// SPDX-License-Identifier: GPL-2.0 /* Marvell RVU Ethernet driver * * Copyright (C) 2020 Marvell. * */ #include #include #include #include "otx2_reg.h" #include "otx2_common.h" #include "otx2_struct.h" #include "otx2_txrx.h" #include "otx2_ptp.h" #include "cn10k.h" #define CQE_ADDR(CQ, idx) ((CQ)->cqe_base + ((CQ)->cqe_size * (idx))) static int otx2_nix_cq_op_status(struct otx2_nic *pfvf, struct otx2_cq_queue *cq) { u64 incr = (u64)(cq->cq_idx) << 32; u64 status; status = otx2_atomic64_fetch_add(incr, pfvf->cq_op_addr); if (unlikely(status & BIT_ULL(CQ_OP_STAT_OP_ERR) || status & BIT_ULL(CQ_OP_STAT_CQ_ERR))) { dev_err(pfvf->dev, "CQ stopped due to error"); return -EINVAL; } cq->cq_tail = status & 0xFFFFF; cq->cq_head = (status >> 20) & 0xFFFFF; if (cq->cq_tail < cq->cq_head) cq->pend_cqe = (cq->cqe_cnt - cq->cq_head) + cq->cq_tail; else cq->pend_cqe = cq->cq_tail - cq->cq_head; return 0; } static struct nix_cqe_hdr_s *otx2_get_next_cqe(struct otx2_cq_queue *cq) { struct nix_cqe_hdr_s *cqe_hdr; cqe_hdr = (struct nix_cqe_hdr_s *)CQE_ADDR(cq, cq->cq_head); if (cqe_hdr->cqe_type == NIX_XQE_TYPE_INVALID) return NULL; cq->cq_head++; cq->cq_head &= (cq->cqe_cnt - 1); return cqe_hdr; } static unsigned int frag_num(unsigned int i) { #ifdef __BIG_ENDIAN return (i & ~3) + 3 - (i & 3); #else return i; #endif } static dma_addr_t otx2_dma_map_skb_frag(struct otx2_nic *pfvf, struct sk_buff *skb, int seg, int *len) { const skb_frag_t *frag; struct page *page; int offset; /* First segment is always skb->data */ if (!seg) { page = virt_to_page(skb->data); offset = offset_in_page(skb->data); *len = skb_headlen(skb); } else { frag = &skb_shinfo(skb)->frags[seg - 1]; page = skb_frag_page(frag); offset = skb_frag_off(frag); *len = skb_frag_size(frag); } return otx2_dma_map_page(pfvf, page, offset, *len, DMA_TO_DEVICE); } static void otx2_dma_unmap_skb_frags(struct otx2_nic *pfvf, struct sg_list *sg) { int seg; for (seg = 0; seg < sg->num_segs; seg++) { otx2_dma_unmap_page(pfvf, sg->dma_addr[seg], sg->size[seg], DMA_TO_DEVICE); } sg->num_segs = 0; } static void otx2_snd_pkt_handler(struct otx2_nic *pfvf, struct otx2_cq_queue *cq, struct otx2_snd_queue *sq, struct nix_cqe_tx_s *cqe, int budget, int *tx_pkts, int *tx_bytes) { struct nix_send_comp_s *snd_comp = &cqe->comp; struct skb_shared_hwtstamps ts; struct sk_buff *skb = NULL; u64 timestamp, tsns; struct sg_list *sg; int err; if (unlikely(snd_comp->status) && netif_msg_tx_err(pfvf)) net_err_ratelimited("%s: TX%d: Error in send CQ status:%x\n", pfvf->netdev->name, cq->cint_idx, snd_comp->status); sg = &sq->sg[snd_comp->sqe_id]; skb = (struct sk_buff *)sg->skb; if (unlikely(!skb)) return; if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) { timestamp = ((u64 *)sq->timestamps->base)[snd_comp->sqe_id]; if (timestamp != 1) { err = otx2_ptp_tstamp2time(pfvf, timestamp, &tsns); if (!err) { memset(&ts, 0, sizeof(ts)); ts.hwtstamp = ns_to_ktime(tsns); skb_tstamp_tx(skb, &ts); } } } *tx_bytes += skb->len; (*tx_pkts)++; otx2_dma_unmap_skb_frags(pfvf, sg); napi_consume_skb(skb, budget); sg->skb = (u64)NULL; } static void otx2_set_rxtstamp(struct otx2_nic *pfvf, struct sk_buff *skb, void *data) { u64 tsns; int err; if (!