct i40e_hw *hw, int vf_id) { u32 reg; int i; for (i = 0; i < I40E_VFR_WAIT_COUNT; i++) { reg = rd32(hw, I40E_VFINT_ICR0_ENA(vf_id)) & I40E_VFINT_ICR0_ADMINQ_MASK; if (reg) return 0; usleep_range(100, 200); } return -EAGAIN; } /** * i40e_trigger_vf_reset * @vf: pointer to the VF structure * @flr: VFLR was issued or not * * Trigger hardware to start a reset for a particular VF. Expects the caller * to wait the proper amount of time to allow hardware to reset the VF before * it cleans up and restores VF functionality. **/ static void i40e_trigger_vf_reset(struct i40e_vf *vf, bool flr) { struct i40e_pf *pf = vf->pf; struct i40e_hw *hw = &pf->hw; u32 reg, reg_idx, bit_idx; bool vf_active; u32 radq; /* warn the VF */ vf_active = test_and_clear_bit(I40E_VF_STATE_ACTIVE, &vf->vf_states); /* Disable VF's configuration API during reset. The flag is re-enabled * in i40e_alloc_vf_res(), when it's safe again to access VF's VSI. * It's normally disabled in i40e_free_vf_res(), but it's safer * to do it earlier to give some time to finish to any VF config * functions that may still be running at this point. */ clear_bit(I40E_VF_STATE_INIT, &vf->vf_states); /* In the case of a VFLR, the HW has already reset the VF and we * just need to clean up, so don't hit the VFRTRIG register. */ if (!flr) { /* Sync VFR reset before trigger next one */ radq = rd32(hw, I40E_VFINT_ICR0_ENA(vf->vf_id)) & I40E_VFINT_ICR0_ADMINQ_MASK; if (vf_active && !radq) /* waiting for finish reset by virtual driver */ if (i40e_sync_vfr_reset(hw, vf->vf_id)) dev_info(&pf->pdev->dev, "Reset VF %d never finished\n", vf->vf_id); /* Reset VF using VPGEN_VFRTRIG reg. It is also setting * in progress state in rstat1 register. */ reg = rd32(hw, I40E_VPGEN_VFRTRIG(vf->vf_id)); reg |= I40E_VPGEN_VFRTRIG_VFSWR_MASK; wr32(hw, I40E_VPGEN_VFRTRIG(vf->vf_id), reg); i40e_flush(hw); } /* clear the VFLR bit in GLGEN_VFLRSTAT */ reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32; bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32; wr32(hw, I40E_GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); i40e_flush(hw); if (i40e_quiesce_vf_pci(vf)) dev_err(&pf->pdev->dev, "VF %d PCI transactions stuck\n", vf->vf_id); } /** * i40e_cleanup_reset_vf * @vf: pointer to the VF structure * * Cleanup a VF after the hardware reset is finished. Expects the caller to * have verified whether the reset is finished properly, and ensure the * minimum amount of wait time has passed. **/ static void i40e_cleanup_reset_vf(struct i40e_vf *vf) { struct i40e_pf *pf = vf->pf; struct i40e_hw *hw = &pf->hw; u32 reg; /* disable promisc modes in case they were enabled */ i40e_config_vf_promiscuous_mode(vf, vf->lan_vsi_id, false, false); /* free VF resources to begin resetting the VSI state */ i40e_free_vf_res(vf); /* Enable hardware by clearing the reset bit in the VPGEN_VFRTRIG reg. * By doing this we allow HW to access VF memory at any point. If we * did it any sooner, HW could access memory while it was being freed * in i40e_free_vf_res(), causing an IOMMU fault. * * On the other hand, this needs to be done ASAP, because the VF driver * is waiting for this to happen and may report a timeout. It's * harmless, but it gets logged into Guest OS kernel log, so best avoid * it. */ reg = rd32(hw, I40E_VPGEN_VFRTRIG(vf->vf_id)); reg &= ~I40E_VPGEN_VFRTRIG_VFSWR_MASK; wr32(hw, I40E_VPGEN_VFRTRIG(vf->vf_id), reg); /* reallocate VF resources to finish resetting the VSI state */ if (!i40e_alloc_vf_res(vf)) { int abs_vf_id = vf->vf_id + hw->func_caps.vf_base_id; i40e_enable_vf_mappings(vf); set_bit(I40E_VF_STATE_ACTIVE, &vf->vf_states); clear_bit(I40E_VF_STATE_DISABLED, &vf->vf_states); /* Do not notify the client during VF init */ if (!test_and_clear_bit(I40E_VF_STATE_PRE_ENABLE, &vf->vf_states)) i40e_notify_client_of_vf_reset(pf, abs_vf_id); vf->num_vlan = 0; } /* Tell the VF driver the reset is done. This needs to be done only * after VF has been fully initialized, because the VF driver may * request resources immediately after setting this flag. */ wr32(hw, I40E_VFGEN_RSTAT1(vf->vf_id), VIRTCHNL_VFR_VFACTIVE); } /** * i40e_reset_vf * @vf: pointer to the VF structure * @flr: VFLR was issued or not * * Returns true if the VF is in reset, resets successfully, or resets * are disabled and false otherwise. **/ bool i40e_reset_vf(struct i40e_vf *vf, bool flr) { struct i40e_pf *pf = vf->pf; struct i40e_hw *hw = &pf->hw; bool rsd = false; u32 reg; int i; if (test_bit(__I40E_VF_RESETS_DISABLED, pf->state)) return true; /* Bail out if VFs are disabled. */ if (test_bit(__I40E_VF_DISABLE, pf->state)) return true; /* If VF is being reset already we don't need to continue. */ if (test_and_set_bit(I40E_VF_STATE_RESETTING, &vf->vf_states)) return true; i40e_trigger_vf_reset(vf, flr); /* poll VPGEN_VFRSTAT reg to make sure * that reset is complete */ for (i = 0; i < 10; i++) { /* VF reset requires driver to first reset the VF and then * poll the status register to make sure that the reset * completed successfully. Due to internal HW FIFO flushes, * we must wait 10ms before the register will be valid. */ usleep_range(10000, 20000); reg = rd32(hw, I40E_VPGEN_VFRSTAT(vf->vf_id)); if (reg & I40E_VPGEN_VFRSTAT_VFRD_MASK) { rsd = true; break; } } if (flr) usleep_range(10000, 20000); if (!rsd) dev_err(&pf->pdev->dev, "VF reset check timeout on VF %d\n", vf->vf_id); usleep_range(10000, 20000); /* On initial reset, we don't have any queues to disable */ if (vf->lan_vsi_idx != 0) i40e_vsi_stop_rings(pf->vsi[vf->lan_vsi_idx]); i40e_cleanup_reset_vf(vf); i40e_flush(hw); usleep_range(20000, 40000); clear_bit(I40E_VF_STATE_RESETTING, &vf->vf_states); return true; } /** * i40e_reset_all_vfs * @pf: pointer to the PF structure * @flr: VFLR was issued or not * * Reset all allocated VFs in one go. First, tell the hardware to reset each * VF, then do all the waiting in one chunk, and finally finish restoring each * VF after the wait. This is useful during PF routines which need to reset * all VFs, as otherwise it must perform these resets in a serialized fashion. * * Returns true if any VFs were reset, and false otherwise. **/ bool i40e_reset_all_vfs(struct i40e_pf *pf, bool flr) { struct i40e_hw *hw = &pf->hw; struct i40e_vf *vf; int i, v; u32 reg; /* If we don't have any VFs, then there is nothing to reset */ if (!pf->num_alloc_vfs) return false; /* If VFs have been disabled, there is no need to reset */ if (test_and_set_bit(__I40E_VF_DISABLE, pf->state)) return false; /* Begin reset on all VFs at once */ for (v = 0; v < pf->num_alloc_vfs; v++) { vf = &pf->vf[v]; /* If VF is being reset no need to trigger reset again */ if (!test_bit(I40E_VF_STATE_RESETTING, &vf->vf_states)) i40e_trigger_vf_reset(&pf->vf[v], flr); } /* HW requires some time to make sure it can flush the FIFO for a VF * when it resets it. Poll the VPGEN_VFRSTAT register for each VF in * sequence to make sure that it has completed. We'll keep track of * the VFs using a simple iterator that increments once that VF has * finished resetting. */ for (i = 0, v = 0; i < 10 && v < pf->num_alloc_vfs; i++) { usleep_range(10000, 20000); /* Check each VF in sequence, beginning with the VF to fail * the previous check. */ while (v < pf->num_alloc_vfs) { vf = &pf->vf[v]; if (!test_bit(I40E_VF_STATE_RESETTING, &vf->vf_states)) { reg = rd32(hw, I40E_VPGEN_VFRSTAT(vf->vf_id)); if (!(reg & I40E_VPGEN_VFRSTAT_VFRD_MASK)) break; } /* If the current VF has finished resetting, move on * to the next VF in sequence. */ v++; } } if (flr) usleep_range(10000, 20000); /* Display a warning if at least one VF didn't manage to reset in * time, but continue on with the operation. */ if (v < pf->num_alloc_vfs) dev_err(&pf->pdev->dev, "VF reset check timeout on VF %d\n", pf->vf[v].vf_id); usleep_range(10000, 20000); /* Begin disabling all the rings associated with VFs, but do not wait * between each VF. */ for (v = 0; v < pf->num_alloc_vfs; v++) { /* On initial reset, we don't have any queues to disable */ if (pf->vf[v].lan_vsi_idx == 0) continue; /* If VF is reset in another thread just continue */ if (test_bit(I40E_VF_STATE_RESETTING, &vf->vf_states)) continue; i40e_vsi_stop_rings_no_wait(pf->vsi[pf->vf[v].lan_vsi_idx]); } /* Now that we've notified HW to disable all of the VF rings, wait * until they finish. */ for (v = 0; v < pf->num_alloc_vfs; v++) { /* On initial reset, we don't have any queues to disable */ if (pf->vf[v].lan_vsi_idx == 0) continue; /* If VF is reset in another thread just continue */ if (test_bit(I40E_VF_STATE_RESETTING, &vf->vf_states)) continue; i40e_vsi_wait_queues_disabled(pf->vsi[pf->vf[v].lan_vsi_idx]); } /* Hw may need up to 50ms to finish disabling the RX queues. We * minimize the wait by delaying only once for all VFs. */ mdelay(50); /* Finish the reset on each VF */ for (v = 0; v < pf->num_alloc_vfs; v++) { /* If VF is reset in another thread just continue */ if (test_bit(I40E_VF_STATE_RESETTING, &vf->vf_states)) continue; i40e_cleanup_reset_vf(&pf->vf[v]); } i40e_flush(hw); usleep_range(20000, 40000); clear_bit(__I40E_VF_DISABLE, pf->state); return true; } /** * i40e_free_vfs * @pf: pointer to the PF structure * * free VF resources **/ void i40e_free_vfs(struct i40e_pf *pf) { struct i40e_hw *hw = &pf->hw; u32 reg_idx, bit_idx; int i, tmp, vf_id; if (!pf->vf) return; set_bit(__I40E_VFS_RELEASING, pf->state); while (test_and_set_bit(__I40E_VF_DISABLE, pf->state)) usleep_range(1000, 2000); i40e_notify_client_of_vf_enable(pf, 0); /* Disable IOV before freeing resources. This lets any VF drivers * running in the host get themselves cleaned up before we yank * the carpet out from underneath their feet. */ if (!pci_vfs_assigned(pf->pdev)) pci_disable_sriov(pf->pdev); else dev_warn(&pf->pdev->dev, "VFs are assigned - not disabling SR-IOV\n"); /* Amortize wait time by stopping all VFs at the same time */ for (i = 0; i < pf->num_alloc_vfs; i++) { if (test_bit(I40E_VF_STATE_INIT, &pf->vf[i].vf_states)) continue; i40e_vsi_stop_rings_no_wait(pf->vsi[pf->vf[i].lan_vsi_idx]); } for (i = 0; i < pf->num_alloc_vfs; i++) { if (test_bit(I40E_VF_STATE_INIT, &pf->vf[i].vf_states)) continue; i40e_vsi_wait_queues_disabled(pf->vsi[pf->vf[i].lan_vsi_idx]); } /* free up VF resources */ tmp = pf->num_alloc_vfs; pf->num_alloc_vfs = 0; for (i = 0; i < tmp; i++) { if (test_bit(I40E_VF_STATE_INIT, &pf->vf[i].vf_states)) i40e_free_vf_res(&pf->vf[i]); /* disable qp mappings */ i40e_disable_vf_mappings(&pf->vf[i]); } kfree(pf->vf); pf->vf = NULL; /* This check is for when the driver is unloaded while VFs are * assigned. Setting the number of VFs to 0 through sysfs is caught * before this function ever gets called. */ if (!pci_vfs_assigned(pf->pdev)) { /* Acknowledge VFLR for all VFS. Without this, VFs will fail to * work correctly when SR-IOV gets re-enabled. */ for (vf_id = 0; vf_id < tmp; vf_id++) { reg_idx = (hw->func_caps.vf_base_id + vf_id) / 32; bit_idx = (hw->func_caps.vf_base_id + vf_id) % 32; wr32(hw, I40E_GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); } } clear_bit(__I40E_VF_DISABLE, pf->state); clear_bit(__I40E_VFS_RELEASING, pf->state); } #ifdef CONFIG_PCI_IOV /** * i40e_alloc_vfs * @pf: pointer to the PF structure * @num_alloc_vfs: number of VFs to allocate * * allocate VF resources **/ int i40e_alloc_vfs(struct i40e_pf *pf, u16 num_alloc_vfs) { struct i40e_vf *vfs; int i, ret = 0; /* Disable interrupt 0 so we don't try to handle the VFLR. */ i40e_irq_dynamic_disable_icr0(pf); /* Check to see if we're just allocating resources for extant VFs */ if (pci_num_vf(pf->pdev) != num_alloc_vfs) { ret = pci_enable_sriov(pf->pdev, num_alloc_vfs); if (ret) { pf->flags &= ~I40E_FLAG_VEB_MODE_ENABLED; pf->num_alloc_vfs = 0; goto err_iov; } } /* allocate memory */ vfs = kcalloc(num_alloc_vfs, sizeof(struct i40e_vf), GFP_KERNEL); if (!vfs) { ret = -ENOMEM; goto err_alloc; } pf->vf = vfs; /* apply default profile */ for (i = 0; i < num_alloc_vfs; i++) { vfs[i].pf = pf; vfs[i].parent_type = I40E_SWITCH_ELEMENT_TYPE_VEB; vfs[i].vf_id = i; /* assign default capabilities */ set_bit(I40E_VIRTCHNL_VF_CAP_L2, &vfs[i].vf_caps); vfs[i].spoofchk = true; set_bit(I40E_VF_STATE_PRE_ENABLE, &vfs[i].vf_states); } pf->num_alloc_vfs = num_alloc_vfs; /* VF resources get allocated during reset */ i40e_reset_all_vfs(pf, false); i40e_notify_client_of_vf_enable(pf, num_alloc_vfs); err_alloc: if (ret) i40e_free_vfs(pf); err_iov: /* Re-enable interrupt 0. */ i40e_irq_dynamic_enable_icr0(pf); return ret; } #endif /** * i40e_pci_sriov_enable * @pdev: pointer to a pci_dev structure * @num_vfs: number of VFs to allocate * * Enable or change the number of VFs **/ static int i40e_pci_sriov_enable(struct pci_dev *pdev, int num_vfs) { #ifdef CONFIG_PCI_IOV struct i40e_pf *pf = pci_get_drvdata(pdev); int pre_existing_vfs = pci_num_vf(pdev); int err = 0; if (test_bit(__I40E_TESTING, pf->state)) { dev_warn(&pdev->dev, "Cannot enable SR-IOV virtual functions while the device is undergoing diagnostic testing\n"); err = -EPERM; goto err_out; } if (pre_existing_vfs && pre_existing_vfs != num_vfs) i40e_free_vfs(pf); else if (pre_existing_vfs && pre_existing_vfs == num_vfs) goto out; if (num_vfs > pf->num_req_vfs) { dev_warn(&pdev->dev, "Unable to enable %d VFs. Limited to %d VFs due to device resource constraints.\n", num_vfs, pf->num_req_vfs); err = -EPERM; goto err_out; } dev_info(&pdev->dev, "Allocating %d VFs.\n", num_vfs); err = i40e_alloc_vfs(pf, num_vfs); if (err) { dev_warn(&pdev->dev, "Failed to enable SR-IOV: %d\n", err); goto err_out; } out: return num_vfs; err_out: return err; #endif return 0; } /** * i40e_pci_sriov_configure * @pdev: pointer to a pci_dev structure * @num_vfs: number of VFs to allocate * * Enable or change the number of VFs. Called when the user updates the number * of VFs in sysfs. **/ int i40e_pci_sriov_configure(struct pci_dev *pdev, int num_vfs) { struct i40e_pf *pf = pci_get_drvdata(pdev); int ret = 0; if (test_and_set_bit(__I40E_VIRTCHNL_OP_PENDING, pf->state)) { dev_warn(&pdev->dev, "Unable to configure VFs, other operation is pending.\n"); return -EAGAIN; } if (num_vfs) { if (!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) { pf->flags |= I40E_FLAG_VEB_MODE_ENABLED; i40e_do_reset_safe(pf, I40E_PF_RESET_AND_REBUILD_FLAG); } ret = i40e_pci_sriov_enable(pdev, num_vfs); goto sriov_configure_out; } if (!pci_vfs_assigned(pf->pdev)) { i40e_free_vfs(pf); pf->flags &= ~I40E_FLAG_VEB_MODE_ENABLED; i40e_do_reset_safe(pf, I40E_PF_RESET_AND_REBUILD_FLAG); } else { dev_warn(&pdev->dev, "Unable to free VFs because some are assigned to VMs.\n"); ret = -EINVAL; goto sriov_configure_out; } sriov_configure_out: clear_bit(__I40E_VIRTCHNL_OP_PENDING, pf->state); return ret; } /***********************virtual channel routines******************/ /** * i40e_vc_send_msg_to_vf * @vf: pointer to the VF info * @v_opcode: virtual channel opcode * @v_retval: virtual channel return value * @msg: pointer to the msg buffer * @msglen: msg length * * send msg to VF **/ static int i40e_vc_send_msg_to_vf(struct i40e_vf *vf, u32 v_opcode, u32 v_retval, u8 *msg, u16 msglen) { struct i40e_pf *pf; struct i40e_hw *hw; int abs_vf_id; i40e_status aq_ret; /* validate the request */ if (!vf || vf->vf_id >= vf->pf->num_alloc_vfs) return -EINVAL; pf = vf->pf; hw = &pf->hw; abs_vf_id = vf->vf_id + hw->func_caps.vf_base_id; aq_ret = i40e_aq_send_msg_to_vf(hw, abs_vf_id, v_opcode, v_retval, msg, msglen, NULL); if (aq_ret) { dev_info(&pf->pdev->dev, "Unable to send the message to VF %d aq_err %d\n", vf->vf_id, pf->hw.aq.asq_last_status); return -EIO; } return 0; } /** * i40e_vc_send_resp_to_vf * @vf: pointer to the VF info * @opcode: operation code * @retval: return value * * send resp msg to VF **/ static int i40e_vc_send_resp_to_vf(struct i40e_vf *vf, enum virtchnl_ops opcode, i40e_status retval) { return i40e_vc_send_msg_to_vf(vf, opcode, retval, NULL, 0); } /** * i40e_sync_vf_state * @vf: pointer to the VF info * @state: VF state * * Called from a VF message to synchronize the service with a potential * VF reset state **/ static bool i40e_sync_vf_state(struct i40e_vf *vf, enum i40e_vf_states state) { int i; /* When handling some messages, it needs VF state to be set. * It is possible that this flag is cleared during VF reset, * so there is a need to wait until the end of the reset to * handle the request message correctly. */ for (i = 0; i < I40E_VF_STATE_WAIT_COUNT; i++) { if (test_bit(state, &vf->vf_states)) return true; usleep_range(10000, 20000); } return test_bit(state, &vf->vf_states); } /** * i40e_vc_get_version_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * called from the VF to request the API version used by the PF **/ static int i40e_vc_get_version_msg(struct i40e_vf *vf, u8 *msg) { struct virtchnl_version_info info = { VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR }; vf->vf_ver = *(struct virtchnl_version_info *)msg; /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */ if (VF_IS_V10(&vf->vf_ver)) info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS; return i40e_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION, I40E_SUCCESS, (u8 *)&info, sizeof(struct virtchnl_version_info)); } /** * i40e_del_qch - delete all the additional VSIs created as a part of ADq * @vf: pointer to VF structure **/ static void i40e_del_qch(struct i40e_vf *vf) { struct i40e_pf *pf = vf->pf; int i; /* first element in the array belongs to primary VF VSI and we shouldn't * delete it. We should however delete the rest of the VSIs created */ for (i = 1; i < vf->num_tc; i++) { if (vf->ch[i].vsi_idx) { i40e_vsi_release(pf->vsi[vf->ch[i].vsi_idx]); vf->ch[i].vsi_idx = 0; vf->ch[i].vsi_id = 0; } } } /** * i40e_vc_get_max_frame_size * @vf: pointer to the VF * * Max frame size is determined based on the current port's max frame size and * whether a port VLAN is configured on this VF. The VF is not aware whether * it's in a port VLAN so the PF needs to account for this in max frame size * checks and sending the max frame size to the VF. **/ static u16 i40e_vc_get_max_frame_size(struct i40e_vf *vf) { u16 max_frame_size = vf->pf->hw.phy.link_info.max_frame_size; if (vf->port_vlan_id) max_frame_size -= VLAN_HLEN; return max_frame_size; } /** * i40e_vc_get_vf_resources_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * called from the VF to request its resources **/ static int i40e_vc_get_vf_resources_msg(struct i40e_vf *vf, u8 *msg) { struct virtchnl_vf_resource *vfres = NULL; struct i40e_pf *pf = vf->pf; i40e_status aq_ret = 0; struct i40e_vsi *vsi; int num_vsis = 1; size_t len = 0; int ret; if (!i40e_sync_vf_state(vf, I40E_VF_STATE_INIT)) { aq_ret = I40E_ERR_PARAM; goto err; } len = struct_size(vfres, vsi_res, num_vsis); vfres = kzalloc(len, GFP_KERNEL); if (!vfres) { aq_ret = I40E_ERR_NO_MEMORY; len = 0; goto err; } if (VF_IS_V11(&vf->vf_ver)) vf->driver_caps = *(u32 *)msg; else vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 | VIRTCHNL_VF_OFFLOAD_RSS_REG | VIRTCHNL_VF_OFFLOAD_VLAN; vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2; vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED; vsi = pf->vsi[vf->lan_vsi_idx]; if (!vsi->info.pvid) vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN; if (i40e_vf_client_capable(pf, vf->vf_id) && (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_IWARP)) { vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_IWARP; set_bit(I40E_VF_STATE_IWARPENA, &vf->vf_states); } else { clear_bit(I40E_VF_STATE_IWARPENA, &vf->vf_states); } if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) { vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF; } else { if ((pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) && (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ)) vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ; else vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG; } if (pf->hw_features & I40E_HW_MULTIPLE_TCP_UDP_RSS_PCTYPE) { if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2; } if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP) vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP; if ((pf->hw_features & I40E_HW_OUTER_UDP_CSUM_CAPABLE) && (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)) vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM; if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING) { if (pf->flags & I40E_FLAG_MFP_ENABLED) { dev_err(&pf->pdev->dev, "VF %d requested polling mode: this feature is supported only when the device is running in single function per port (SFP) mode\n", vf->vf_id); aq_ret = I40E_ERR_PARAM; goto err; } vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING; } if (pf->hw_features & I40E_HW_WB_ON_ITR_CAPABLE) { if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR; } if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES) vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES; if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADQ) vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADQ; vfres->num_vsis = num_vsis; vfres->num_queue_pairs = vf->num_queue_pairs; vfres->max_vectors = pf->hw.func_caps.num_msix_vectors_vf; vfres->rss_key_size = I40E_HKEY_ARRAY_SIZE; vfres->rss_lut_size = I40E_VF_HLUT_ARRAY_SIZE; vfres->max_mtu = i40e_vc_get_max_frame_size(vf); if (vf->lan_vsi_idx) { vfres->vsi_res[0].vsi_id = vf->lan_vsi_id; vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV; vfres->vsi_res[0].num_queue_pairs = vsi->alloc_queue_pairs; /* VFs only use TC 0 */ vfres->vsi_res[0].qset_handle = le16_to_cpu(vsi->info.qs_handle[0]); if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO) && !vf->pf_set_mac) { i40e_del_mac_filter(vsi, vf->default_lan_addr.addr); eth_zero_addr(vf->default_lan_addr.addr); } ether_addr_copy(vfres->vsi_res[0].default_mac_addr, vf->default_lan_addr.addr); } set_bit(I40E_VF_STATE_ACTIVE, &vf->vf_states); err: /* send the response back to the VF */ ret = i40e_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, aq_ret, (u8 *)vfres, len); kfree(vfres); return ret; } /** * i40e_vc_config_promiscuous_mode_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * called from the VF to configure the promiscuous mode of * VF vsis **/ static int i40e_vc_config_promiscuous_mode_msg(struct i40e_vf *vf, u8 *msg) { struct virtchnl_promisc_info *info = (struct virtchnl_promisc_info *)msg; struct i40e_pf *pf = vf->pf; i40e_status aq_ret = 0; bool allmulti = false; bool alluni = false; if (!i40e_sync_vf_state(vf, I40E_VF_STATE_ACTIVE)) { aq_ret = I40E_ERR_PARAM; goto err_out; } if (!test_bit(I40E_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps)) { dev_err(&pf->pdev->dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n", vf->vf_id); /* Lie to the VF on purpose, because this is an error we can * ignore. Unprivileged VF is not a virtual channel error. */ aq_ret = 0; goto err_out; } if (info->flags > I40E_MAX_VF_PROMISC_FLAGS) { aq_ret = I40E_ERR_PARAM; goto err_out; } if (!i40e_vc_isvalid_vsi_id(vf, info->vsi_id)) { aq_ret = I40E_ERR_PARAM; goto err_out; } /* Multicast promiscuous handling*/ if (info->flags & FLAG_VF_MULTICAST_PROMISC) allmulti = true; if (info->flags & FLAG_VF_UNICAST_PROMISC) alluni = true; aq_ret = i40e_config_vf_promiscuous_mode(vf, info->vsi_id, allmulti, alluni); if (aq_ret) goto err_out; if (allmulti) { if (!test_and_set_bit(I40E_VF_STATE_MC_PROMISC, &vf->vf_states)) dev_info(&pf->pdev->dev, "VF %d successfully set multicast promiscuous mode\n", vf->vf_id); } else if (test_and_clear_bit(I40E_VF_STATE_MC_PROMISC, &vf->vf_states)) dev_info(&pf->pdev->dev, "VF %d successfully unset multicast promiscuous mode\n", vf->vf_id); if (alluni) { if (!test_and_set_bit(I40E_VF_STATE_UC_PROMISC, &vf->vf_states)) dev_info(&pf->pdev->dev, "VF %d successfully set unicast promiscuous mode\n", vf->vf_id); } else if (test_and_clear_bit(I40E_VF_STATE_UC_PROMISC, &vf->vf_states)) dev_info(&pf->pdev->dev, "VF %d successfully unset unicast promiscuous mode\n", vf->vf_id); err_out: /* send the response to the VF */ return i40e_vc_send_resp_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, aq_ret); } /** * i40e_vc_config_queues_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * called from the VF to configure the rx/tx * queues **/ static int i40e_vc_config_queues_msg(struct i40e_vf *vf, u8 *msg) { struct virtchnl_vsi_queue_config_info *qci = (struct virtchnl_vsi_queue_config_info *)msg; struct virtchnl_queue_pair_info *qpi; u16 vsi_id, vsi_queue_id = 0; struct i40e_pf *pf = vf->pf; i40e_status aq_ret = 0; int i, j = 0, idx = 0; struct i40e_vsi *vsi; u16 num_qps_all = 0; if (!i40e_sync_vf_state(vf, I40E_VF_STATE_ACTIVE)) { aq_ret = I40E_ERR_PARAM; goto error_param; } if (!i40e_vc_isvalid_vsi_id(vf, qci->vsi_id)) { aq_ret = I40E_ERR_PARAM; goto error_param; } if (qci->num_queue_pairs > I40E_MAX_VF_QUEUES) { aq_ret = I40E_ERR_PARAM; goto error_param; } if (vf->adq_enabled) { for (i = 0; i < vf->num_tc; i++) num_qps_all += vf->ch[i].num_qps; if (num_qps_all != qci->num_queue_pairs) { aq_ret = I40E_ERR_PARAM; goto error_param; } } vsi_id = qci->vsi_id; for (i = 0; i < qci->num_queue_pairs; i++) { qpi = &qci->qpair[i]; if (!vf->adq_enabled) { if (!i40e_vc_isvalid_queue_id(vf, vsi_id, qpi->txq.queue_id)) { aq_ret = I40E_ERR_PARAM; goto error_param; } vsi_queue_id = qpi->txq.queue_id; if (qpi->txq.vsi_id != qci->vsi_id || qpi->rxq.vsi_id != qci->vsi_id || qpi->rxq.queue_id != vsi_queue_id) { aq_ret = I40E_ERR_PARAM; goto error_param; } } if (vf->adq_enabled) { if (idx >= ARRAY_SIZE(vf->ch)) { aq_ret = I40E_ERR_NO_AVAILABLE_VSI; goto error_param; } vsi_id = vf->ch[idx].vsi_id; } if (i40e_config_vsi_rx_queue(vf, vsi_id, vsi_queue_id, &qpi->rxq) || i40e_config_vsi_tx_queue(vf, vsi_id, vsi_queue_id, &qpi->txq)) { aq_ret = I40E_ERR_PARAM; goto error_param; } /* For ADq there can be up to 4 VSIs with max 4 queues each. * VF does not know about these additional VSIs and all * it cares is about its own queues. PF configures these queues * to its appropriate VSIs based on TC mapping */ if (vf->adq_enabled) { if (idx >= ARRAY_SIZE(vf->ch)) { aq_ret = I40E_ERR_NO_AVAILABLE_VSI; goto error_param; } if (j == (vf->ch[idx].num_qps - 1)) { idx++; j = 0; /* resetting the queue count */ vsi_queue_id = 0; } else { j++; vsi_queue_id++; } } } /* set vsi num_queue_pairs in use to num configured by VF */ if (!vf->adq_enabled) { pf->vsi[vf->lan_vsi_idx]->num_queue_pairs = qci->num_queue_pairs; } else { for (i = 0; i < vf->num_tc; i++) { vsi = pf->vsi[vf->ch[i].vsi_idx]; vsi->num_queue_pairs = vf->ch[i].num_qps; if (i40e_update_adq_vsi_queues(vsi, i)) { aq_ret = I40E_ERR_CONFIG; goto error_param; } } } error_param: /* send the response to the VF */ return i40e_vc_send_resp_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, aq_ret); } /** * i40e_validate_queue_map - check queue map is valid * @vf: the VF structure pointer * @vsi_id: vsi id * @queuemap: Tx or Rx queue map * * check if Tx or Rx queue map is valid **/ static int i40e_validate_queue_map(struct i40e_vf *vf, u16 vsi_id, unsigned long queuemap) { u16 vsi_queue_id, queue_id; for_each_set_bit(vsi_queue_id, &queuemap, I40E_MAX_VSI_QP) { if (vf->adq_enabled) { vsi_id = vf->ch[vsi_queue_id / I40E_MAX_VF_VSI].vsi_id; queue_id = (vsi_queue_id % I40E_DEFAULT_QUEUES_PER_VF); } else { queue_id = vsi_queue_id; } if (!i40e_vc_isvalid_queue_id(vf, vsi_id, queue_id)) return -EINVAL; } return 0; } /** * i40e_vc_config_irq_map_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * called from the VF to configure the irq to * queue map **/ static int i40e_vc_config_irq_map_msg(struct i40e_vf *vf, u8 *msg) { struct virtchnl_irq_map_info *irqmap_info = (struct virtchnl_irq_map_info *)msg; struct virtchnl_vector_map *map; u16 vsi_id; i40e_status aq_ret = 0; int i; if (!i40e_sync_vf_state(vf, I40E_VF_STATE_ACTIVE)) { aq_ret = I40E_ERR_PARAM; goto error_param; } if (irqmap_info->num_vectors > vf->pf->hw.func_caps.num_msix_vectors_vf) { aq_ret = I40E_ERR_PARAM; goto error_param; } for (i = 0; i < irqmap_info->num_vectors; i++) { map = &irqmap_info->vecmap[i]; /* validate msg params */ if (!i40e_vc_isvalid_vector_id(vf, map->vector_id) || !i40e_vc_isvalid_vsi_id(vf, map->vsi_id)) { aq_ret = I40E_ERR_PARAM; goto error_param; } vsi_id = map->vsi_id; if (i40e_validate_queue_map(vf, vsi_id, map->rxq_map)) { aq_ret = I40E_ERR_PARAM; goto error_param; } if (i40e_validate_queue_map(vf, vsi_id, map->txq_map)) { aq_ret = I40E_ERR_PARAM; goto error_param; } i40e_config_irq_link_list(vf, vsi_id, map); } error_param: /* send the response to the VF */ return i40e_vc_send_resp_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, aq_ret); } /** * i40e_ctrl_vf_tx_rings * @vsi: the SRIOV VSI being configured * @q_map: bit map of the queues to be enabled * @enable: start or stop the queue **/ static int i40e_ctrl_vf_tx_rings(struct i40e_vsi *vsi, unsigned long q_map, bool enable) { struct i40e_pf *pf = vsi->back; int ret = 0; u16 q_id; for_each_set_bit(q_id, &q_map, I40E_MAX_VF_QUEUES) { ret = i40e_control_wait_tx_q(vsi->seid, pf, vsi->base_queue + q_id, false /*is xdp*/, enable); if (ret) break; } return ret; } /** * i40e_ctrl_vf_rx_rings * @vsi: the SRIOV VSI being configured * @q_map: bit map of the queues to be enabled * @enable: start or stop the queue **/ static int i40e_ctrl_vf_rx_rings(struct i40e_vsi *vsi, unsigned long q_map, bool enable) { struct i40e_pf *pf = vsi->back; int ret = 0; u16 q_id; for_each_set_bit(q_id, &q_map, I40E_MAX_VF_QUEUES) { ret = i40e_control_wait_rx_q(pf, vsi->base_queue + q_id, enable); if (ret) break; } return ret; } /** * i40e_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTHCHNL * @vqs: virtchnl_queue_select structure containing bitmaps to validate * * Returns true if validation was successful, else false. */ static bool i40e_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs) { if ((!vqs->rx_queues && !vqs->tx_queues) || vqs->rx_queues >= BIT(I40E_MAX_VF_QUEUES) || vqs->tx_queues >= BIT(I40E_MAX_VF_QUEUES)) return false; return true; } /** * i40e_vc_enable_queues_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * called from the VF to enable all or specific queue(s) **/ static int i40e_vc_enable_queues_msg(struct i40e_vf *vf, u8 *msg) { struct virtchnl_queue_select *vqs = (struct virtchnl_queue_select *)msg; struct i40e_pf *pf = vf->pf; i40e_status aq_ret = 0; int i; if (!test_bit(I40E_VF_STATE_ACTIVE, &vf->vf_states)) { aq_ret = I40E_ERR_PARAM; goto error_param; } if (!i40e_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { aq_ret = I40E_ERR_PARAM; goto error_param; } if (!i40e_vc_validate_vqs_bitmaps(vqs)) { aq_ret = I40E_ERR_PARAM; goto error_param; } /* Use the queue bit map sent by the VF */ if (i40e_ctrl_vf_rx_rings(pf->vsi[vf->lan_vsi_idx], vqs->rx_queues, true)) { aq_ret = I40E_ERR_TIMEOUT; goto error_param; } if (i40e_ctrl_vf_tx_rings(pf->vsi[vf->lan_vsi_idx], vqs->tx_queues, true)) { aq_ret = I40E_ERR_TIMEOUT; goto error_param; } /* need to start the rings for additional ADq VSI's as well */ if (vf->adq_enabled) { /* zero belongs to LAN VSI */ for (i = 1; i < vf->num_tc; i++) { if (i40e_vsi_start_rings(pf->vsi[vf->ch[i].vsi_idx])) aq_ret = I40E_ERR_TIMEOUT; } } error_param: /* send the response to the VF */ return i40e_vc_send_resp_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, aq_ret); } /** * i40e_vc_disable_queues_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * called from the VF to disable all or specific * queue(s) **/ static int i40e_vc_disable_queues_msg(struct i40e_vf *vf, u8 *msg) { struct virtchnl_queue_select *vqs = (struct virtchnl_queue_select *)msg; struct i40e_pf *pf = vf->pf; i40e_status aq_ret = 0; if (!i40e_sync_vf_state(vf, I40E_VF_STATE_ACTIVE)) { aq_ret = I40E_ERR_PARAM; goto error_param; } if (!i40e_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { aq_ret = I40E_ERR_PARAM; goto error_param; } if (!i40e_vc_validate_vqs_bitmaps(vqs)) { aq_ret = I40E_ERR_PARAM; goto error_param; } /* Use the queue bit map sent by the VF */ if (i40e_ctrl_vf_tx_rings(pf->vsi[vf->lan_vsi_idx], vqs->tx_queues, false)) { aq_ret = I40E_ERR_TIMEOUT; goto error_param; } if (i40e_ctrl_vf_rx_rings(pf->vsi[vf->lan_vsi_idx], vqs->rx_queues, false)) { aq_ret = I40E_ERR_TIMEOUT; goto error_param; } error_param: /* send the response to the VF */ return i40e_vc_send_resp_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, aq_ret); } /** * i40e_check_enough_queue - find big enough queue number * @vf: pointer to the VF info * @needed: the number of items