// SPDX-License-Identifier: GPL-2.0 /* sunqe.c: Sparc QuadEthernet 10baseT SBUS card driver. * Once again I am out to prove that every ethernet * controller out there can be most efficiently programmed * if you make it look like a LANCE. * * Copyright (C) 1996, 1999, 2003, 2006, 2008 David S. Miller (davem@davemloft.net) */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/errno.h> #include <linux/fcntl.h> #include <linux/interrupt.h> #include <linux/ioport.h> #include <linux/in.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/crc32.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/ethtool.h> #include <linux/bitops.h> #include <linux/dma-mapping.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/pgtable.h> #include <asm/io.h> #include <asm/dma.h> #include <asm/byteorder.h> #include <asm/idprom.h> #include <asm/openprom.h> #include <asm/oplib.h> #include <asm/auxio.h> #include <asm/irq.h> #include "sunqe.h" #define DRV_NAME "sunqe" #define DRV_VERSION "4.1" #define DRV_RELDATE "August 27, 2008" #define DRV_AUTHOR "David S. Miller (davem@davemloft.net)" static char version[] = DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n"; MODULE_VERSION(DRV_VERSION); MODULE_AUTHOR(DRV_AUTHOR); MODULE_DESCRIPTION("Sun QuadEthernet 10baseT SBUS card driver"); MODULE_LICENSE("GPL"); static struct sunqec *root_qec_dev; static void qe_set_multicast(struct net_device *dev); #define QEC_RESET_TRIES 200 static inline int qec_global_reset(void __iomem *gregs) { int tries = QEC_RESET_TRIES; sbus_writel(GLOB_CTRL_RESET, gregs + GLOB_CTRL); while (--tries) { u32 tmp = sbus_readl(gregs + GLOB_CTRL); if (tmp & GLOB_CTRL_RESET) { udelay(20); continue; } break; } if (tries) return 0; printk(KERN_ERR "QuadEther: AIEEE cannot reset the QEC!\n"); return -1; } #define MACE_RESET_RETRIES 200 #define QE_RESET_RETRIES 200 static inline int qe_stop(struct sunqe *qep) { void __iomem *cregs = qep->qcregs; void __iomem *mregs = qep->mregs; int tries; /* Reset the MACE, then the QEC channel. */ sbus_writeb(MREGS_BCONFIG_RESET, mregs + MREGS_BCONFIG); tries = MACE_RESET_RETRIES; while (--tries) { u8 tmp = sbus_readb(mregs + MREGS_BCONFIG); if (tmp & MREGS_BCONFIG_RESET) { udelay(20); continue; } break; } if (!tries) { printk(KERN_ERR "QuadEther: AIEEE cannot reset the MACE!\n"); return -1; } sbus_writel(CREG_CTRL_RESET, cregs + CREG_CTRL); tries = QE_RESET_RETRIES; while (--tries) { u32 tmp = sbus_readl(cregs + CREG_CTRL); if (tmp & CREG_CTRL_RESET) { udelay(20); continue; } break; } if (!tries) { printk(KERN_ERR "QuadEther: Cannot reset QE channel!