(pfvf->flags & OTX2_FLAG_RX_TSTAMP_ENABLED)) return; /* The first 8 bytes is the timestamp */ err = otx2_ptp_tstamp2time(pfvf, be64_to_cpu(*(__be64 *)data), &tsns); if (err) return; skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(tsns); } static void otx2_skb_add_frag(struct otx2_nic *pfvf, struct sk_buff *skb, u64 iova, int len, struct nix_rx_parse_s *parse) { struct page *page; int off = 0; void *va; va = phys_to_virt(otx2_iova_to_phys(pfvf->iommu_domain, iova)); if (likely(!skb_shinfo(skb)->nr_frags)) { /* Check if data starts at some nonzero offset * from the start of the buffer. For now the * only possible offset is 8 bytes in the case * where packet is prepended by a timestamp. */ if (parse->laptr) { otx2_set_rxtstamp(pfvf, skb, va); off = OTX2_HW_TIMESTAMP_LEN; } } page = virt_to_page(va); skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, va - page_address(page) + off, len - off, pfvf->rbsize); otx2_dma_unmap_page(pfvf, iova - OTX2_HEAD_ROOM, pfvf->rbsize, DMA_FROM_DEVICE); } static void otx2_set_rxhash(struct otx2_nic *pfvf, struct nix_cqe_rx_s *cqe, struct sk_buff *skb) { enum pkt_hash_types hash_type = PKT_HASH_TYPE_NONE; struct otx2_rss_info *rss; u32 hash = 0; if (!(pfvf->netdev->features & NETIF_F_RXHASH)) return; rss = &pfvf->hw.rss_info; if (rss->flowkey_cfg) { if (rss->flowkey_cfg & ~(NIX_FLOW_KEY_TYPE_IPV4 | NIX_FLOW_KEY_TYPE_IPV6)) hash_type = PKT_HASH_TYPE_L4; else hash_type = PKT_HASH_TYPE_L3; hash = cqe->hdr.flow_tag; } skb_set_hash(skb, hash, hash_type); } static void otx2_free_rcv_seg(struct otx2_nic *pfvf, struct nix_cqe_rx_s *cqe, int qidx) { struct nix_rx_sg_s *sg = &cqe->sg; void *end, *start; u64 *seg_addr; int seg; start = (void *)sg; end = start + ((cqe->parse.desc_sizem1 + 1) * 16); while (start < end) { sg = (struct nix_rx_sg_s *)start; seg_addr = &sg->seg_addr; for (seg = 0; seg < sg->segs; seg++, seg_addr++) pfvf->hw_ops->aura_freeptr(pfvf, qidx, *seg_addr & ~0x07ULL); start += sizeof(*sg); } } static bool otx2_check_rcv_errors(struct otx2_nic *pfvf, struct nix_cqe_rx_s *cqe, int qidx) { struct otx2_drv_stats *stats = &pfvf->hw.drv_stats; struct nix_rx_parse_s *parse = &cqe->parse; if (netif_msg_rx_err(pfvf)) netdev_err(pfvf->netdev, "RQ%d: Error pkt with errlev:0x%x errcode:0x%x\n", qidx, parse->errlev, parse->errcode); if (parse->errlev == NPC_ERRLVL_RE) { switch (parse->errcode) { case ERRCODE_FCS: case ERRCODE_FCS_RCV: atomic_inc(&stats->rx_fcs_errs); break; case ERRCODE_UNDERSIZE: atomic_inc(&stats->rx_undersize_errs); break; case ERRCODE_OVERSIZE: atomic_inc(&stats->rx_oversize_errs); break; case ERRCODE_OL2_LEN_MISMATCH: atomic_inc(&stats->rx_len_errs); break; default: atomic_inc(&stats->rx_other_errs); break; } } else if (parse->errlev == NPC_ERRLVL_NIX) { switch (parse->errcode) { case ERRCODE_OL3_LEN: case ERRCODE_OL4_LEN: case ERRCODE_IL3_LEN: case ERRCODE_IL4_LEN: atomic_inc(&stats->rx_len_errs); break; case ERRCODE_OL4_CSUM: case ERRCODE_IL4_CSUM: atomic_inc(&stats->rx_csum_errs); break; default: atomic_inc(&stats->rx_other_errs); break; } } else { atomic_inc(&stats->rx_other_errs); /* For now ignore all the NPC parser errors and * pass the packets to