needed * * Returns the base item index of the queue, or negative for error **/ static int i40e_check_enough_queue(struct i40e_vf *vf, u16 needed) { unsigned int i, cur_queues, more, pool_size; struct i40e_lump_tracking *pile; struct i40e_pf *pf = vf->pf; struct i40e_vsi *vsi; vsi = pf->vsi[vf->lan_vsi_idx]; cur_queues = vsi->alloc_queue_pairs; /* if current allocated queues are enough for need */ if (cur_queues >= needed) return vsi->base_queue; pile = pf->qp_pile; if (cur_queues > 0) { /* if the allocated queues are not zero * just check if there are enough queues for more * behind the allocated queues. */ more = needed - cur_queues; for (i = vsi->base_queue + cur_queues; i < pile->num_entries; i++) { if (pile->list[i] & I40E_PILE_VALID_BIT) break; if (more-- == 1) /* there is enough */ return vsi->base_queue; } } pool_size = 0; for (i = 0; i < pile->num_entries; i++) { if (pile->list[i] & I40E_PILE_VALID_BIT) { pool_size = 0; continue; } if (needed <= ++pool_size) /* there is enough */ return i; } return -ENOMEM; } /** * i40e_vc_request_queues_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * VFs get a default number of queues but can use this message to request a * different number. If the request is successful, PF will reset the VF and * return 0. If unsuccessful, PF will send message informing VF of number of * available queues and return result of sending VF a message. **/ static int i40e_vc_request_queues_msg(struct i40e_vf *vf, u8 *msg) { struct virtchnl_vf_res_request *vfres = (struct virtchnl_vf_res_request *)msg; u16 req_pairs = vfres->num_queue_pairs; u8 cur_pairs = vf->num_queue_pairs; struct i40e_pf *pf = vf->pf; if (!i40e_sync_vf_state(vf, I40E_VF_STATE_ACTIVE)) return -EINVAL; if (req_pairs > I40E_MAX_VF_QUEUES) { dev_err(&pf->pdev->dev, "VF %d tried to request more than %d queues.\n", vf->vf_id, I40E_MAX_VF_QUEUES); vfres->num_queue_pairs = I40E_MAX_VF_QUEUES; } else if (req_pairs - cur_pairs > pf->queues_left) { dev_warn(&pf->pdev->dev, "VF %d requested %d more queues, but only %d left.\n", vf->vf_id, req_pairs - cur_pairs, pf->queues_left); vfres->num_queue_pairs = pf->queues_left + cur_pairs; } else if (i40e_check_enough_queue(vf, req_pairs) < 0) { dev_warn(&pf->pdev->dev, "VF %d requested %d more queues, but there is not enough for it.\n", vf->vf_id, req_pairs - cur_pairs); vfres->num_queue_pairs = cur_pairs; } else { /* successful request */ vf->num_req_queues = req_pairs; i40e_vc_reset_vf(vf, true); return 0; } return i40e_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES, 0, (u8 *)vfres, sizeof(*vfres)); } /** * i40e_vc_get_stats_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * called from the VF to get vsi stats **/ static int i40e_vc_get_stats_msg(struct i40e_vf *vf, u8 *msg) { struct virtchnl_queue_select *vqs = (struct virtchnl_queue_select *)msg; struct i40e_pf *pf = vf->pf; struct i40e_eth_stats stats; i40e_status aq_ret = 0; struct i40e_vsi *vsi; memset(&stats, 0, sizeof(struct i40e_eth_stats)); if (!i40e_sync_vf_state(vf, I40E_VF_STATE_ACTIVE)) { aq_ret = I40E_ERR_PARAM; goto error_param; } if (!i40e_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { aq_ret = I40E_ERR_PARAM; goto error_param; } vsi = pf->vsi[vf->lan_vsi_idx]; if (!vsi) { aq_ret = I40E_ERR_PARAM; goto error_param; } i40e_update_eth_stats(vsi); stats = vsi->eth_stats; error_param: /* send the response back to the VF */ return i40e_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, aq_ret, (u8 *)&stats, sizeof(stats)); } /* If the VF is not trusted restrict the number of MAC/VLAN it can program * MAC filters: 16 for multicast, 1 for MAC, 1 for broadcast */ #define I40E_VC_MAX_MAC_ADDR_PER_VF (16 + 1 + 1) #define I40E_VC_MAX_VLAN_PER_VF 16 /** * i40e_check_vf_permission * @vf: pointer to the VF info * @al: MAC address list from virtchnl * * Check that the given list of MAC addresses is allowed. Will return -EPERM * if any address in the list is not valid. Checks the following conditions: * * 1) broadcast and zero addresses are never valid * 2) unicast addresses are not allowed if the VMM has administratively set * the VF MAC address, unless the VF is marked as privileged. * 3) There is enough space to add all the addresses. * * Note that to guarantee consistency, it is expected this function be called * while holding the mac_filter_hash_lock, as otherwise the current number of * addresses might not be accurate. **/ static inline int i40e_check_vf_permission(struct i40e_vf *vf, struct virtchnl_ether_addr_list *al) { struct i40e_pf *pf = vf->pf; struct i40e_vsi *vsi = pf->vsi[vf->lan_vsi_idx]; int mac2add_cnt = 0; int i; for (i = 0; i < al->num_elements; i++) { struct i40e_mac_filter *f; u8 *addr = al->list[i].addr; if (is_broadcast_ether_addr(addr) || is_zero_ether_addr(addr)) { dev_err(&pf->pdev->dev, "invalid VF MAC addr %pM\n", addr); return I40E_ERR_INVALID_MAC_ADDR; } /* If the host VMM administrator has set the VF MAC address * administratively via the ndo_set_vf_mac command then deny * permission to the VF to add or delete unicast MAC addresses. * Unless the VF is privileged and then it can do whatever. * The VF may request to set the MAC address filter already * assigned to it so do not return an error in that case. */ if (!test_bit(I40E_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps) && !is_multicast_ether_addr(addr) && vf->pf_set_mac && !ether_addr_equal(addr, vf->default_lan_addr.addr)) { dev_err(&pf->pdev->dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n"); return -EPERM; } /*count filters that really will be added*/ f = i40e_find_mac(vsi, addr); if (!f) ++mac2add_cnt; } /* If this VF is not privileged, then we can't add more than a limited * number of addresses. Check to make sure that the additions do not * push us over the limit. */ if (!test_bit(I40E_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps) && (i40e_count_filters(vsi) + mac2add_cnt) > I40E_VC_MAX_MAC_ADDR_PER_VF) { dev_err(&pf->pdev->dev, "Cannot add more MAC addresses, VF is not trusted, switch the VF to trusted to add more functionality\n"); return -EPERM; } return 0; } /** * i40e_vc_add_mac_addr_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * add guest mac address filter **/ static int i40e_vc_add_mac_addr_msg(struct i40e_vf *vf, u8 *msg) { struct virtchnl_ether_addr_list *al = (struct virtchnl_ether_addr_list *)msg; struct i40e_pf *pf = vf->pf; struct i40e_vsi *vsi = NULL; i40e_status ret = 0; int i; if (!i40e_sync_vf_state(vf, I40E_VF_STATE_ACTIVE) || !i40e_vc_isvalid_vsi_id(vf, al->vsi_id)) { ret = I40E_ERR_PARAM; goto error_param; } vsi = pf->vsi[vf->lan_vsi_idx]; /* Lock once, because all function inside for loop accesses VSI's * MAC filter list which needs to be protected using same lock. */ spin_lock_bh(&vsi->mac_filter_hash_lock); ret = i40e_check_vf_permission(vf, al); if (ret) { spin_unlock_bh(&vsi->mac_filter_hash_lock); goto error_param; } /* add new addresses to the list */ for (i = 0; i < al->num_elements; i++) { struct i40e_mac_filter *f; f = i40e_find_mac(vsi, al->list[i].addr); if (!f) { f = i40e_add_mac_filter(vsi, al->list[i].addr); if (!f) { dev_err(&pf->pdev->dev, "Unable to add MAC filter %pM for VF %d\n", al->list[i].addr, vf->vf_id); ret = I40E_ERR_PARAM; spin_unlock_bh(&vsi->mac_filter_hash_lock); goto error_param; } if (is_valid_ether_addr(al->list[i].addr) && is_zero_ether_addr(vf->default_lan_addr.addr)) ether_addr_copy(vf->default_lan_addr.addr, al->list[i].addr); } } spin_unlock_bh(&vsi->mac_filter_hash_lock); /* program the updated filter list */ ret = i40e_sync_vsi_filters(vsi); if (ret) dev_err(&pf->pdev->dev, "Unable to program VF %d MAC filters, error %d\n", vf->vf_id, ret); error_param: /* send the response to the VF */ return i40e_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR, ret, NULL, 0); } /** * i40e_vc_del_mac_addr_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * remove guest mac address filter **/ static int i40e_vc_del_mac_addr_msg(struct i40e_vf *vf, u8 *msg) { struct virtchnl_ether_addr_list *al = (struct virtchnl_ether_addr_list *)msg; bool was_unimac_deleted = false; struct i40e_pf *pf = vf->pf; struct i40e_vsi *vsi = NULL; i40e_status ret = 0; int i; if (!i40e_sync_vf_state(vf, I40E_VF_STATE_ACTIVE) || !i40e_vc_isvalid_vsi_id(vf, al->vsi_id)) { ret = I40E_ERR_PARAM; goto error_param; } for (i = 0; i < al->num_elements; i++) { if (is_broadcast_ether_addr(al->list[i].addr) || is_zero_ether_addr(al->list[i].addr)) { dev_err(&pf->pdev->dev, "Invalid MAC addr %pM for VF %d\n", al->list[i].addr, vf->vf_id); ret = I40E_ERR_INVALID_MAC_ADDR; goto error_param; } if (ether_addr_equal(al->list[i].addr, vf->default_lan_addr.addr)) was_unimac_deleted = true; } vsi = pf->vsi[vf->lan_vsi_idx]; spin_lock_bh(&vsi->mac_filter_hash_lock); /* delete addresses from the list */ for (i = 0; i < al->num_elements; i++) if (i40e_del_mac_filter(vsi, al->list[i].addr)) { ret = I40E_ERR_INVALID_MAC_ADDR; spin_unlock_bh(&vsi->mac_filter_hash_lock); goto error_param; } spin_unlock_bh(&vsi->mac_filter_hash_lock); /* program the updated filter list */ ret = i40e_sync_vsi_filters(vsi); if (ret) dev_err(&pf->pdev->dev, "Unable to program VF %d MAC filters, error %d\n", vf->vf_id, ret); if (vf->trusted && was_unimac_deleted) { struct i40e_mac_filter *f; struct hlist_node *h; u8 *macaddr = NULL; int bkt; /* set last unicast mac address as default */ spin_lock_bh(&vsi->mac_filter_hash_lock); hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { if (is_valid_ether_addr(f->macaddr)) macaddr = f->macaddr; } if (macaddr) ether_addr_copy(vf->default_lan_addr.addr, macaddr); spin_unlock_bh(&vsi->mac_filter_hash_lock); } error_param: /* send the response to the VF */ return i40e_vc_send_resp_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR, ret); } /** * i40e_vc_add_vlan_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * program guest vlan id **/ static int i40e_vc_add_vlan_msg(struct i40e_vf *vf, u8 *msg) { struct virtchnl_vlan_filter_list *vfl = (struct virtchnl_vlan_filter_list *)msg; struct i40e_pf *pf = vf->pf; struct i40e_vsi *vsi = NULL; i40e_status aq_ret = 0; int i; if ((vf->num_vlan >= I40E_VC_MAX_VLAN_PER_VF) && !test_bit(I40E_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps)) { dev_err(&pf->pdev->dev, "VF is not trusted, switch the VF to trusted to add more VLAN addresses\n"); goto error_param; } if (!test_bit(I40E_VF_STATE_ACTIVE, &vf->vf_states) || !i40e_vc_isvalid_vsi_id(vf, vfl->vsi_id)) { aq_ret = I40E_ERR_PARAM; goto error_param; } for (i = 0; i < vfl->num_elements; i++) { if (vfl->vlan_id[i] > I40E_MAX_VLANID) { aq_ret = I40E_ERR_PARAM; dev_err(&pf->pdev->dev, "invalid VF VLAN id %d\n", vfl->vlan_id[i]); goto error_param; } } vsi = pf->vsi[vf->lan_vsi_idx]; if (vsi->info.pvid) { aq_ret = I40E_ERR_PARAM; goto