\n"); return -1; } return 0; } static void qe_init_rings(struct sunqe *qep) { struct qe_init_block *qb = qep->qe_block; struct sunqe_buffers *qbufs = qep->buffers; __u32 qbufs_dvma = (__u32)qep->buffers_dvma; int i; qep->rx_new = qep->rx_old = qep->tx_new = qep->tx_old = 0; memset(qb, 0, sizeof(struct qe_init_block)); memset(qbufs, 0, sizeof(struct sunqe_buffers)); for (i = 0; i < RX_RING_SIZE; i++) { qb->qe_rxd[i].rx_addr = qbufs_dvma + qebuf_offset(rx_buf, i); qb->qe_rxd[i].rx_flags = (RXD_OWN | ((RXD_PKT_SZ) & RXD_LENGTH)); } } static int qe_init(struct sunqe *qep, int from_irq) { struct sunqec *qecp = qep->parent; void __iomem *cregs = qep->qcregs; void __iomem *mregs = qep->mregs; void __iomem *gregs = qecp->gregs; unsigned char *e = &qep->dev->dev_addr[0]; __u32 qblk_dvma = (__u32)qep->qblock_dvma; u32 tmp; int i; /* Shut it up. */ if (qe_stop(qep)) return -EAGAIN; /* Setup initial rx/tx init block pointers. */ sbus_writel(qblk_dvma + qib_offset(qe_rxd, 0), cregs + CREG_RXDS); sbus_writel(qblk_dvma + qib_offset(qe_txd, 0), cregs + CREG_TXDS); /* Enable/mask the various irq's. */ sbus_writel(0, cregs + CREG_RIMASK); sbus_writel(1, cregs + CREG_TIMASK); sbus_writel(0, cregs + CREG_QMASK); sbus_writel(CREG_MMASK_RXCOLL, cregs + CREG_MMASK); /* Setup the FIFO pointers into QEC local memory. */ tmp = qep->channel * sbus_readl(gregs + GLOB_MSIZE); sbus_writel(tmp, cregs + CREG_RXRBUFPTR); sbus_writel(tmp, cregs + CREG_RXWBUFPTR); tmp = sbus_readl(cregs + CREG_RXRBUFPTR) + sbus_readl(gregs + GLOB_RSIZE); sbus_writel(tmp, cregs + CREG_TXRBUFPTR); sbus_writel(tmp, cregs + CREG_TXWBUFPTR); /* Clear the channel collision counter. */ sbus_writel(0, cregs + CREG_CCNT); /* For 10baseT, inter frame space nor throttle seems to be necessary. */ sbus_writel(0, cregs + CREG_PIPG); /* Now dork with the AMD MACE. */ sbus_writeb(MREGS_PHYCONFIG_AUTO, mregs + MREGS_PHYCONFIG); sbus_writeb(MREGS_TXFCNTL_AUTOPAD, mregs + MREGS_TXFCNTL); sbus_writeb(0, mregs + MREGS_RXFCNTL); /* The QEC dma's the rx'd packets from local memory out to main memory, * and therefore it interrupts when the packet reception is "complete". * So don't listen for the MACE talking about it. */ sbus_writeb(MREGS_IMASK_COLL | MREGS_IMASK_RXIRQ, mregs + MREGS_IMASK); sbus_writeb(MREGS_BCONFIG_BSWAP | MREGS_BCONFIG_64TS, mregs + MREGS_BCONFIG); sbus_writeb((MREGS_FCONFIG_TXF16 | MREGS_FCONFIG_RXF32 | MREGS_FCONFIG_RFWU | MREGS_FCONFIG_TFWU), mregs + MREGS_FCONFIG); /* Only usable interface on QuadEther is twisted pair. */ sbus_writeb(MREGS_PLSCONFIG_TP, mregs + MREGS_PLSCONFIG); /* Tell MACE we are changing the ether address. */ sbus_writeb(MREGS_IACONFIG_ACHNGE | MREGS_IACONFIG_PARESET, mregs + MREGS_IACONFIG); while ((sbus_readb(mregs + MREGS_IACONFIG) & MREGS_IACONFIG_ACHNGE) != 0) barrier(); sbus_writeb(e[0], mregs + MREGS_ETHADDR); sbus_writeb(e[1], mregs + MREGS_ETHADDR); sbus_writeb(e[2], mregs + MREGS_ETHADDR); sbus_writeb(e[3], mregs + MREGS_ETHADDR); sbus_writeb(e[4], mregs + MREGS_ETHADDR); sbus_writeb(e[5], mregs + MREGS_ETHADDR); /* Clear out the address filter. */ sbus_writeb(MREGS_IACONFIG_ACHNGE | MREGS_IACONFIG_LARESET, mregs + MREGS_IACONFIG); while ((sbus_readb(mregs + MREGS_IACONFIG) & MREGS_IACONFIG_ACHNGE) != 0) barrier(); for (i = 0; i < 8; i++) sbus_writeb(0, mregs + MREGS_FILTER); /* Address changes are now complete. */ sbus_writeb(0, mregs + MREGS_IACONFIG); qe_init_rings(qep); /* Wait a little bit for the link to come up... */ mdelay(5); if (!