stack. */ return false; } /* If RXALL is enabled pass on packets to stack. */ if (pfvf->netdev->features & NETIF_F_RXALL) return false; /* Free buffer back to pool */ if (cqe->sg.segs) otx2_free_rcv_seg(pfvf, cqe, qidx); return true; } static void otx2_rcv_pkt_handler(struct otx2_nic *pfvf, struct napi_struct *napi, struct otx2_cq_queue *cq, struct nix_cqe_rx_s *cqe) { struct nix_rx_parse_s *parse = &cqe->parse; struct nix_rx_sg_s *sg = &cqe->sg; struct sk_buff *skb = NULL; void *end, *start; u64 *seg_addr; u16 *seg_size; int seg; if (unlikely(parse->errlev || parse->errcode)) { if (otx2_check_rcv_errors(pfvf, cqe, cq->cq_idx)) return; } skb = napi_get_frags(napi); if (unlikely(!skb)) return; start = (void *)sg; end = start + ((cqe->parse.desc_sizem1 + 1) * 16); while (start < end) { sg = (struct nix_rx_sg_s *)start; seg_addr = &sg->seg_addr; seg_size = (void *)sg; for (seg = 0; seg < sg->segs; seg++, seg_addr++) { otx2_skb_add_frag(pfvf, skb, *seg_addr, seg_size[seg], parse); cq->pool_ptrs++; } start += sizeof(*sg); } otx2_set_rxhash(pfvf, cqe, skb); skb_record_rx_queue(skb, cq->cq_idx); if (pfvf->netdev->features & NETIF_F_RXCSUM) skb->ip_summed = CHECKSUM_UNNECESSARY; napi_gro_frags(napi); } static int otx2_rx_napi_handler(struct otx2_nic *pfvf, struct napi_struct *napi, struct otx2_cq_queue *cq, int budget) { struct nix_cqe_rx_s *cqe; int processed_cqe = 0; if (cq->pend_cqe >= budget) goto process_cqe; if (otx2_nix_cq_op_status(pfvf, cq) || !cq->pend_cqe) return 0; process_cqe: while (likely(processed_cqe < budget) && cq->pend_cqe) { cqe = (struct nix_cqe_rx_s *)CQE_ADDR(cq, cq->cq_head); if (cqe->hdr.cqe_type == NIX_XQE_TYPE_INVALID || !cqe->sg.seg_addr) { if (!processed_cqe) return 0; break; } cq->cq_head++; cq->cq_head &= (cq->cqe_cnt - 1); otx2_rcv_pkt_handler(pfvf, napi, cq, cqe); cqe->hdr.cqe_type = NIX_XQE_TYPE_INVALID; cqe->sg.seg_addr = 0x00; processed_cqe++; cq->pend_cqe--; } /* Free CQEs to HW */ otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR, ((u64)cq->cq_idx << 32) | processed_cqe); if (unlikely(!cq->pool_ptrs)) return 0; /* Refill pool with new buffers */ pfvf->hw_ops->refill_pool_ptrs(pfvf, cq); return processed_cqe; } void otx2_refill_pool_ptrs(void *dev, struct otx2_cq_queue *cq) { struct otx2_nic *pfvf = dev; dma_addr_t bufptr; while (cq->pool_ptrs) { if (otx2_alloc_buffer(pfvf, cq, &bufptr)) break; otx2_aura_freeptr(pfvf, cq->cq_idx, bufptr + OTX2_HEAD_ROOM); cq->pool_ptrs--; } } static int otx2_tx_napi_handler(struct otx2_nic *pfvf, struct otx2_cq_queue *cq, int budget) { int tx_pkts = 0, tx_bytes = 0; struct nix_cqe_tx_s *cqe; int processed_cqe = 0; if (cq->pend_cqe >= budget) goto process_cqe; if (otx2_nix_cq_op_status(pfvf, cq) || !cq->pend_cqe) return 0; process_cqe: while (likely(processed_cqe < budget) && cq->pend_cqe) { cqe = (struct nix_cqe_tx_s *)otx2_get_next_cqe(cq); if (unlikely(!cqe)) { if (!processed_cqe) return 0; break; } otx2_snd_pkt_handler(pfvf, cq, &pfvf->qset.sq[cq->cint_idx], cqe, budget, &tx_pkts, &tx_bytes); cqe->hdr.cqe_type = NIX_XQE_TYPE_INVALID; processed_cqe++; cq->pend_cqe--; } /* Free CQEs to HW */ otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR, ((u64)cq->cq_idx << 32) | processed_cqe); if (likely(tx_pkts)) { struct netdev_queue *txq; txq = netdev_get_tx_queue(pfvf->netdev, cq->cint_idx); netdev_tx_completed_queue(txq, tx_pkts, tx_bytes); /* Check if queue was stopped earlier due to ring full */ smp_mb(); if (netif_tx_queue_stopped(txq) && netif_carrier_ok(pfvf->netdev)) netif_tx_wake_queue(txq); } return 0; } int otx2_napi_handler(struct napi_struct *napi, int budget) { struct otx2_cq_poll *cq_poll; int workdone = 0, cq_idx, i; struct otx2_cq_queue *cq; struct otx2_qset *qset; struct otx2_nic *pfvf; cq_poll = container_of(napi, struct otx2_cq_poll, napi); pfvf = (struct otx2_nic *)cq_poll->dev; qset = &pfvf->qset; for (i = CQS_PER_CINT - 1; i >= 0; i--) { cq_idx = cq_poll->cq_ids[i]; if (unlikely(cq_idx == CINT_INVALID_CQ)) continue; cq = &qset->cq[cq_idx]; if (cq->cq_type == CQ_RX) { /* If the RQ refill WQ task is running, skip napi * scheduler for this queue. */ if (cq->refill_task_sched) continue; workdone += otx2_rx_napi_handler(pfvf, napi, cq, budget); } else { workdone += otx2_tx_napi_handler(pfvf, cq, budget); } } /* Clear the IRQ */ otx2_write64(pfvf, NIX_LF_CINTX_INT(cq_poll->cint_idx), BIT_ULL(0)); if (workdone < budget && napi_complete_done(napi, workdone)) { /* If interface is going down, don't re-enable IRQ */ if (pfvf->flags & OTX2_FLAG_INTF_DOWN) return workdone; /* Re-enable interrupts */ otx2_write64(pfvf, NIX_LF_CINTX_ENA_W1S(cq_poll->cint_idx), BIT_ULL(0)); } return workdone; } void otx2_sqe_flush(void *dev, struct otx2_snd_queue *sq, int size, int qidx) { u64 status; /* Packet data stores should finish before SQE is flushed to HW */ dma_wmb(); do { memcpy(sq->lmt_addr, sq->sqe_base, size); status = otx2_lmt_flush(sq->io_addr); } while (status == 0); sq->head++; sq->head &= (sq->sqe_cnt - 1); } #define MAX_SEGS_PER_SG 3 /* Add SQE scatter/gather subdescriptor structure */ static bool otx2_sqe_add_sg(struct otx2_nic *pfvf, struct otx2_snd_queue *sq, struct sk_buff *skb, int num_segs, int *offset) { struct nix_sqe_sg_s *sg = NULL; u64 dma_addr, *iova = NULL; u16 *sg_lens = NULL; int seg, len; sq->sg[sq->head].num_segs = 0; for (seg = 0; seg < num_segs; seg++) { if ((seg % MAX_SEGS_PER_SG) == 0) { sg = (struct nix_sqe_sg_s *)(sq->sqe_base + *offset); sg->ld_type = NIX_SEND_LDTYPE_LDD; sg->subdc = NIX_SUBDC_SG; sg->segs = 0; sg_lens = (void *)sg; iova = (void *)sg + sizeof(*sg); /* Next subdc always starts at a 16byte boundary. * So if sg->segs is whether 2 or 3, offset += 16bytes. */ if ((num_segs - seg) >= (MAX_SEGS_PER_SG - 1)) *offset += sizeof(*sg) + (3 * sizeof(u64)); else *offset += sizeof(*sg) + sizeof(u64); } dma_addr = otx2_dma_map_skb_frag(pfvf, skb, seg, &len); if (dma_mapping_error(pfvf->dev, dma_addr)) return false; sg_lens[frag_num(seg % MAX_SEGS_PER_SG)] = len; sg->segs++; *iova++ = dma_addr; /* Save DMA mapping info for later unmapping */ sq->sg[sq->head].dma_addr[seg] = dma_addr; sq->sg[sq->head].size[seg] = len; sq->sg[sq->head].num_segs++; } sq->sg[sq->head].skb = (u64)skb; return true; } /* Add SQE extended header subdescriptor */ static void otx2_sqe_add_ext(struct otx2_nic *pfvf, struct otx2_snd_queue *sq, struct sk_buff *skb, int *offset) { struct nix_sqe_ext_s *ext; ext = (struct nix_sqe_ext_s *)(sq->sqe_base + *offset); ext->subdc = NIX_SUBDC_EXT; if (skb_shinfo(skb)->gso_size) { ext->lso = 1; ext->lso_sb = skb_transport_offset(skb) + tcp_hdrlen(skb); ext->lso_mps = skb_shinfo(skb)->gso_size; /* Only TSOv4 and TSOv6 GSO offloads are supported */ if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { ext->lso_format = pfvf->hw.lso_tsov4_idx; /* HW adds payload size to 'ip_hdr->tot_len' while * sending TSO segment, hence set payload length * in IP header of the packet to just header length. */ ip_hdr(skb)->tot_len = htons(ext->lso_sb - skb_network_offset(skb)); } else if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) { ext->lso_format = pfvf->hw.lso_tsov6_idx; ipv6_hdr(skb)->payload_len = htons(ext->lso_sb - skb_network_offset(skb)); } else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { __be16 l3_proto = vlan_get_protocol(skb); struct udphdr *udph = udp_hdr(skb); u16 iplen; ext->lso_sb = skb_transport_offset(skb) + sizeof(struct udphdr); /* HW adds payload size to length fields in IP and * UDP headers while segmentation, hence adjust the * lengths to just header sizes. */ iplen = htons(ext->lso_sb - skb_network_offset(skb)); if (l3_proto == htons(ETH_P_IP)) { ip_hdr(skb)->tot_len = iplen; ext->lso_format = pfvf->hw.lso_udpv4_idx; } else { ipv6_hdr(skb)->payload_len = iplen; ext->lso_format = pfvf->hw.lso_udpv6_idx; } udph->len = htons(sizeof(struct udphdr)); } } else if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { ext->tstmp = 1; } #define OTX2_VLAN_PTR_OFFSET (ETH_HLEN - ETH_TLEN) if (skb_vlan_tag_present(skb)) { if (skb->vlan_proto == htons(ETH_P_8021Q)) { ext->vlan1_ins_ena = 1; ext->vlan1_ins_ptr = OTX2_VLAN_PTR_OFFSET; ext->vlan1_ins_tci = skb_vlan_tag_get(skb); } else if (skb->vlan_proto == htons(ETH_P_8021AD)) { ext->vlan0_ins_ena = 1; ext->vlan0_ins_ptr = OTX2_VLAN_PTR_OFFSET; ext->vlan0_ins_tci = skb_vlan_tag_get(skb); } } *offset += sizeof(*ext); } static void otx2_sqe_add_mem(struct otx2_snd_queue *sq, int *offset, int alg, u64 iova) { struct nix_sqe_mem_s *mem; mem = (struct nix_sqe_mem_s *)(sq->sqe_base + *offset); mem->subdc = NIX_SUBDC_MEM; mem->alg = alg; mem->wmem = 1; /* wait for the memory operation */ mem->addr = iova; *offset += sizeof(*mem); } /* Add SQE header subdescriptor structure */ static void otx2_sqe_add_hdr(struct otx2_nic *pfvf, struct otx2_snd_queue *sq, struct nix_sqe_hdr_s *sqe_hdr, struct sk_buff *skb, u16 qidx) { int proto = 0; /* Check if SQE was framed before, if yes then no need to * set these constants again and again. */ if (!sqe_hdr->total) { /* Don't free Tx buffers to Aura */ sqe_hdr->df = 1; sqe_hdr->aura = sq->aura_id; /* Post a CQE Tx after pkt transmission */ sqe_hdr->pnc = 1; sqe_hdr->sq = qidx; } sqe_hdr->total = skb->len; /* Set SQE identifier which will be used later for freeing SKB */ sqe_hdr->sqe_id = sq->head; /* Offload TCP/UDP checksum to HW */ if (skb->ip_summed == CHECKSUM_PARTIAL) { sqe_hdr->ol3ptr = skb_network_offset(skb); sqe_hdr->ol4ptr = skb_transport_offset(skb); /* get vlan protocol Ethertype */ if (eth_type_vlan(skb->protocol)) skb->protocol = vlan_get_protocol(skb); if (skb->protocol == htons(ETH_P_IP)) { proto = ip_hdr(skb)->protocol; /* In case of TSO, HW needs this to be explicitly set. * So set this always, instead of adding a check. */ sqe_hdr->ol3type = NIX_SENDL3TYPE_IP4_CKSUM; } else if (skb->protocol == htons(ETH_P_IPV6)) { proto = ipv6_hdr(skb)->nexthdr; sqe_hdr->ol3type = NIX_SENDL3TYPE_IP6; } if (proto == IPPROTO_TCP) sqe_hdr->ol4type = NIX_SENDL4TYPE_TCP_CKSUM; else if (proto == IPPROTO_UDP) sqe_hdr->ol4type = NIX_SENDL4TYPE_UDP_CKSUM; } } static int otx2_dma_map_tso_skb(struct otx2_nic *pfvf, struct otx2_snd_queue *sq, struct sk_buff *skb, int sqe, int hdr_len) { int num_segs = skb_shinfo(skb)->nr_frags + 1; struct sg_list *sg = &sq->sg[sqe]; u64 dma_addr; int seg, len; sg->num_segs = 0; /* Get payload length at skb->data */ len = skb_headlen(skb) - hdr_len; for (seg = 0; seg < num_segs; seg++) { /* Skip skb->data, if there is no payload */ if (!seg && !len) continue; dma_addr = otx2_dma_map_skb_frag(pfvf, skb, seg, &len); if (dma_mapping_error(pfvf->dev, dma_addr)) goto unmap; /* Save DMA mapping info for later unmapping */ sg->dma_addr[sg->num_segs] = dma_addr; sg->size[sg->num_segs] = len; sg->num_segs++; } return 0; unmap: otx2_dma_unmap_skb_frags(pfvf, sg); return -EINVAL; } static u64 otx2_tso_frag_dma_addr(struct otx2_snd_queue *sq, struct sk_buff *skb, int seg, u64 seg_addr, int hdr_len, int sqe) { struct sg_list *sg = &sq->sg[sqe]; const skb_frag_t *frag; int offset; if (seg < 0) return sg->dma_addr[0] + (seg_addr - (u64)skb->data); frag = &skb_shinfo(skb)->frags[seg]; offset = seg_addr - (u64)skb_frag_address(frag); if (skb_headlen(skb) - hdr_len) seg++; return sg->dma_addr[seg] + offset; } static void otx2_sqe_tso_add_sg(struct otx2_snd_queue *sq, struct sg_list *list, int *offset) { struct nix_sqe_sg_s *sg = NULL; u16 *sg_lens = NULL; u64 *iova = NULL; int seg; /* Add SG descriptors with buffer addresses */ for (seg = 0; seg < list->num_segs; seg++) { if ((seg % MAX_SEGS_PER_SG) == 0) { sg = (struct nix_sqe_sg_s *)(sq->sqe_base + *offset); sg->ld_type = NIX_SEND_LDTYPE_LDD; sg->subdc = NIX_SUBDC_SG; sg->segs = 0; sg_lens = (void *)sg; iova = (void *)sg + sizeof(*sg); /* Next subdc always starts at a 16byte boundary. * So if sg->segs is whether 2 or 3, offset += 16bytes. */ if ((list->num_segs - seg) >= (MAX_SEGS_PER_SG - 1)) *offset += sizeof(*sg) + (3 * sizeof(u64)); else *offset += sizeof(*sg) + sizeof(u64); } sg_lens[frag_num(seg % MAX_SEGS_PER_SG)] = list->size[seg]; *iova++ = list->dma_addr[seg]; sg->segs++; } } static void otx2_sq_append_tso(struct otx2_nic *pfvf, struct otx2_snd_queue *sq, struct sk_buff *skb, u16 qidx) { struct netdev_queue *txq = netdev_get_tx_queue(pfvf->netdev, qidx); int hdr_len, tcp_data, seg_len, pkt_len, offset; struct nix_sqe_hdr_s *sqe_hdr; int first_sqe = sq->head; struct sg_list list; struct tso_t tso; hdr_len = tso_start(skb, &tso); /* Map SKB's fragments to DMA. * It's done here to avoid mapping for every TSO segment's packet. */ if (otx2_dma_map_tso_skb(pfvf, sq, skb, first_sqe, hdr_len)) { dev_kfree_skb_any(skb); return; } netdev_tx_sent_queue(txq, skb->len); tcp_data = skb->len - hdr_len; while (tcp_data > 0) { char *hdr; seg_len = min_t(int, skb_shinfo(skb)->gso_size, tcp_data); tcp_data -= seg_len; /* Set SQE's SEND_HDR */ memset(sq->sqe_base, 0, sq->sqe_size); sqe_hdr = (struct nix_sqe_hdr_s *)(sq->sqe_base); otx2_sqe_add_hdr(pfvf, sq, sqe_hdr, skb, qidx); offset = sizeof(*sqe_hdr); /* Add TSO segment's pkt header */ hdr = sq->tso_hdrs->base + (sq->head * TSO_HEADER_SIZE); tso_build_hdr(skb, hdr, &tso, seg_len, tcp_data == 0); list.dma_addr[0] = sq->tso_hdrs->iova + (sq->head * TSO_HEADER_SIZE); list.size[0] = hdr_len; list.num_segs = 1; /* Add TSO segment's payload data fragments */ pkt_len = hdr_len; while (seg_len > 0) { int size; size = min_t(int, tso.size, seg_len); list.size[list.num_segs] = size; list.dma_addr[list.num_segs] = otx2_tso_frag_dma_addr(sq, skb, tso.next_frag_idx - 1, (u64)tso.data, hdr_len, first_sqe); list.num_segs++; pkt_len += size; seg_len -= size; tso_build_data(skb, &tso, size); } sqe_hdr->total = pkt_len; otx2_sqe_tso_add_sg(sq, &list, &offset); /* DMA mappings and skb needs to be freed only after last * TSO segment is transmitted out. So set 'PNC' only for * last segment. Also point last segment's sqe_id to first * segment's SQE index where skb address and DMA mappings * are saved. */ if (!tcp_data) { sqe_hdr->pnc = 1; sqe_hdr->sqe_id = first_sqe; sq->sg[first_sqe].skb = (u64)skb; } else { sqe_hdr->pnc = 0; } sqe_hdr->sizem1 = (offset / 16) - 1; /* Flush SQE to HW */ pfvf->hw_ops->sqe_flush(pfvf, sq, offset, qidx); } } static bool is_hw_tso_supported(struct otx2_nic *pfvf, struct sk_buff *skb) { int payload_len, last_seg_size; if (test_bit(HW_TSO, &pfvf->hw.cap_flag)) return true; /* On 96xx A0, HW TSO not supported */ if (!is_96xx_B0(pfvf->pdev)) return false; /* HW has an issue due to which when the payload of the last LSO * segment is shorter than 16 bytes, some header fields may not * be correctly modified, hence don't offload such TSO segments. */ payload_len = skb->len - (skb_transport_offset(skb) + tcp_hdrlen(skb)); last_seg_size = payload_len % skb_shinfo(skb)->gso_size; if (last_seg_size && last_seg_size < 16) return false; return true; } static int otx2_get_sqe_count(struct otx2_nic *pfvf, struct sk_buff *skb) { if (!skb_shinfo(skb)->gso_size) return 1; /* HW TSO */ if (is_hw_tso_supported(pfvf, skb)) return 1; /* SW TSO */ return skb_shinfo(skb)->gso_segs; } static void otx2_set_txtstamp(struct otx2_nic *pfvf, struct sk_buff *skb, struct otx2_snd_queue *sq, int *offset) { u64 iova; if (!skb_shinfo(skb)->gso_size && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; iova = sq->timestamps->iova + (sq->head * sizeof(u64)); otx2_sqe_add_mem(sq, offset, NIX_SENDMEMALG_E_SETTSTMP, iova); } else { skb_tx_timestamp(skb); } } bool otx2_sq_append_skb(struct net_device *netdev, struct otx2_snd_queue *sq, struct sk_buff *skb, u16 qidx) { struct netdev_queue *txq = netdev_get_tx_queue(netdev, qidx); struct otx2_nic *pfvf = netdev_priv(netdev); int offset, num_segs, free_sqe; struct nix_sqe_hdr_s *sqe_hdr; /* Check if there is room for new SQE. * 'Num of SQBs freed to SQ's pool - SQ's Aura count' * will give free SQE count. */ free_sqe = (sq->num_sqbs - *sq->aura_fc_addr) * sq->sqe_per_sqb; if (free_sqe < sq->sqe_thresh || free_sqe < otx2_get_sqe_count(pfvf, skb)) return false; num_segs = skb_shinfo(skb)->nr_frags + 1; /* If SKB doesn't fit in a single SQE, linearize it. * TODO: Consider adding JUMP descriptor instead. */ if (unlikely(num_segs > OTX2_MAX_FRAGS_IN_SQE)) { if (__skb_linearize(skb)) { dev_kfree_skb_any(skb); return true; } num_segs = skb_shinfo(skb)->nr_frags + 1; } if (skb_shinfo(skb)->gso_size && !is_hw_tso_supported(pfvf, skb)) { /* Insert vlan tag before giving pkt to tso */ if (skb_vlan_tag_present(skb)) skb = __vlan_hwaccel_push_inside(skb); otx2_sq_append_tso(pfvf, sq, skb, qidx); return true; } /* Set SQE's SEND_HDR. * Do not clear the first 64bit as it contains constant info. */ memset(sq->sqe_base + 8, 0, sq->sqe_size - 8); sqe_hdr = (struct nix_sqe_hdr_s *)(sq->sqe_base); otx2_sqe_add_hdr(pfvf, sq, sqe_hdr, skb, qidx); offset = sizeof(*sqe_hdr); /* Add extended header if needed */ otx2_sqe_add_ext(pfvf, sq, skb, &offset); /* Add SG subdesc with data frags */ if (!otx2_sqe_add_sg(pfvf, sq, skb, num_segs, &offset)) { otx2_dma_unmap_skb_frags(pfvf, &sq->sg[sq->head]); return false; } otx2_set_txtstamp(pfvf, skb, sq, &offset); sqe_hdr->sizem1 = (offset / 16) - 1; netdev_tx_sent_queue(txq, skb->len); /* Flush SQE to HW */ pfvf->hw_ops->sqe_flush(pfvf, sq, offset, qidx); return true; } EXPORT_SYMBOL(otx2_sq_append_skb); void otx2_cleanup_rx_cqes(struct otx2_nic *pfvf, struct otx2_cq_queue *cq) { struct nix_cqe_rx_s *cqe; int processed_cqe = 0; u64 iova, pa; if (otx2_nix_cq_op_status(pfvf, cq) || !cq->pend_cqe) return; while (cq->pend_cqe) { cqe = (struct nix_cqe_rx_s *)otx2_get_next_cqe(cq); processed_cqe++; cq->pend_cqe--; if (!cqe) continue; if (cqe->sg.segs > 1) { otx2_free_rcv_seg(pfvf, cqe, cq->cq_idx); continue; } iova = cqe->sg.seg_addr - OTX2_HEAD_ROOM; pa = otx2_iova_to_phys(pfvf->iommu_domain, iova); otx2_dma_unmap_page(pfvf, iova, pfvf->rbsize, DMA_FROM_DEVICE); put_page(virt_to_page(phys_to_virt(pa))); } /* Free CQEs to HW */ otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR, ((u64)cq->cq_idx << 32) | processed_cqe); } void otx2_cleanup_tx_cqes(struct otx2_nic *pfvf, struct otx2_cq_queue *cq) { struct sk_buff *skb = NULL; struct otx2_snd_queue *sq; struct nix_cqe_tx_s *cqe; int processed_cqe = 0; struct sg_list *sg; sq = &pfvf->qset.sq[cq->cint_idx]; if (otx2_nix_cq_op_status(pfvf, cq) || !cq->pend_cqe) return; while (cq->pend_cqe) { cqe = (struct nix_cqe_tx_s *)otx2_get_next_cqe(cq); processed_cqe++; cq->pend_cqe--; if (!cqe) continue; sg = &sq->sg[cqe->comp.sqe_id]; skb = (struct sk_buff *)sg->skb; if (skb) { otx2_dma_unmap_skb_frags(pfvf, sg); dev_kfree_skb_any(skb); sg->skb = (u64)NULL; } } /* Free CQEs to HW */ otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR, ((u64)cq->cq_idx << 32) | processed_cqe); } int otx2_rxtx_enable(struct otx2_nic *pfvf, bool enable) { struct msg_req *msg; int err; mutex_lock(&pfvf->mbox.lock); if (enable) msg = otx2_mbox_alloc_msg_nix_lf_start_rx(&pfvf->mbox); else msg = otx2_mbox_alloc_msg_nix_lf_stop_rx(&pfvf->mbox); if (!msg) { mutex_unlock(&pfvf->mbox.lock); return -ENOMEM; } err = otx2_sync_mbox_msg(&pfvf->mbox); mutex_unlock(&pfvf->mbox.lock); return err; }