error_param; } i40e_vlan_stripping_enable(vsi); for (i = 0; i < vfl->num_elements; i++) { /* add new VLAN filter */ int ret = i40e_vsi_add_vlan(vsi, vfl->vlan_id[i]); if (!ret) vf->num_vlan++; if (test_bit(I40E_VF_STATE_UC_PROMISC, &vf->vf_states)) i40e_aq_set_vsi_uc_promisc_on_vlan(&pf->hw, vsi->seid, true, vfl->vlan_id[i], NULL); if (test_bit(I40E_VF_STATE_MC_PROMISC, &vf->vf_states)) i40e_aq_set_vsi_mc_promisc_on_vlan(&pf->hw, vsi->seid, true, vfl->vlan_id[i], NULL); if (ret) dev_err(&pf->pdev->dev, "Unable to add VLAN filter %d for VF %d, error %d\n", vfl->vlan_id[i], vf->vf_id, ret); } error_param: /* send the response to the VF */ return i40e_vc_send_resp_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, aq_ret); } /** * i40e_vc_remove_vlan_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * remove programmed guest vlan id **/ static int i40e_vc_remove_vlan_msg(struct i40e_vf *vf, u8 *msg) { struct virtchnl_vlan_filter_list *vfl = (struct virtchnl_vlan_filter_list *)msg; struct i40e_pf *pf = vf->pf; struct i40e_vsi *vsi = NULL; i40e_status aq_ret = 0; int i; if (!i40e_sync_vf_state(vf, I40E_VF_STATE_ACTIVE) || !i40e_vc_isvalid_vsi_id(vf, vfl->vsi_id)) { aq_ret = I40E_ERR_PARAM; goto error_param; } for (i = 0; i < vfl->num_elements; i++) { if (vfl->vlan_id[i] > I40E_MAX_VLANID) { aq_ret = I40E_ERR_PARAM; goto error_param; } } vsi = pf->vsi[vf->lan_vsi_idx]; if (vsi->info.pvid) { if (vfl->num_elements > 1 || vfl->vlan_id[0]) aq_ret = I40E_ERR_PARAM; goto error_param; } for (i = 0; i < vfl->num_elements; i++) { i40e_vsi_kill_vlan(vsi, vfl->vlan_id[i]); vf->num_vlan--; if (test_bit(I40E_VF_STATE_UC_PROMISC, &vf->vf_states)) i40e_aq_set_vsi_uc_promisc_on_vlan(&pf->hw, vsi->seid, false, vfl->vlan_id[i], NULL); if (test_bit(I40E_VF_STATE_MC_PROMISC, &vf->vf_states)) i40e_aq_set_vsi_mc_promisc_on_vlan(&pf->hw, vsi->seid, false, vfl->vlan_id[i], NULL); } error_param: /* send the response to the VF */ return i40e_vc_send_resp_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, aq_ret); } /** * i40e_vc_iwarp_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * @msglen: msg length * * called from the VF for the iwarp msgs **/ static int i40e_vc_iwarp_msg(struct i40e_vf *vf, u8 *msg, u16 msglen) { struct i40e_pf *pf = vf->pf; int abs_vf_id = vf->vf_id + pf->hw.func_caps.vf_base_id; i40e_status aq_ret = 0; if (!test_bit(I40E_VF_STATE_ACTIVE, &vf->vf_states) || !test_bit(I40E_VF_STATE_IWARPENA, &vf->vf_states)) { aq_ret = I40E_ERR_PARAM; goto error_param; } i40e_notify_client_of_vf_msg(pf->vsi[pf->lan_vsi], abs_vf_id, msg, msglen); error_param: /* send the response to the VF */ return i40e_vc_send_resp_to_vf(vf, VIRTCHNL_OP_IWARP, aq_ret); } /** * i40e_vc_iwarp_qvmap_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * @config: config qvmap or release it * * called from the VF for the iwarp msgs **/ static int i40e_vc_iwarp_qvmap_msg(struct i40e_vf *vf, u8 *msg, bool config) { struct virtchnl_iwarp_qvlist_info *qvlist_info = (struct virtchnl_iwarp_qvlist_info *)msg; i40e_status aq_ret = 0; if (!test_bit(I40E_VF_STATE_ACTIVE, &vf->vf_states) || !test_bit(I40E_VF_STATE_IWARPENA, &vf->vf_states)) { aq_ret = I40E_ERR_PARAM; goto error_param; } if (config) { if (i40e_config_iwarp_qvlist(vf, qvlist_info)) aq_ret = I40E_ERR_PARAM; } else { i40e_release_iwarp_qvlist(vf); } error_param: /* send the response to the VF */ return i40e_vc_send_resp_to_vf(vf, config ? VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP : VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP, aq_ret); } /** * i40e_vc_config_rss_key * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * Configure the VF's RSS key **/ static int i40e_vc_config_rss_key(struct i40e_vf *vf, u8 *msg) { struct virtchnl_rss_key *vrk = (struct virtchnl_rss_key *)msg; struct i40e_pf *pf = vf->pf; struct i40e_vsi *vsi = NULL; i40e_status aq_ret = 0; if (!i40e_sync_vf_state(vf, I40E_VF_STATE_ACTIVE) || !i40e_vc_isvalid_vsi_id(vf, vrk->vsi_id) || vrk->key_len != I40E_HKEY_ARRAY_SIZE) { aq_ret = I40E_ERR_PARAM; goto err; } vsi = pf->vsi[vf->lan_vsi_idx]; aq_ret = i40e_config_rss(vsi, vrk->key, NULL, 0); err: /* send the response to the VF */ return i40e_vc_send_resp_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, aq_ret); } /** * i40e_vc_config_rss_lut * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * Configure the VF's RSS LUT **/ static int i40e_vc_config_rss_lut(struct i40e_vf *vf, u8 *msg) { struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg; struct i40e_pf *pf = vf->pf; struct i40e_vsi *vsi = NULL; i40e_status aq_ret = 0; u16 i; if (!i40e_sync_vf_state(vf, I40E_VF_STATE_ACTIVE) || !i40e_vc_isvalid_vsi_id(vf, vrl->vsi_id) || vrl->lut_entries != I40E_VF_HLUT_ARRAY_SIZE) { aq_ret = I40E_ERR_PARAM; goto err; } for (i = 0; i < vrl->lut_entries; i++) if (vrl->lut[i] >= vf->num_queue_pairs) { aq_ret = I40E_ERR_PARAM; goto err; } vsi = pf->vsi[vf->lan_vsi_idx]; aq_ret = i40e_config_rss(vsi, NULL, vrl->lut, I40E_VF_HLUT_ARRAY_SIZE); /* send the response to the VF */ err: return i40e_vc_send_resp_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, aq_ret); } /** * i40e_vc_get_rss_hena * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * Return the RSS HENA bits allowed by the hardware **/ static int i40e_vc_get_rss_hena(struct i40e_vf *vf, u8 *msg) { struct virtchnl_rss_hena *vrh = NULL; struct i40e_pf *pf = vf->pf; i40e_status aq_ret = 0; int len = 0; if (!i40e_sync_vf_state(vf, I40E_VF_STATE_ACTIVE)) { aq_ret = I40E_ERR_PARAM; goto err; } len = sizeof(struct virtchnl_rss_hena); vrh = kzalloc(len, GFP_KERNEL); if (!vrh) { aq_ret = I40E_ERR_NO_MEMORY; len = 0; goto err; } vrh->hena = i40e_pf_get_default_rss_hena(pf); err: /* send the response back to the VF */ aq_ret = i40e_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, aq_ret, (u8 *)vrh, len); kfree(vrh); return aq_ret; } /** * i40e_vc_set_rss_hena * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * Set the RSS HENA bits for the VF **/ static int i40e_vc_set_rss_hena(struct i40e_vf *vf, u8 *msg) { struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg; struct i40e_pf *pf = vf->pf; struct i40e_hw *hw = &pf->hw; i40e_status aq_ret = 0; if (!i40e_sync_vf_state(vf, I40E_VF_STATE_ACTIVE)) { aq_ret = I40E_ERR_PARAM; goto err; } i40e_write_rx_ctl(hw, I40E_VFQF_HENA1(0, vf->vf_id), (u32)vrh->hena); i40e_write_rx_ctl(hw, I40E_VFQF_HENA1(1, vf->vf_id), (u32)(vrh->hena >> 32)); /* send the response to the VF */ err: return i40e_vc_send_resp_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, aq_ret); } /** * i40e_vc_enable_vlan_stripping * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * Enable vlan header stripping for the VF **/ static int i40e_vc_enable_vlan_stripping(struct i40e_vf *vf, u8 *msg) { i40e_status aq_ret = 0; struct i40e_vsi *vsi; if (!i40e_sync_vf_state(vf, I40E_VF_STATE_ACTIVE)) { aq_ret = I40E_ERR_PARAM; goto err; } vsi = vf->pf->vsi[vf->lan_vsi_idx]; i40e_vlan_stripping_enable(vsi); /* send the response to the VF */ err: return i40e_vc_send_resp_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING, aq_ret); } /** * i40e_vc_disable_vlan_stripping * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * Disable vlan header stripping for the VF **/ static int i40e_vc_disable_vlan_stripping(struct i40e_vf *vf, u8 *msg) { i40e_status aq_ret = 0; struct i40e_vsi *vsi; if (!i40e_sync_vf_state(vf, I40E_VF_STATE_ACTIVE)) { aq_ret = I40E_ERR_PARAM; goto err; } vsi = vf->pf->vsi[vf->lan_vsi_idx]; i40e_vlan_stripping_disable(vsi); /* send the response to the VF */ err: return i40e_vc_send_resp_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING, aq_ret); } /** * i40e_validate_cloud_filter * @vf: pointer to VF structure * @tc_filter: pointer to filter requested * * This function validates cloud filter programmed as TC filter for ADq **/ static int i40e_validate_cloud_filter(struct i40e_vf *vf, struct virtchnl_filter *tc_filter) { struct virtchnl_l4_spec mask = tc_filter->mask.tcp_spec; struct virtchnl_l4_spec data = tc_filter->data.tcp_spec; struct i40e_pf *pf = vf->pf; struct i40e_vsi *vsi = NULL; struct i40e_mac_filter *f; struct hlist_node *h; bool found = false; int bkt; if (!tc_filter->action) { dev_info(&pf->pdev->dev, "VF %d: Currently ADq doesn't support Drop Action\n", vf->vf_id); goto err; } /* action_meta is TC number here to which the filter is applied */ if (!tc_filter->action_meta || tc_filter->action_meta > I40E_MAX_VF_VSI) { dev_info(&pf->pdev->dev, "VF %d: Invalid TC number %u\n", vf->vf_id, tc_filter->action_meta); goto err; } /* Check filter if it's programmed for advanced mode or basic mode. * There are two ADq modes (for VF only), * 1. Basic mode: intended to allow as many filter options as possible * to be added to a VF in Non-trusted mode. Main goal is * to add filters to its own MAC and VLAN id. * 2. Advanced mode: is for allowing filters to be applied other than * its own MAC or VLAN. This mode requires the VF to be * Trusted. */ if (mask.dst_mac[0] && !mask.dst_ip[0]) { vsi = pf->vsi[vf->lan_vsi_idx]; f = i40e_find_mac(vsi, data.dst_mac); if (!f) { dev_info(&pf->pdev->dev, "Destination MAC %pM doesn't belong to VF %d\n", data.dst_mac, vf->vf_id); goto err; } if (mask.vlan_id) { hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) { if (f->vlan == ntohs(data.vlan_id)) { found = true; break; } } if (!found) { dev_info(&pf->pdev->dev, "VF %d doesn't have any VLAN id %u\n", vf->vf_id, ntohs(data.vlan_id)); goto err; } } } else { /* Check if VF is trusted */ if (!test_bit(I40E_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps)) { dev_err(&pf->pdev->dev, "VF %d not trusted, make VF trusted to add advanced mode ADq cloud filters\n", vf->vf_id); return I40E_ERR_CONFIG; } } if (mask.dst_mac[0] & data.dst_mac[0]) { if (is_broadcast_ether_addr(data.dst_mac) || is_zero_ether_addr(data.dst_mac)) { dev_info(&pf->pdev->dev, "VF %d: Invalid Dest MAC addr %pM\n", vf->vf_id, data.dst_mac); goto err; } } if (mask.src_mac[0] & data.src_mac[0]) { if (is_broadcast_ether_addr(data.src_mac) || is_zero_ether_addr(data.src_mac)) { dev_info(&pf->pdev->dev, "VF %d: Invalid Source MAC addr %pM\n", vf->vf_id, data.src_mac); goto err; } } if (mask.dst_port & data.dst_port) { if (!data.dst_port) { dev_info(&pf->pdev->dev, "VF %d: Invalid Dest port\n", vf->vf_id); goto err; } } if (mask.src_port & data.src_port) { if (!data.src_port) { dev_info(&pf->pdev->dev, "VF %d: Invalid Source port\n", vf->vf_id); goto err; } } if (tc_filter->flow_type != VIRTCHNL_TCP_V6_FLOW && tc_filter->flow_type != VIRTCHNL_TCP_V4_FLOW) { dev_info(&pf->pdev->dev, "VF %d: Invalid Flow type\n", vf->vf_id); goto err; } if (mask.vlan_id & data.vlan_id) { if (ntohs(data.vlan_id) > I40E_MAX_VLANID) { dev_info(&pf->pdev->dev, "VF %d: invalid VLAN ID\n", vf->vf_id); goto err; } } return