(sbus_readb(mregs + MREGS_PHYCONFIG) & MREGS_PHYCONFIG_LTESTDIS)) { int tries = 50; while (--tries) { u8 tmp; mdelay(5); barrier(); tmp = sbus_readb(mregs + MREGS_PHYCONFIG); if ((tmp & MREGS_PHYCONFIG_LSTAT) != 0) break; } if (tries == 0) printk(KERN_NOTICE "%s: Warning, link state is down.\n", qep->dev->name); } /* Missed packet counter is cleared on a read. */ sbus_readb(mregs + MREGS_MPCNT); /* Reload multicast information, this will enable the receiver * and transmitter. */ qe_set_multicast(qep->dev); /* QEC should now start to show interrupts. */ return 0; } /* Grrr, certain error conditions completely lock up the AMD MACE, * so when we get these we _must_ reset the chip. */ static int qe_is_bolixed(struct sunqe *qep, u32 qe_status) { struct net_device *dev = qep->dev; int mace_hwbug_workaround = 0; if (qe_status & CREG_STAT_EDEFER) { printk(KERN_ERR "%s: Excessive transmit defers.\n", dev->name); dev->stats.tx_errors++; } if (qe_status & CREG_STAT_CLOSS) { printk(KERN_ERR "%s: Carrier lost, link down?\n", dev->name); dev->stats.tx_errors++; dev->stats.tx_carrier_errors++; } if (qe_status & CREG_STAT_ERETRIES) { printk(KERN_ERR "%s: Excessive transmit retries (more than 16).\n", dev->name); dev->stats.tx_errors++; mace_hwbug_workaround = 1; } if (qe_status & CREG_STAT_LCOLL) { printk(KERN_ERR "%s: Late transmit collision.\n", dev->name); dev->stats.tx_errors++; dev->stats.collisions++; mace_hwbug_workaround = 1; } if (qe_status & CREG_STAT_FUFLOW) { printk(KERN_ERR "%s: Transmit fifo underflow, driver bug.\n", dev->name); dev->stats.tx_errors++; mace_hwbug_workaround = 1; } if (qe_status & CREG_STAT_JERROR) { printk(KERN_ERR "%s: Jabber error.\n", dev->name); } if (qe_status & CREG_STAT_BERROR) { printk(KERN_ERR "%s: Babble error.\n", dev->name); } if (qe_status & CREG_STAT_CCOFLOW) { dev->stats.tx_errors += 256; dev->stats.collisions += 256; } if (qe_status & CREG_STAT_TXDERROR) { printk(KERN_ERR "%s: Transmit descriptor is bogus, driver bug.\n", dev->name); dev->stats.tx_errors++; dev->stats.tx_aborted_errors++; mace_hwbug_workaround = 1; } if (qe_status & CREG_STAT_TXLERR) { printk(KERN_ERR "%s: Transmit late error.\n", dev->name); dev->stats.tx_errors++; mace_hwbug_workaround = 1; } if (qe_status & CREG_STAT_TXPERR) { printk(KERN_ERR "%s: Transmit DMA parity error.\n", dev->name); dev->stats.tx_errors++; dev->stats.tx_aborted_errors++; mace_hwbug_workaround = 1; } if (qe_status & CREG_STAT_TXSERR) { printk(KERN_ERR "%s: Transmit DMA sbus error ack.\n", dev->name); dev->stats.tx_errors++; dev->stats.tx_aborted_errors++; mace_hwbug_workaround = 1; } if (qe_status & CREG_STAT_RCCOFLOW) { dev->stats.rx_errors += 256; dev->stats.collisions += 256; } if (qe_status & CREG_STAT_RUOFLOW) { dev->stats.rx_errors += 256; dev->stats.rx_over_errors += 256; } if (qe_status & CREG_STAT_MCOFLOW) { dev->stats.rx_errors += 256; dev->stats.rx_missed_errors += 256; } if (qe_status & CREG_STAT_RXFOFLOW) { printk(KERN_ERR "%s: Receive fifo overflow.\n", dev->name); dev->stats.rx_errors++; dev->stats.rx_over_errors++; } if (qe_status & CREG_STAT_RLCOLL) { printk(KERN_ERR "%s: Late receive collision.\n", dev->name); dev->stats.rx_errors++; dev->stats.collisions++; } if (qe_status & CREG_STAT_FCOFLOW) { dev->stats.rx_errors += 256; dev->stats.rx_frame_errors += 256; } if (qe_status & CREG_STAT_CECOFLOW) { dev->stats.rx_errors += 256; dev->stats.rx_crc_errors += 256; } if (qe_status & CREG_STAT_RXDROP) { printk(KERN_ERR "%s: Receive packet dropped.\n", dev->name); dev->stats.rx_errors++; dev->stats.rx_dropped++; dev->stats.rx_missed_errors++; } if (qe_status & CREG_STAT_RXSMALL) { printk(KERN_ERR "%s: Receive buffer too small, driver bug.\n", dev->name); dev->stats.rx_errors++; dev->stats.rx_length_errors++; } if (qe_status & CREG_STAT_RXLERR) { printk(KERN_ERR "%s: Receive late error.\n", dev->name); dev->stats.rx_errors++; mace_hwbug_workaround = 1; } if (qe_status & CREG_STAT_RXPERR) { printk(KERN_ERR "%s: Receive DMA parity error.\n", dev->name); dev->stats.rx_errors++; dev->stats.rx_missed_errors++; mace_hwbug_workaround = 1; } if (qe_status & CREG_STAT_RXSERR) { printk(KERN_ERR "%s: Receive DMA sbus error ack.\n", dev->name); dev->stats.rx_errors++; dev->stats.rx_missed_errors++; mace_hwbug_workaround = 1; } if (mace_hwbug_workaround) qe_init(qep, 1); return mace_hwbug_workaround; } /* Per-QE receive interrupt service routine. Just like on the happy meal * we receive directly into skb's with a small packet copy water mark. */ static void qe_rx(struct sunqe *qep) { struct qe_rxd *rxbase = &qep->qe_block->qe_rxd[0]; struct net_device *dev = qep->dev; struct qe_rxd *this; struct sunqe_buffers *qbufs = qep->buffers; __u32 qbufs_dvma = (__u32)qep->buffers_dvma; int elem = qep->rx_new; u32 flags; this = &rxbase[elem]; while (!((flags = this->rx_flags) & RXD_OWN)) { struct sk_buff *skb; unsigned char *this_qbuf = &qbufs->rx_buf[elem & (RX_RING_SIZE - 1)][0]; __u32 this_qbuf_dvma = qbufs_dvma + qebuf_offset(rx_buf, (elem & (RX_RING_SIZE - 1))); struct qe_rxd *end_rxd = &rxbase[(elem+RX_RING_SIZE)&(RX_RING_MAXSIZE-1)]; int len = (flags & RXD_LENGTH) - 4; /* QE adds ether FCS size to len */ /* Check for errors. */ if (len < ETH_ZLEN) { dev->stats.rx_errors++; dev->stats.rx_length_errors++; dev->stats.rx_dropped++; } else { skb = netdev_alloc_skb(dev, len + 2); if (skb == NULL) { dev->stats.rx_dropped++; } else { skb_reserve(skb, 2); skb_put(skb, len); skb_copy_to_linear_data(skb, this_qbuf, len); skb->protocol = eth_type_trans(skb, qep->dev); netif_rx(skb); dev->stats.rx_packets++; dev->stats.rx_bytes += len; } } end_rxd->rx_addr = this_qbuf_dvma; end_rxd->rx_flags = (RXD_OWN | ((RXD_PKT_SZ) & RXD_LENGTH)); elem = NEXT_RX(elem); this = &rxbase[elem]; } qep->rx_new = elem; } static void qe_tx_reclaim(struct sunqe *qep); /* Interrupts for all QE's get filtered out via the QEC master controller, * so we just run through each qe and check to see who is signaling * and thus needs to be serviced. */ static irqreturn_t