I40E_SUCCESS; err: return I40E_ERR_CONFIG; } /** * i40e_find_vsi_from_seid - searches for the vsi with the given seid * @vf: pointer to the VF info * @seid: seid of the vsi it is searching for **/ static struct i40e_vsi *i40e_find_vsi_from_seid(struct i40e_vf *vf, u16 seid) { struct i40e_pf *pf = vf->pf; struct i40e_vsi *vsi = NULL; int i; for (i = 0; i < vf->num_tc ; i++) { vsi = i40e_find_vsi_from_id(pf, vf->ch[i].vsi_id); if (vsi && vsi->seid == seid) return vsi; } return NULL; } /** * i40e_del_all_cloud_filters * @vf: pointer to the VF info * * This function deletes all cloud filters **/ static void i40e_del_all_cloud_filters(struct i40e_vf *vf) { struct i40e_cloud_filter *cfilter = NULL; struct i40e_pf *pf = vf->pf; struct i40e_vsi *vsi = NULL; struct hlist_node *node; int ret; hlist_for_each_entry_safe(cfilter, node, &vf->cloud_filter_list, cloud_node) { vsi = i40e_find_vsi_from_seid(vf, cfilter->seid); if (!vsi) { dev_err(&pf->pdev->dev, "VF %d: no VSI found for matching %u seid, can't delete cloud filter\n", vf->vf_id, cfilter->seid); continue; } if (cfilter->dst_port) ret = i40e_add_del_cloud_filter_big_buf(vsi, cfilter, false); else ret = i40e_add_del_cloud_filter(vsi, cfilter, false); if (ret) dev_err(&pf->pdev->dev, "VF %d: Failed to delete cloud filter, err %s aq_err %s\n", vf->vf_id, i40e_stat_str(&pf->hw, ret), i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); hlist_del(&cfilter->cloud_node); kfree(cfilter); vf->num_cloud_filters--; } } /** * i40e_vc_del_cloud_filter * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * This function deletes a cloud filter programmed as TC filter for ADq **/ static int i40e_vc_del_cloud_filter(struct i40e_vf *vf, u8 *msg) { struct virtchnl_filter *vcf = (struct virtchnl_filter *)msg; struct virtchnl_l4_spec mask = vcf->mask.tcp_spec; struct virtchnl_l4_spec tcf = vcf->data.tcp_spec; struct i40e_cloud_filter cfilter, *cf = NULL; struct i40e_pf *pf = vf->pf; struct i40e_vsi *vsi = NULL; struct hlist_node *node; i40e_status aq_ret = 0; int i, ret; if (!i40e_sync_vf_state(vf, I40E_VF_STATE_ACTIVE)) { aq_ret = I40E_ERR_PARAM; goto err; } if (!vf->adq_enabled) { dev_info(&pf->pdev->dev, "VF %d: ADq not enabled, can't apply cloud filter\n", vf->vf_id); aq_ret = I40E_ERR_PARAM; goto err; } if (i40e_validate_cloud_filter(vf, vcf)) { dev_info(&pf->pdev->dev, "VF %d: Invalid input, can't apply cloud filter\n", vf->vf_id); aq_ret = I40E_ERR_PARAM; goto err; } memset(&cfilter, 0, sizeof(cfilter)); /* parse destination mac address */ for (i = 0; i < ETH_ALEN; i++) cfilter.dst_mac[i] = mask.dst_mac[i] & tcf.dst_mac[i]; /* parse source mac address */ for (i = 0; i < ETH_ALEN; i++) cfilter.src_mac[i] = mask.src_mac[i] & tcf.src_mac[i]; cfilter.vlan_id = mask.vlan_id & tcf.vlan_id; cfilter.dst_port = mask.dst_port & tcf.dst_port; cfilter.src_port = mask.src_port & tcf.src_port; switch (vcf->flow_type) { case VIRTCHNL_TCP_V4_FLOW: cfilter.n_proto = ETH_P_IP; if (mask.dst_ip[0] & tcf.dst_ip[0]) memcpy(&cfilter.ip.v4.dst_ip, tcf.dst_ip, ARRAY_SIZE(tcf.dst_ip)); else if (mask.src_ip[0] & tcf.dst_ip[0]) memcpy(&cfilter.ip.v4.src_ip, tcf.src_ip, ARRAY_SIZE(tcf.dst_ip)); break; case VIRTCHNL_TCP_V6_FLOW: cfilter.n_proto = ETH_P_IPV6; if (mask.dst_ip[3] & tcf.dst_ip[3]) memcpy(&cfilter.ip.v6.dst_ip6, tcf.dst_ip, sizeof(cfilter.ip.v6.dst_ip6)); if (mask.src_ip[3] & tcf.src_ip[3]) memcpy(&cfilter.ip.v6.src_ip6, tcf.src_ip, sizeof(cfilter.ip.v6.src_ip6)); break; default: /* TC filter can be configured based on different combinations * and in this case IP is not a part of filter config */ dev_info(&pf->pdev->dev, "VF %d: Flow type not configured\n", vf->vf_id); } /* get the vsi to which the tc belongs to */ vsi = pf->vsi[vf->ch[vcf->action_meta].vsi_idx]; cfilter.seid = vsi->seid; cfilter.flags = vcf->field_flags; /* Deleting TC filter */ if (tcf.dst_port) ret = i40e_add_del_cloud_filter_big_buf(vsi, &cfilter, false); else ret = i40e_add_del_cloud_filter(vsi, &cfilter, false); if (ret) { dev_err(&pf->pdev->dev, "VF %d: Failed to delete cloud filter, err %s aq_err %s\n", vf->vf_id, i40e_stat_str(&pf->hw, ret), i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); goto err; } hlist_for_each_entry_safe(cf, node, &vf->cloud_filter_list, cloud_node) { if (cf->seid != cfilter.seid) continue; if (mask.dst_port) if (cfilter.dst_port != cf->dst_port) continue; if (mask.dst_mac[0]) if (!ether_addr_equal(cf->src_mac, cfilter.src_mac)) continue; /* for ipv4 data to be valid, only first byte of mask is set */ if (cfilter.n_proto == ETH_P_IP && mask.dst_ip[0]) if (memcmp(&cfilter.ip.v4.dst_ip, &cf->ip.v4.dst_ip, ARRAY_SIZE(tcf.dst_ip))) continue; /* for ipv6, mask is set for all sixteen bytes (4 words) */ if (cfilter.n_proto == ETH_P_IPV6 && mask.dst_ip[3]) if (memcmp(&cfilter.ip.v6.dst_ip6, &cf->ip.v6.dst_ip6, sizeof(cfilter.ip.v6.src_ip6))) continue; if (mask.vlan_id) if (cfilter.vlan_id != cf->vlan_id) continue; hlist_del(&cf->cloud_node); kfree(cf); vf->num_cloud_filters--; } err: return i40e_vc_send_resp_to_vf(vf, VIRTCHNL_OP_DEL_CLOUD_FILTER, aq_ret); } /** * i40e_vc_add_cloud_filter * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * This function adds a cloud filter programmed as TC filter for ADq **/ static int i40e_vc_add_cloud_filter(struct i40e_vf *vf, u8 *msg) { struct virtchnl_filter *vcf = (struct virtchnl_filter *)msg; struct virtchnl_l4_spec mask = vcf->mask.tcp_spec; struct virtchnl_l4_spec tcf = vcf->data.tcp_spec; struct i40e_cloud_filter *cfilter = NULL; struct i40e_pf *pf = vf->pf; struct i40e_vsi *vsi = NULL; i40e_status aq_ret = 0; int i, ret; if (!i40e_sync_vf_state(vf, I40E_VF_STATE_ACTIVE)) { aq_ret = I40E_ERR_PARAM; goto err_out; } if (!vf->adq_enabled) { dev_info(&pf->pdev->dev, "VF %d: ADq is not enabled, can't apply cloud filter\n", vf->vf_id); aq_ret = I40E_ERR_PARAM; goto err_out; } if (i40e_validate_cloud_filter(vf, vcf)) { dev_info(&pf->pdev->dev, "VF %d: Invalid input/s, can't apply cloud filter\n", vf->vf_id); aq_ret = I40E_ERR_PARAM; goto err_out; } cfilter = kzalloc(sizeof(*cfilter), GFP_KERNEL); if (!cfilter) return -ENOMEM; /* parse destination mac address */ for (i = 0; i < ETH_ALEN; i++) cfilter->dst_mac[i] = mask.dst_mac[i] & tcf.dst_mac[i]; /* parse source mac address */ for (i = 0; i < ETH_ALEN; i++) cfilter->src_mac[i] = mask.src_mac[i] & tcf.src_mac[i]; cfilter->vlan_id = mask.vlan_id & tcf.vlan_id; cfilter->dst_port = mask.dst_port & tcf.dst_port; cfilter->src_port = mask.src_port & tcf.src_port; switch (vcf->flow_type) { case VIRTCHNL_TCP_V4_FLOW: cfilter->n_proto = ETH_P_IP; if (mask.dst_ip[0] & tcf.dst_ip[0]) memcpy(&cfilter->ip.v4.dst_ip, tcf.dst_ip, ARRAY_SIZE(tcf.dst_ip)); else if (mask.src_ip[0] & tcf.dst_ip[0]) memcpy(&cfilter->ip.v4.src_ip, tcf.src_ip, ARRAY_SIZE(tcf.dst_ip)); break; case VIRTCHNL_TCP_V6_FLOW: cfilter->n_proto = ETH_P_IPV6; if (mask.dst_ip[3] & tcf.dst_ip[3]) memcpy(&cfilter->ip.v6.dst_ip6, tcf.dst_ip, sizeof(cfilter->ip.v6.dst_ip6)); if (mask.src_ip[3] & tcf.src_ip[3]) memcpy(&cfilter->ip.v6.src_ip6, tcf.src_ip, sizeof(cfilter->ip.v6.src_ip6)); break; default: /* TC filter can be configured based on different combinations * and in this case IP is not a part of filter config */ dev_info(&pf->pdev->dev, "VF %d: Flow type not configured\n", vf->vf_id); } /* get the VSI to which the TC belongs to */ vsi = pf->vsi[vf->ch[vcf->action_meta].vsi_idx]; cfilter->seid = vsi->seid; cfilter->flags = vcf->field_flags; /* Adding cloud filter programmed as TC filter */ if (tcf.dst_port) ret = i40e_add_del_cloud_filter_big_buf(vsi, cfilter, true); else ret = i40e_add_del_cloud_filter(vsi, cfilter, true); if (ret) { dev_err(&pf->pdev->dev, "VF %d: Failed to add cloud filter, err %s aq_err %s\n", vf->vf_id, i40e_stat_str(&pf->hw, ret), i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status)); goto err_free; } INIT_HLIST_NODE(&cfilter->cloud_node); hlist_add_head(&cfilter->cloud_node, &vf->cloud_filter_list); /* release the pointer passing it to the collection */ cfilter = NULL; vf->num_cloud_filters++; err_free: kfree(cfilter); err_out: return i40e_vc_send_resp_to_vf(vf, VIRTCHNL_OP_ADD_CLOUD_FILTER, aq_ret); } /** * i40e_vc_add_qch_msg: Add queue channel and enable ADq * @vf: pointer to the VF info * @msg: pointer to the msg buffer **/ static int i40e_vc_add_qch_msg(struct i40e_vf *vf, u8 *msg) { struct virtchnl_tc_info *tci = (struct virtchnl_tc_info *)msg; struct i40e_pf *pf = vf->pf; struct i40e_link_status *ls = &pf->hw.phy.link_info; int i, adq_request_qps = 0; i40e_status aq_ret = 0; u64 speed = 0; if (!i40e_sync_vf_state(vf, I40E_VF_STATE_ACTIVE)) { aq_ret = I40E_ERR_PARAM; goto err; } /* ADq cannot be applied if spoof check is ON */ if (vf->spoofchk) { dev_err(&pf->pdev->dev, "Spoof check is ON, turn it OFF to enable ADq\n"); aq_ret = I40E_ERR_PARAM; goto err; } if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADQ)) { dev_err(&pf->pdev->dev, "VF %d attempting to enable ADq, but hasn't properly negotiated that capability\n", vf->vf_id); aq_ret = I40E_ERR_PARAM; goto err; } /* max number of traffic classes for VF currently capped at 4 */ if (!tci->num_tc || tci->num_tc > I40E_MAX_VF_VSI) { dev_err(&pf->pdev->dev, "VF %d trying to set %u TCs, valid range 1-%u TCs per VF\n", vf->vf_id, tci->num_tc, I40E_MAX_VF_VSI); aq_ret = I40E_ERR_PARAM; goto err; } /* validate queues for each TC */ for (i = 0; i < tci->num_tc; i++) if (!tci->list[i].count || tci->list[i].count > I40E_DEFAULT_QUEUES_PER_VF) { dev_err(&pf->pdev->dev, "VF %d: TC %d trying to set %u queues, valid range 1-%u queues per TC\n", vf->vf_id, i, tci->list[i].count, I40E_DEFAULT_QUEUES_PER_VF); aq_ret = I40E_ERR_PARAM; goto err; } /* need Max VF queues but already have default number of queues */ adq_request_qps = I40E_MAX_VF_QUEUES - I40E_DEFAULT_QUEUES_PER_VF; if (pf->queues_left < adq_request_qps) { dev_err(&pf->pdev->dev, "No queues left to allocate to VF %d\n", vf->vf_id); aq_ret = I40E_ERR_PARAM; goto err; } else { /* we need to allocate max VF queues to enable ADq so as to * make sure ADq enabled VF always gets back queues when it * goes through a reset. */ vf->num_queue_pairs = I40E_MAX_VF_QUEUES; } /* get link speed in MB to validate rate limit */ speed = i40e_vc_link_speed2mbps(ls->link_speed); if (speed == SPEED_UNKNOWN) { dev_err(&pf->pdev->dev, "Cannot detect link speed\n"); aq_ret = I40E_ERR_PARAM; goto err; } /* parse data from the queue channel info */ vf->num_tc = tci->num_tc; for (i = 0; i < vf->num_tc; i++) { if (tci->list[i].max_tx_rate) { if (tci->list[i].max_tx_rate > speed) { dev_err(&pf->pdev->dev, "Invalid max tx rate %llu specified for VF %d.", tci->list[i].max_tx_rate, vf->vf_id); aq_ret = I40E_ERR_PARAM; goto err; } else { vf->ch[i].max_tx_rate = tci->list[i].max_tx_rate; } } vf->ch[i].num_qps = tci->list[i].count; } /* set this flag only after making sure all inputs are sane */ vf->adq_enabled = true; /* reset the VF in order to allocate resources */ i40e_vc_reset_vf(vf, true); return I40E_SUCCESS; /* send the response to the VF */ err: return i40e_vc_send_resp_to_vf(vf, VIRTCHNL_OP_ENABLE_CHANNELS, aq_ret); } /** * i40e_vc_del_qch_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer **/ static int i40e_vc_del_qch_msg(struct i40e_vf *vf, u8 *msg) { struct i40e_pf *pf = vf->pf; i40e_status aq_ret = 0; if (!i40e_sync_vf_state(vf, I40E_VF_STATE_ACTIVE)) { aq_ret = I40E_ERR_PARAM; goto err; } if (vf->adq_enabled) { i40e_del_all_cloud_filters(vf); i40e_del_qch(vf); vf->adq_enabled = false; vf->num_tc = 0; dev_info(&pf->pdev->dev, "Deleting Queue Channels and cloud filters for ADq on VF %d\n", vf->vf_id); } else { dev_info(&pf->pdev->dev, "VF %d trying to delete queue channels but ADq isn't enabled\n", vf->vf_id); aq_ret = I40E_ERR_PARAM; } /* reset the VF in order to allocate resources */ i40e_vc_reset_vf(vf, true); return I40E_SUCCESS; err: return i40e_vc_send_resp_to_vf(vf, VIRTCHNL_OP_DISABLE_CHANNELS, aq_ret); } /** * i40e_vc_process_vf_msg * @pf: pointer to the PF structure * @vf_id: source VF id * @v_opcode: operation code * @v_retval: unused return value code * @msg: pointer to the msg buffer * @msglen: msg length * * called from the common aeq/arq handler to * process request from VF **/ int i40e_vc_process_vf_msg(struct i40e_pf *pf, s16 vf_id, u32 v_opcode, u32 __always_unused v_retval, u8 *msg, u16 msglen) { struct i40e_hw *hw = &pf->hw; int local_vf_id = vf_id - (s16)hw->func_caps.vf_base_id; struct i40e_vf *vf; int ret; pf->vf_aq_requests++; if (local_vf_id < 0 || local_vf_id >= pf->num_alloc_vfs) return -EINVAL; vf = &(pf->vf[local_vf_id]); /* Check if VF is disabled. */ if (test_bit(I40E_VF_STATE_DISABLED, &vf->vf_states)) return I40E_ERR_PARAM; /* perform basic checks on the msg */ ret = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen); if (ret) { i40e_vc_send_resp_to_vf(vf, v_opcode, I40E_ERR_PARAM); dev_err(&pf->pdev->dev, "Invalid message from VF %d, opcode %d, len %d\n", local_vf_id, v_opcode, msglen); switch (ret) { case VIRTCHNL_STATUS_ERR_PARAM: return -EPERM; default: return -EINVAL; } } switch (v_opcode) { case VIRTCHNL_OP_VERSION: ret = i40e_vc_get_version_msg(vf, msg); break; case VIRTCHNL_OP_GET_VF_RESOURCES: ret = i40e_vc_get_vf_resources_msg(vf, msg); i40e_vc_notify_vf_link_state(vf); break; case VIRTCHNL_OP_RESET_VF: i40e_vc_reset_vf(vf, false); ret = 0; break; case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: ret = i40e_vc_config_promiscuous_mode_msg(vf, msg); break; case VIRTCHNL_OP_CONFIG_VSI_QUEUES: ret = i40e_vc_config_queues_msg(vf, msg); break; case VIRTCHNL_OP_CONFIG_IRQ_MAP: ret = i40e_vc_config_irq_map_msg(vf, msg); break; case VIRTCHNL_OP_ENABLE_QUEUES: ret = i40e_vc_enable_queues_msg(vf, msg); i40e_vc_notify_vf_link_state(vf); break; case VIRTCHNL_OP_DISABLE_QUEUES: ret = i40e_vc_disable_queues_msg(vf, msg); break; case VIRTCHNL_OP_ADD_ETH_ADDR: ret = i40e_vc_add_mac_addr_msg(vf, msg); break; case VIRTCHNL_OP_DEL_ETH_ADDR: ret = i40e_vc_del_mac_addr_msg(vf, msg); break; case VIRTCHNL_OP_ADD_VLAN: ret = i40e_vc_add_vlan_msg(vf, msg); break; case VIRTCHNL_OP_DEL_VLAN: ret = i40e_vc_remove_vlan_msg(vf, msg); break; case VIRTCHNL_OP_GET_STATS: ret = i40e_vc_get_stats_msg(vf, msg); break; case VIRTCHNL_OP_IWARP: ret = i40e_vc_iwarp_msg(vf, msg, msglen); break; case VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP: ret = i40e_vc_iwarp_qvmap_msg(vf, msg, true); break; case VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP: ret = i40e_vc_iwarp_qvmap_msg(vf, msg, false); break; case VIRTCHNL_OP_CONFIG_RSS_KEY: ret = i40e_vc_config_rss_key(vf, msg); break; case VIRTCHNL_OP_CONFIG_RSS_LUT: ret = i40e_vc_config_rss_lut(vf, msg); break; case VIRTCHNL_OP_GET_RSS_HENA_CAPS: ret = i40e_vc_get_rss_hena(vf, msg); break; case VIRTCHNL_OP_SET_RSS_HENA: ret = i40e_vc_set_rss_hena(vf, msg); break; case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: ret = i40e_vc_enable_vlan_stripping(vf, msg); break; case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: ret = i40e_vc_disable_vlan_stripping(vf, msg); break; case VIRTCHNL_OP_REQUEST_QUEUES: ret = i40e_vc_request_queues_msg(vf, msg); break; case VIRTCHNL_OP_ENABLE_CHANNELS: ret = i40e_vc_add_qch_msg(vf, msg); break; case VIRTCHNL_OP_DISABLE_CHANNELS: ret = i40e_vc_del_qch_msg(vf, msg); break; case VIRTCHNL_OP_ADD_CLOUD_FILTER: ret = i40e_vc_add_cloud_filter(vf, msg); break; case VIRTCHNL_OP_DEL_CLOUD_FILTER: ret = i40e_vc_del_cloud_filter(vf, msg); break; case VIRTCHNL_OP_UNKNOWN: default: dev_err(&pf->pdev->dev, "Unsupported opcode %d from VF %d\n", v_opcode, local_vf_id); ret = i40e_vc_send_resp_to_vf(vf, v_opcode, I40E_ERR_NOT_IMPLEMENTED); break; } return ret; } /** * i40e_vc_process_vflr_event * @pf: pointer to the PF structure * * called from the vlfr irq handler to * free up VF resources and state variables **/ int i40e_vc_process_vflr_event(struct i40e_pf *pf) { struct i40e_hw *hw = &pf->hw; u32 reg, reg_idx, bit_idx; struct i40e_vf *vf; int vf_id; if (!test_bit(__I40E_VFLR_EVENT_PENDING, pf->state)) return 0; /* Re-enable the VFLR interrupt cause here, before looking for which * VF got reset. Otherwise, if another VF gets a reset while the * first one is being processed, that interrupt will be lost, and * that VF will be stuck in reset forever. */ reg = rd32(hw, I40E_PFINT_ICR0_ENA); reg |= I40E_PFINT_ICR0_ENA_VFLR_MASK; wr32(hw, I40E_PFINT_ICR0_ENA, reg); i40e_flush(hw); clear_bit(__I40E_VFLR_EVENT_PENDING, pf->state); for (vf_id = 0; vf_id < pf->num_alloc_vfs; vf_id++) { reg_idx = (hw->func_caps.vf_base_id + vf_id) / 32; bit_idx = (hw->func_caps.vf_base_id + vf_id) % 32; /* read GLGEN_VFLRSTAT register to find out the flr VFs */ vf = &pf->vf[vf_id]; reg = rd32(hw, I40E_GLGEN_VFLRSTAT(reg_idx)); if (reg & BIT(bit_idx)) /* i40e_reset_vf will clear the bit in GLGEN_VFLRSTAT */ i40e_reset_vf(vf, true); } return 0; } /** * i40e_validate_vf * @pf: the physical function * @vf_id: VF identifier * * Check that the VF is enabled and the VSI exists. * * Returns 0 on success, negative on failure **/ static int i40e_validate_vf(struct i40e_pf *pf, int vf_id) { struct i40e_vsi *vsi; struct i40e_vf *vf; int ret = 0; if (vf_id >= pf->num_alloc_vfs) { dev_err(&pf->pdev->dev, "Invalid VF Identifier %d\n", vf_id); ret = -EINVAL; goto err_out; } vf = &pf->vf[vf_id]; vsi = i40e_find_vsi_from_id(pf, vf->lan_vsi_id); if (!vsi) ret = -EINVAL; err_out: return ret; } /** * i40e_ndo_set_vf_mac * @netdev: network interface device structure * @vf_id: VF identifier * @mac: mac address * * program VF mac address **/ int i40e_ndo_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac) { struct i40e_netdev_priv *np = netdev_priv(netdev); struct i40e_vsi *vsi = np->vsi; struct i40e_pf *pf = vsi->back; struct i40e_mac_filter *f; struct i40e_vf *vf; int ret = 0; struct hlist_node *h; int bkt; u8 i; if (test_and_set_bit(__I40E_VIRTCHNL_OP_PENDING, pf->state)) { dev_warn(&pf->pdev->dev, "Unable to configure VFs, other operation is pending.\n"); return -EAGAIN; } /* validate the request */ ret = i40e_validate_vf(pf, vf_id); if (ret) goto error_param; vf = &pf->vf[vf_id]; /* When the VF is resetting wait until it is done. * It can take up to 200 milliseconds, * but wait for up to 300 milliseconds to be safe. * Acquire the VSI pointer only after the VF has been * properly initialized. */ for (i = 0; i < 15; i++) { if (test_bit(I40E_VF_STATE_INIT, &vf->vf_states)) break; msleep(20); } if (!test_bit(I40E_VF_STATE_INIT, &vf->vf_states)) { dev_err(&pf->pdev->dev, "VF %d still in reset. Try again.\n", vf_id); ret = -EAGAIN; goto error_param; } vsi = pf->vsi[vf->lan_vsi_idx]; if (is_multicast_ether_addr(mac)) { dev_err(&pf->pdev->dev, "Invalid Ethernet address %pM for VF %d\n", mac, vf_id); ret = -EINVAL; goto error_param; } /* Lock once because below invoked function add/del_filter requires * mac_filter_hash_lock to be held */ spin_lock_bh(&vsi->mac_filter_hash_lock); /* delete the temporary mac address */ if (!is_zero_ether_addr(vf->default_lan_addr.addr)) i40e_del_mac_filter(vsi, vf->default_lan_addr.addr); /* Delete all the filters for this VSI - we're going to kill it * anyway. */ hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) __i40e_del_filter(vsi, f); spin_unlock_bh(&vsi->mac_filter_hash_lock); /* program mac filter */ if (i40e_sync_vsi_filters(vsi)) { dev_err(&pf->pdev->dev, "Unable to program ucast filters\n"); ret = -EIO; goto error_param; } ether_addr_copy(vf->default_lan_addr.addr, mac); if (is_zero_ether_addr(mac)) { vf->pf_set_mac = false; dev_info(&pf->pdev->dev, "Removing MAC on VF %d\n", vf_id); } else { vf->pf_set_mac = true; dev_info(&pf->pdev->dev, "Setting MAC %pM on VF %d\n", mac, vf_id); } /* Force the VF interface down so it has to bring up with new MAC * address */ i40e_vc_reset_vf(vf, true); dev_info(&pf->pdev->dev, "Bring down and up the VF interface to make this change effective.\n"); error_param: clear_bit(__I40E_VIRTCHNL_OP_PENDING, pf->state); return ret; } /** * i40e_ndo_set_vf_port_vlan * @netdev: network interface device structure * @vf_id: VF identifier * @vlan_id: mac address * @qos: priority setting * @vlan_proto: vlan protocol * * program VF vlan id and/or qos **/ int i40e_ndo_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos, __be16 vlan_proto) { u16 vlanprio = vlan_id | (qos << I40E_VLAN_PRIORITY_SHIFT); struct i40e_netdev_priv *np = netdev_priv(netdev); bool allmulti = false, alluni = false; struct i40e_pf *pf = np->vsi->back; struct i40e_vsi *vsi; struct i40e_vf *vf; int ret = 0; if (test_and_set_bit(__I40E_VIRTCHNL_OP_PENDING, pf->state)) { dev_warn(&pf->pdev->dev, "Unable to configure VFs, other operation is pending.\n"); return -EAGAIN; } /* validate the request */ ret = i40e_validate_vf(pf, vf_id); if (ret) goto error_pvid; if ((vlan_id > I40E_MAX_VLANID) || (qos > 7)) { dev_err(&pf->pdev->dev, "Invalid VF Parameters\n"); ret = -EINVAL; goto error_pvid; } if (vlan_proto != htons(ETH_P_8021Q)) { dev_err(&pf->pdev->dev, "VF VLAN protocol is not supported\n"); ret = -EPROTONOSUPPORT; goto error_pvid; } vf = &pf->vf[vf_id]; vsi = pf->vsi[vf->lan_vsi_idx]; if (!test_bit(I40E_VF_STATE_INIT, &vf->vf_states)) { dev_err(&pf->pdev->dev, "VF %d still in reset. Try again.\n", vf_id); ret = -EAGAIN; goto error_pvid; } if (le16_to_cpu(vsi->info.pvid) == vlanprio) /* duplicate request, so just return success */ goto error_pvid; i40e_vc_reset_vf(vf, true); /* During reset the VF got a new VSI, so refresh a pointer. */ vsi = pf->vsi[vf->lan_vsi_idx]; /* Locked once because multiple functions below iterate list */ spin_lock_bh(&vsi->mac_filter_hash_lock); /* Check for condition where there was already a port VLAN ID * filter set and now it is being deleted by setting it to zero. * Additionally check for the condition where there was a port * VLAN but now there is a new and different port VLAN being set. * Before deleting all the old VLAN filters we must add new ones * with -1 (I40E_VLAN_ANY) or otherwise we're left with all our * MAC addresses deleted. */ if ((!