qec_interrupt(int irq, void *dev_id) { struct sunqec *qecp = dev_id; u32 qec_status; int channel = 0; /* Latch the status now. */ qec_status = sbus_readl(qecp->gregs + GLOB_STAT); while (channel < 4) { if (qec_status & 0xf) { struct sunqe *qep = qecp->qes[channel]; u32 qe_status; qe_status = sbus_readl(qep->qcregs + CREG_STAT); if (qe_status & CREG_STAT_ERRORS) { if (qe_is_bolixed(qep, qe_status)) goto next; } if (qe_status & CREG_STAT_RXIRQ) qe_rx(qep); if (netif_queue_stopped(qep->dev) && (qe_status & CREG_STAT_TXIRQ)) { spin_lock(&qep->lock); qe_tx_reclaim(qep); if (TX_BUFFS_AVAIL(qep) > 0) { /* Wake net queue and return to * lazy tx reclaim. */ netif_wake_queue(qep->dev); sbus_writel(1, qep->qcregs + CREG_TIMASK); } spin_unlock(&qep->lock); } next: ; } qec_status >>= 4; channel++; } return IRQ_HANDLED; } static int qe_open(struct net_device *dev) { struct sunqe *qep = netdev_priv(dev); qep->mconfig = (MREGS_MCONFIG_TXENAB | MREGS_MCONFIG_RXENAB | MREGS_MCONFIG_MBAENAB); return qe_init(qep, 0); } static int qe_close(struct net_device *dev) { struct sunqe *qep = netdev_priv(dev); qe_stop(qep); return 0; } /* Reclaim TX'd frames from the ring. This must always run under * the IRQ protected qep->lock. */ static void qe_tx_reclaim(struct sunqe *qep) { struct qe_txd *txbase = &qep->qe_block->qe_txd[0]; int elem = qep->tx_old; while (elem != qep->tx_new) { u32 flags = txbase[elem].tx_flags; if (flags & TXD_OWN) break; elem = NEXT_TX(elem); } qep->tx_old = elem; } static void qe_tx_timeout(struct net_device *dev, unsigned int txqueue) { struct sunqe *qep = netdev_priv(dev); int tx_full; spin_lock_irq(&qep->lock); /* Try to reclaim, if that frees up some tx * entries, we're fine. */ qe_tx_reclaim(qep); tx_full = TX_BUFFS_AVAIL(qep) <= 0; spin_unlock_irq(&qep->lock); if (! tx_full) goto out; printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name); qe_init(qep, 1); out: netif_wake_queue(dev); } /* Get a packet queued to go onto the wire. */ static netdev_tx_t qe_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct sunqe *qep = netdev_priv(dev); struct sunqe_buffers *qbufs = qep->buffers; __u32 txbuf_dvma, qbufs_dvma = (__u32)qep->buffers_dvma; unsigned char *txbuf; int len, entry; spin_lock_irq(&qep->lock); qe_tx_reclaim(qep); len = skb->len; entry = qep->tx_new; txbuf = &qbufs->tx_buf[entry & (TX_RING_SIZE - 1)][0]; txbuf_dvma = qbufs_dvma + qebuf_offset(tx_buf, (entry & (TX_RING_SIZE - 1))); /* Avoid a race... */ qep->qe_block->qe_txd[entry].tx_flags = TXD_UPDATE; skb_copy_from_linear_data(skb, txbuf, len); qep->qe_block->qe_txd[entry].tx_addr = txbuf_dvma; qep->qe_block->qe_txd[entry].tx_flags = (TXD_OWN | TXD_SOP | TXD_EOP | (len & TXD_LENGTH)); qep->tx_new = NEXT_TX(entry); /* Get it going. */ sbus_writel(CREG_CTRL_TWAKEUP, qep->qcregs + CREG_CTRL); dev->stats.tx_packets++; dev->stats.tx_bytes += len; if (TX_BUFFS_AVAIL(qep) <= 0) { /* Halt the net queue and enable tx interrupts. * When the tx queue empties the tx irq handler * will wake up the