(vlan_id || qos) || vlanprio != le16_to_cpu(vsi->info.pvid)) && vsi->info.pvid) { ret = i40e_add_vlan_all_mac(vsi, I40E_VLAN_ANY); if (ret) { dev_info(&vsi->back->pdev->dev, "add VF VLAN failed, ret=%d aq_err=%d\n", ret, vsi->back->hw.aq.asq_last_status); spin_unlock_bh(&vsi->mac_filter_hash_lock); goto error_pvid; } } if (vsi->info.pvid) { /* remove all filters on the old VLAN */ i40e_rm_vlan_all_mac(vsi, (le16_to_cpu(vsi->info.pvid) & VLAN_VID_MASK)); } spin_unlock_bh(&vsi->mac_filter_hash_lock); /* disable promisc modes in case they were enabled */ ret = i40e_config_vf_promiscuous_mode(vf, vf->lan_vsi_id, allmulti, alluni); if (ret) { dev_err(&pf->pdev->dev, "Unable to config VF promiscuous mode\n"); goto error_pvid; } if (vlan_id || qos) ret = i40e_vsi_add_pvid(vsi, vlanprio); else i40e_vsi_remove_pvid(vsi); spin_lock_bh(&vsi->mac_filter_hash_lock); if (vlan_id) { dev_info(&pf->pdev->dev, "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan_id, qos, vf_id); /* add new VLAN filter for each MAC */ ret = i40e_add_vlan_all_mac(vsi, vlan_id); if (ret) { dev_info(&vsi->back->pdev->dev, "add VF VLAN failed, ret=%d aq_err=%d\n", ret, vsi->back->hw.aq.asq_last_status); spin_unlock_bh(&vsi->mac_filter_hash_lock); goto error_pvid; } /* remove the previously added non-VLAN MAC filters */ i40e_rm_vlan_all_mac(vsi, I40E_VLAN_ANY); } spin_unlock_bh(&vsi->mac_filter_hash_lock); if (test_bit(I40E_VF_STATE_UC_PROMISC, &vf->vf_states)) alluni = true; if (test_bit(I40E_VF_STATE_MC_PROMISC, &vf->vf_states)) allmulti = true; /* Schedule the worker thread to take care of applying changes */ i40e_service_event_schedule(vsi->back); if (ret) { dev_err(&pf->pdev->dev, "Unable to update VF vsi context\n"); goto error_pvid; } /* The Port VLAN needs to be saved across resets the same as the * default LAN MAC address. */ vf->port_vlan_id = le16_to_cpu(vsi->info.pvid); ret = i40e_config_vf_promiscuous_mode(vf, vsi->id, allmulti, alluni); if (ret) { dev_err(&pf->pdev->dev, "Unable to config vf promiscuous mode\n"); goto error_pvid; } ret = 0; error_pvid: clear_bit(__I40E_VIRTCHNL_OP_PENDING, pf->state); return ret; } /** * i40e_ndo_set_vf_bw * @netdev: network interface device structure * @vf_id: VF identifier * @min_tx_rate: Minimum Tx rate * @max_tx_rate: Maximum Tx rate * * configure VF Tx rate **/ int i40e_ndo_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate, int max_tx_rate) { struct i40e_netdev_priv *np = netdev_priv(netdev); struct i40e_pf *pf = np->vsi->back; struct i40e_vsi *vsi; struct i40e_vf *vf; int ret = 0; if (test_and_set_bit(__I40E_VIRTCHNL_OP_PENDING, pf->state)) { dev_warn(&pf->pdev->dev, "Unable to configure VFs, other operation is pending.\n"); return -EAGAIN; } /* validate the request */ ret = i40e_validate_vf(pf, vf_id); if (ret) goto error; if (min_tx_rate) { dev_err(&pf->pdev->dev, "Invalid min tx rate (%d) (greater than 0) specified for VF %d.\n", min_tx_rate, vf_id); ret = -EINVAL; goto error; } vf = &pf->vf[vf_id]; vsi = pf->vsi[vf->lan_vsi_idx]; if (!test_bit(I40E_VF_STATE_INIT, &vf->vf_states)) { dev_err(&pf->pdev->dev, "VF %d still in reset. Try again.\n", vf_id); ret = -EAGAIN; goto error; } ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate); if (ret) goto error; vf->tx_rate = max_tx_rate; error: clear_bit(__I40E_VIRTCHNL_OP_PENDING, pf->state); return ret; } /** * i40e_ndo_get_vf_config * @netdev: network interface device structure * @vf_id: VF identifier * @ivi: VF configuration structure * * return VF configuration **/ int i40e_ndo_get_vf_config(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi) { struct i40e_netdev_priv *np = netdev_priv(netdev); struct i40e_vsi *vsi = np->vsi; struct i40e_pf *pf = vsi->back; struct i40e_vf *vf; int ret = 0; if (test_and_set_bit(__I40E_VIRTCHNL_OP_PENDING, pf->state)) { dev_warn(&pf->pdev->dev, "Unable to configure VFs, other operation is pending.\n"); return -EAGAIN; } /* validate the request */ ret = i40e_validate_vf(pf, vf_id); if (ret) goto error_param; vf = &pf->vf[vf_id]; /* first vsi is always the LAN vsi */ vsi = pf->vsi[vf->lan_vsi_idx]; if (!vsi) { ret = -ENOENT; goto error_param; } ivi->vf = vf_id; ether_addr_copy(ivi->mac, vf->default_lan_addr.addr); ivi->max_tx_rate = vf->tx_rate; ivi->min_tx_rate = 0; ivi->vlan = le16_to_cpu(vsi->info.pvid) & I40E_VLAN_MASK; ivi->qos = (le16_to_cpu(vsi->info.pvid) & I40E_PRIORITY_MASK) >> I40E_VLAN_PRIORITY_SHIFT; if (vf->link_forced == false) ivi->linkstate = IFLA_VF_LINK_STATE_AUTO; else if (vf->link_up == true) ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE; else ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE; ivi->spoofchk = vf->spoofchk; ivi->trusted = vf->trusted; ret = 0; error_param: clear_bit(__I40E_VIRTCHNL_OP_PENDING, pf->state); return ret; } /** * i40e_ndo_set_vf_link_state * @netdev: network interface device structure * @vf_id: VF identifier * @link: required link state * * Set the link state of a specified VF, regardless of physical link state **/ int i40e_ndo_set_vf_link_state(struct net_device *netdev, int vf_id, int link) { struct i40e_netdev_priv *np = netdev_priv(netdev); struct i40e_pf *pf = np->vsi->back; struct i40e_link_status *ls = &pf->hw.phy.link_info; struct virtchnl_pf_event pfe; struct i40e_hw *hw = &pf->hw; struct i40e_vf *vf; int abs_vf_id; int ret = 0; if (test_and_set_bit(__I40E_VIRTCHNL_OP_PENDING, pf->state)) { dev_warn(&pf->pdev->dev, "Unable to configure VFs, other operation is pending.\n"); return -EAGAIN; } /* validate the request */ if (vf_id >= pf->num_alloc_vfs) { dev_err(&pf->pdev->dev, "Invalid VF Identifier %d\n", vf_id); ret = -EINVAL; goto error_out; } vf = &pf->vf[vf_id]; abs_vf_id = vf->vf_id + hw->func_caps.vf_base_id; pfe.event = VIRTCHNL_EVENT_LINK_CHANGE; pfe.severity = PF_EVENT_SEVERITY_INFO; switch (link) { case IFLA_VF_LINK_STATE_AUTO: vf->link_forced = false; i40e_set_vf_link_state(vf, &pfe, ls); break; case IFLA_VF_LINK_STATE_ENABLE: vf->link_forced = true; vf->link_up = true; i40e_set_vf_link_state(vf, &pfe, ls); break; case IFLA_VF_LINK_STATE_DISABLE: vf->link_forced = true; vf->link_up = false; i40e_set_vf_link_state(vf, &pfe, ls); break; default: ret = -EINVAL; goto error_out; } /* Notify the VF of its new link state */ i40e_aq_send_msg_to_vf(hw, abs_vf_id, VIRTCHNL_OP_EVENT, 0, (u8 *)&pfe, sizeof(pfe), NULL); error_out: clear_bit(__I40E_VIRTCHNL_OP_PENDING, pf->state); return ret; } /** * i40e_ndo_set_vf_spoofchk * @netdev: network interface device structure * @vf_id: VF identifier * @enable: flag to enable or disable feature * * Enable or disable VF spoof checking **/ int i40e_ndo_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool enable) { struct i40e_netdev_priv *np = netdev_priv(netdev); struct i40e_vsi *vsi = np->vsi; struct i40e_pf *pf = vsi->back; struct i40e_vsi_context ctxt; struct i40e_hw *hw = &pf->hw; struct i40e_vf *vf; int ret = 0; if (test_and_set_bit(__I40E_VIRTCHNL_OP_PENDING, pf->state)) { dev_warn(&pf->pdev->dev, "Unable to configure VFs, other operation is pending.\n"); return -EAGAIN; } /* validate the request */ if (vf_id >= pf->num_alloc_vfs) { dev_err(&pf->pdev->dev, "Invalid VF Identifier %d\n", vf_id); ret = -EINVAL; goto out; } vf = &(pf->vf[vf_id]); if (!test_bit(I40E_VF_STATE_INIT, &vf->vf_states)) { dev_err(&pf->pdev->dev, "VF %d still in reset. Try again.\n", vf_id); ret = -EAGAIN; goto out; } if (enable == vf->spoofchk) goto out; vf->spoofchk = enable; memset(&ctxt, 0, sizeof(ctxt)); ctxt.seid = pf->vsi[vf->lan_vsi_idx]->seid; ctxt.pf_num = pf->hw.pf_id; ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SECURITY_VALID); if (enable) ctxt.info.sec_flags |= (I40E_AQ_VSI_SEC_FLAG_ENABLE_VLAN_CHK | I40E_AQ_VSI_SEC_FLAG_ENABLE_MAC_CHK); ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); if (ret) { dev_err(&pf->pdev->dev, "Error %d updating VSI parameters\n", ret); ret = -EIO; } out: clear_bit(__I40E_VIRTCHNL_OP_PENDING, pf->state); return ret; } /** * i40e_ndo_set_vf_trust * @netdev: network interface device structure of the pf * @vf_id: VF identifier * @setting: trust setting * * Enable or disable VF trust setting **/ int i40e_ndo_set_vf_trust(struct net_device *netdev, int vf_id, bool setting) { struct i40e_netdev_priv *np = netdev_priv(netdev); struct i40e_pf *pf = np->vsi->back; struct i40e_vf *vf; int ret = 0; if (test_and_set_bit(__I40E_VIRTCHNL_OP_PENDING, pf->state)) { dev_warn(&pf->pdev->dev, "Unable to configure VFs, other operation is pending.\n"); return -EAGAIN; } /* validate the request */ if (vf_id >= pf->num_alloc_vfs) { dev_err(&pf->pdev->dev, "Invalid VF Identifier %d\n", vf_id); ret = -EINVAL; goto out; } if (pf->flags & I40E_FLAG_MFP_ENABLED) { dev_err(&pf->pdev->dev, "Trusted VF not supported in MFP mode.\n"); ret = -EINVAL; goto out; } vf = &pf->vf[vf_id]; if (setting == vf->trusted) goto out; vf->trusted = setting; i40e_vc_reset_vf(vf, true); dev_info(&pf->pdev->dev, "VF %u is now %strusted\n", vf_id, setting ? "" : "un"); if (vf->adq_enabled) { if (!vf->trusted) { dev_info(&pf->pdev->dev, "VF %u no longer Trusted, deleting all cloud filters\n", vf_id); i40e_del_all_cloud_filters(vf); } } out: clear_bit(__I40E_VIRTCHNL_OP_PENDING, pf->state); return ret; } /** * i40e_get_vf_stats - populate some stats for the VF * @netdev: the netdev of the PF * @vf_id: the host OS identifier (0-127) * @vf_stats: pointer to the OS memory to be initialized */ int i40e_get_vf_stats(struct net_device *netdev, int vf_id, struct ifla_vf_stats *vf_stats) { struct i40e_netdev_priv *np = netdev_priv(netdev); struct i40e_pf *pf = np->vsi->back; struct i40e_eth_stats *stats; struct i40e_vsi *vsi; struct i40e_vf *vf; /* validate the request */ if (i40e_validate_vf(pf, vf_id)) return -EINVAL; vf = &pf->vf[vf_id]; if (!test_bit(I40E_VF_STATE_INIT, &vf->vf_states)) { dev_err(&pf->pdev->dev, "VF %d in reset. Try again.\n", vf_id); return -EBUSY; } vsi = pf->vsi[vf->lan_vsi_idx]; if (!vsi) return -EINVAL; i40e_update_eth_stats(vsi); stats = &vsi->eth_stats; memset(vf_stats, 0, sizeof(*vf_stats)); vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast + stats->rx_multicast; vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast + stats->tx_multicast; vf_stats->rx_bytes = stats->rx_bytes; vf_stats->tx_bytes = stats->tx_bytes; vf_stats->broadcast = stats->rx_broadcast; vf_stats->multicast = stats->rx_multicast; vf_stats->rx_dropped = stats->rx_discards; vf_stats->tx_dropped = stats->tx_discards; return 0; }