queue and return us back to * the lazy tx reclaim scheme. */ netif_stop_queue(dev); sbus_writel(0, qep->qcregs + CREG_TIMASK); } spin_unlock_irq(&qep->lock); dev_kfree_skb(skb); return NETDEV_TX_OK; } static void qe_set_multicast(struct net_device *dev) { struct sunqe *qep = netdev_priv(dev); struct netdev_hw_addr *ha; u8 new_mconfig = qep->mconfig; int i; u32 crc; /* Lock out others. */ netif_stop_queue(dev); if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) { sbus_writeb(MREGS_IACONFIG_ACHNGE | MREGS_IACONFIG_LARESET, qep->mregs + MREGS_IACONFIG); while ((sbus_readb(qep->mregs + MREGS_IACONFIG) & MREGS_IACONFIG_ACHNGE) != 0) barrier(); for (i = 0; i < 8; i++) sbus_writeb(0xff, qep->mregs + MREGS_FILTER); sbus_writeb(0, qep->mregs + MREGS_IACONFIG); } else if (dev->flags & IFF_PROMISC) { new_mconfig |= MREGS_MCONFIG_PROMISC; } else { u16 hash_table[4]; u8 *hbytes = (unsigned char *) &hash_table[0]; memset(hash_table, 0, sizeof(hash_table)); netdev_for_each_mc_addr(ha, dev) { crc = ether_crc_le(6, ha->addr); crc >>= 26; hash_table[crc >> 4] |= 1 << (crc & 0xf); } /* Program the qe with the new filter value. */ sbus_writeb(MREGS_IACONFIG_ACHNGE | MREGS_IACONFIG_LARESET, qep->mregs + MREGS_IACONFIG); while ((sbus_readb(qep->mregs + MREGS_IACONFIG) & MREGS_IACONFIG_ACHNGE) != 0) barrier(); for (i = 0; i < 8; i++) { u8 tmp = *hbytes++; sbus_writeb(tmp, qep->mregs + MREGS_FILTER); } sbus_writeb(0, qep->mregs + MREGS_IACONFIG); } /* Any change of the logical address filter, the physical address, * or enabling/disabling promiscuous mode causes the MACE to disable * the receiver. So we must re-enable them here or else the MACE * refuses to listen to anything on the network. Sheesh, took * me a day or two to find this bug. */ qep->mconfig = new_mconfig; sbus_writeb(qep->mconfig, qep->mregs + MREGS_MCONFIG); /* Let us get going again. */ netif_wake_queue(dev); } /* Ethtool support... */ static void qe_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { const struct linux_prom_registers *regs; struct sunqe *qep = netdev_priv(dev); struct platform_device *op; strlcpy(info->driver, "sunqe", sizeof(info->driver)); strlcpy(info->version, "3.0", sizeof(info->version)); op = qep->op; regs = of_get_property(op->dev.of_node, "reg", NULL); if (regs) snprintf(info->bus_info, sizeof(info->bus_info), "SBUS:%d", regs->which_io); } static u32 qe_get_link(struct net_device *dev) { struct sunqe *qep = netdev_priv(dev); void __iomem *mregs = qep->mregs; u8 phyconfig; spin_lock_irq(&qep->lock); phyconfig = sbus_readb(mregs + MREGS_PHYCONFIG); spin_unlock_irq(&qep->lock); return phyconfig & MREGS_PHYCONFIG_LSTAT; } static const struct ethtool_ops qe_ethtool_ops = { .get_drvinfo = qe_get_drvinfo, .get_link = qe_get_link, }; /* This is only called once at boot time for each card probed. */ static void qec_init_once(struct sunqec *qecp, struct platform_device *op) { u8 bsizes = qecp->qec_bursts; if (sbus_can_burst64() && (bsizes & DMA_BURST64)) { sbus_writel(GLOB_CTRL_B64, qecp->gregs + GLOB_CTRL); } else if (bsizes & DMA_BURST32) { sbus_writel(GLOB_CTRL_B32, qecp->gregs + GLOB_CTRL); } else { sbus_writel(GLOB_CTRL_B16, qecp->gregs + GLOB_CTRL); } /* Packetsize only used in 100baseT BigMAC configurations, * set it to zero just to be on the safe side. */ sbus_writel(GLOB_PSIZE_2048, qecp->gregs + GLOB_PSIZE); /* Set the local memsize register, divided up to one piece per QE channel. */ sbus_writel((resource_size(&op->resource[1]) >> 2), qecp->gregs + GLOB_MSIZE); /* Divide up the local QEC memory amongst the 4 QE receiver and * transmitter FIFOs. Basically it is (total / 2 / num_channels). */ sbus_writel((resource_size(&op->resource[1]) >> 2) >> 1, qecp->gregs + GLOB_TSIZE); sbus_writel((resource_size(&op->resource[1]) >> 2) >> 1, qecp->gregs + GLOB_RSIZE); } static u8 qec_get_burst(struct device_node *dp) { u8 bsizes, bsizes_more; /* Find and set the burst sizes for the QEC, since it * does the actual dma for all 4 channels. */ bsizes = of_getintprop_default(dp, "burst-sizes", 0xff); bsizes &= 0xff; bsizes_more = of_getintprop_default(dp->parent, "burst-sizes", 0xff); if (bsizes_more != 0xff) bsizes &= bsizes_more; if (bsizes == 0xff || (bsizes & DMA_BURST16) == 0 || (bsizes & DMA_BURST32)==0) bsizes = (DMA_BURST32 - 1); return bsizes; } static struct sunqec *get_qec(struct platform_device *child) { struct platform_device *op = to_platform_device(child->dev.parent); struct sunqec *qecp; qecp = platform_get_drvdata(op); if (!qecp) { qecp = kzalloc(sizeof(struct sunqec), GFP_KERNEL); if (qecp) { u32 ctrl; qecp->op = op; qecp->gregs = of_ioremap(&op->resource[0], 0, GLOB_REG_SIZE, "QEC Global Registers"); if (!qecp->gregs) goto fail; /* Make sure the QEC is in MACE mode. */ ctrl = sbus_readl(qecp->gregs + GLOB_CTRL); ctrl &= 0xf0000000; if (ctrl != GLOB_CTRL_MMODE) { printk(KERN_ERR "qec: Not in MACE mode!\n"); goto fail; } if (qec_global_reset(qecp->gregs)) goto fail; qecp->qec_bursts = qec_get_burst(op->dev.of_node); qec_init_once(qecp, op); if (request_irq(op->archdata.irqs[0], qec_interrupt, IRQF_SHARED, "qec", (void *) qecp)) { printk(KERN_ERR "qec: Can't register irq.\n"); goto fail; } platform_set_drvdata(op, qecp); qecp->next_module = root_qec_dev; root_qec_dev = qecp; } } return qecp; fail: if (qecp->gregs) of_iounmap(&op->resource[0], qecp->gregs, GLOB_REG_SIZE); kfree(qecp); return NULL; } static const struct net_device_ops qec_ops = { .ndo_open = qe_open, .ndo_stop = qe_close, .ndo_start_xmit = qe_start_xmit, .ndo_set_rx_mode = qe_set_multicast, .ndo_tx_timeout = qe_tx_timeout, .ndo_set_mac_address = eth_mac_addr, .ndo_validate_addr = eth_validate_addr, }; static int qec_ether_init(struct platform_device *op) { static unsigned version_printed; struct net_device *dev; struct sunqec *qecp; struct sunqe *qe; int i, res; if (version_printed++ == 0) printk(KERN_INFO "%s", version); dev = alloc_etherdev(sizeof(struct sunqe)); if (!dev) return -ENOMEM; memcpy(dev->dev_addr, idprom->id_ethaddr, ETH_ALEN); qe = netdev_priv(dev); res = -ENODEV; i = of_getintprop_default(op->dev.of_node, "channel#", -1); if (i == -1) goto fail; qe->channel = i; spin_lock_init(&qe->lock); qecp = get_qec(op); if (!qecp) goto fail; qecp->qes[qe->channel] = qe; qe->dev = dev; qe->parent = qecp; qe->op = op; res = -ENOMEM; qe->qcregs = of_ioremap(&op->resource[0], 0, CREG_REG_SIZE, "QEC Channel Registers"); if (!qe->qcregs) { printk(KERN_ERR "qe: Cannot map channel registers.\n"); goto fail; } qe->mregs = of_ioremap(&op->resource[1], 0, MREGS_REG_SIZE, "QE MACE Registers"); if (!qe->mregs) { printk(KERN_ERR "qe: Cannot map MACE registers.\n"); goto fail; } qe->qe_block = dma_alloc_coherent(&op->dev, PAGE_SIZE, &qe->qblock_dvma, GFP_ATOMIC); qe->buffers = dma_alloc_coherent(&op->dev, sizeof(struct sunqe_buffers), &qe->buffers_dvma, GFP_ATOMIC); if (qe->qe_block == NULL || qe->qblock_dvma == 0 || qe->buffers == NULL || qe->buffers_dvma == 0) goto fail; /* Stop this QE. */ qe_stop(qe); SET_NETDEV_DEV(dev, &op->dev); dev->watchdog_timeo = 5*HZ; dev->irq = op->archdata.irqs[0]; dev->dma = 0; dev->ethtool_ops = &qe_ethtool_ops; dev->netdev_ops = &qec_ops; res = register_netdev(dev); if (res) goto fail; platform_set_drvdata(op, qe); printk(KERN_INFO "%s: qe channel[%d] %pM\n", dev->name, qe->channel, dev->dev_addr); return 0; fail: if (qe->qcregs) of_iounmap(&op->resource[0], qe->qcregs, CREG_REG_SIZE); if (qe->mregs) of_iounmap(&op->resource[1], qe->mregs, MREGS_REG_SIZE); if (qe->qe_block) dma_free_coherent(&op->dev, PAGE_SIZE, qe->qe_block, qe->qblock_dvma); if (qe->buffers) dma_free_coherent(&op->dev, sizeof(struct sunqe_buffers), qe->buffers, qe->buffers_dvma); free_netdev(dev); return res; } static int qec_sbus_probe(struct platform_device *op) { return qec_ether_init(op); } static int qec_sbus_remove(struct platform_device *op) { struct sunqe *qp = platform_get_drvdata(op); struct net_device *net_dev = qp->dev; unregister_netdev(net_dev); of_iounmap(&op->resource[0], qp->qcregs, CREG_REG_SIZE); of_iounmap(&op->resource[1], qp->mregs, MREGS_REG_SIZE); dma_free_coherent(&op->dev, PAGE_SIZE, qp->qe_block, qp->qblock_dvma); dma_free_coherent(&op->dev, sizeof(struct sunqe_buffers), qp->buffers, qp->buffers_dvma); free_netdev(net_dev); return 0; } static const struct of_device_id qec_sbus_match[] = { { .name = "qe", }, {}, }; MODULE_DEVICE_TABLE(of, qec_sbus_match); static struct platform_driver qec_sbus_driver = { .driver = { .name = "qec", .of_match_table = qec_sbus_match, }, .probe = qec_sbus_probe, .remove = qec_sbus_remove, }; static int __init qec_init(void) { return platform_driver_register(&qec_sbus_driver); } static void __exit qec_exit(void) { platform_driver_unregister(&qec_sbus_driver); while (root_qec_dev) { struct sunqec *next = root_qec_dev->next_module; struct platform_device *op = root_qec_dev->op; free_irq(op->archdata.irqs[0], (void *) root_qec_dev); of_iounmap(&op->resource[0], root_qec_dev->gregs, GLOB_REG_SIZE); kfree(root_qec_dev); root_qec_dev = next; } } module_init(qec_init); module_exit(qec_exit);