/* SPDX-License-Identifier: GPL-2.0+ */ /* * RCU expedited grace periods * * Copyright IBM Corporation, 2016 * * Authors: Paul E. McKenney */ #include static void rcu_exp_handler(void *unused); static int rcu_print_task_exp_stall(struct rcu_node *rnp); /* * Record the start of an expedited grace period. */ static void rcu_exp_gp_seq_start(void) { rcu_seq_start(&rcu_state.expedited_sequence); } /* * Return the value that the expedited-grace-period counter will have * at the end of the current grace period. */ static __maybe_unused unsigned long rcu_exp_gp_seq_endval(void) { return rcu_seq_endval(&rcu_state.expedited_sequence); } /* * Record the end of an expedited grace period. */ static void rcu_exp_gp_seq_end(void) { rcu_seq_end(&rcu_state.expedited_sequence); smp_mb(); /* Ensure that consecutive grace periods serialize. */ } /* * Take a snapshot of the expedited-grace-period counter, which is the * earliest value that will indicate that a full grace period has * elapsed since the current time. */ static unsigned long rcu_exp_gp_seq_snap(void) { unsigned long s; smp_mb(); /* Caller's modifications seen first by other CPUs. */ s = rcu_seq_snap(&rcu_state.expedited_sequence); trace_rcu_exp_grace_period(rcu_state.name, s, TPS("snap")); return s; } /* * Given a counter snapshot from rcu_exp_gp_seq_snap(), return true * if a full expedited grace period has elapsed since that snapshot * was taken. */ static bool rcu_exp_gp_seq_done(unsigned long s) { return rcu_seq_done(&rcu_state.expedited_sequence, s); } /* * Reset the ->expmaskinit values in the rcu_node tree to reflect any * recent CPU-online activity. Note that these masks are not cleared * when CPUs go offline, so they reflect the union of all CPUs that have * ever been online. This means that this function normally takes its * no-work-to-do fastpath. */ static void sync_exp_reset_tree_hotplug(void) { bool done; unsigned long flags; unsigned long mask; unsigned long oldmask; int ncpus = smp_load_acquire(&rcu_state.ncpus); /* Order vs. locking. */ struct rcu_node *rnp; struct rcu_node *rnp_up; /* If no new CPUs onlined since last time, nothing to do. */ if (likely(ncpus == rcu_state.ncpus_snap)) return; rcu_state.ncpus_snap = ncpus; /* * Each pass through the following loop propagates newly onlined * CPUs for the current rcu_node structure up the rcu_node tree. */ rcu_for_each_leaf_node(rnp) { raw_spin_lock_irqsave_rcu_node(rnp, flags); if (rnp->expmaskinit == rnp->expmaskinitnext) { raw_spin_unlock_irqrestore_rcu_node(rnp, flags); continue; /* No new CPUs, nothing to do. */ } /* Update this node's mask, track old value for propagation. */ oldmask = rnp->expmaskinit; rnp->expmaskinit = rnp->expmaskinitnext; raw_spin_unlock_irqrestore_rcu_node(rnp, flags); /* If was already nonzero, nothing to propagate. */ if (oldmask) continue; /* Propagate the new CPU up the tree. */ mask = rnp->grpmask; rnp_up = rnp->parent; done = false; while (rnp_up) { raw_spin_lock_irqsave_rcu_node(rnp_up, flags); if (rnp_up->expmaskinit) done = true; rnp_up->expmaskinit |= mask; raw_spin_unlock_irqrestore_rcu_node(rnp_up, flags); if (done) break; mask = rnp_up->grpmask; rnp_up = rnp_up->parent; } } } /* * Reset the ->expmask values in the rcu_node tree in preparation for * a new expedited grace period. */ static void __maybe_unused sync_exp_reset_tree(void) { unsigned long flags; struct rcu_node *rnp; sync_exp_reset_tree_hotplug(); rcu_for_each_node_breadth_first(rnp) { raw_spin_lock_irqsave_rcu_node(rnp, flags); WARN_ON_ONCE(rnp->expmask); WRITE_ONCE(rnp->expmask, rnp->expmaskinit); raw_spin_unlock_irqrestore_rcu_node(rnp, flags); } } /* * Return non-zero if there is no RCU expedited grace period in progress * for the specified rcu_node structure, in other words, if all CPUs and * tasks covered by the specified rcu_node structure have done their bit * for the current expedited grace period. */ static bool sync_rcu_exp_done(struct rcu_node *rnp) { raw_lockdep_assert_held_rcu_node(rnp); return READ_ONCE(rnp->exp_tasks) == NULL && READ_ONCE(rnp->expmask) == 0; } /* * Like sync_rcu_exp_done(), but where the caller does not hold the * rcu_node's ->lock. */ static bool sync_rcu_exp_done_unlocked(struct rcu_node *rnp) { unsigned long flags; bool ret; raw_spin_lock_irqsave_rcu_node(rnp, flags); ret = sync_rcu_exp_done(rnp); raw_spin_unlock_irqrestore_rcu_node(rnp, flags); return ret; } /* * Report the exit from RCU read-side critical section for the last task * that queued itself during or before the current expedited preemptible-RCU * grace period. This event is reported either to the rcu_node structure on * which the task was queued or to one of that rcu_node structure's ancestors, * recursively up the tree. (Calm down, calm down, we do the recursion * iteratively!) */ static void __rcu_report_exp_rnp(struct rcu_node *rnp, bool wake, unsigned long flags) __releases(rnp->lock) { unsigned long mask; raw_lockdep_assert_held_rcu_node(rnp); for (;;) { if (!sync_rcu_exp_done(rnp)) { if (!rnp->expmask) rcu_initiate_boost(rnp, flags); else raw_spin_unlock_irqrestore_rcu_node(rnp, flags); break; } if (rnp->parent == NULL) { raw_spin_unlock_irqrestore_rcu_node(rnp, flags); if (wake) { smp_mb(); /* EGP done before wake_up(). */ swake_up_one(&rcu_state.expedited_wq); } break; } mask = rnp->grpmask; raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled */ rnp = rnp->parent; raw_spin_lock_rcu_node(rnp); /* irqs already disabled */ WARN_ON_ONCE(!(rnp->expmask & mask)); WRITE_ONCE(rnp->expmask, rnp->expmask & ~mask); } } /* * Report expedited quiescent state for specified node. This is a * lock-acquisition wrapper function for __rcu_report_exp_rnp(). */ static void __maybe_unused rcu_report_exp_rnp(struct rcu_node *rnp, bool wake) { unsigned long flags; raw_spin_lock_irqsave_rcu_node(rnp, flags); __rcu_report_exp_rnp(rnp, wake, flags); } /* * Report expedited quiescent state for multiple CPUs, all covered by the * specified leaf rcu_node structure. */ static void rcu_report_exp_cpu_mult(struct rcu_node *rnp, unsigned long mask, bool wake) { int cpu; unsigned long flags; struct rcu_data *rdp; raw_spin_lock_irqsave_rcu_node(rnp, flags); if (!(rnp->expmask & mask)) { raw_spin_unlock_irqrestore_rcu_node(rnp, flags); return; } WRITE_ONCE(rnp->expmask, rnp->expmask & ~mask); for_each_leaf_node_cpu_mask(rnp, cpu, mask) { rdp = per_cpu_ptr(&rcu_data, cpu); if (!IS_ENABLED(CONFIG_NO_HZ_FULL) || !rdp->rcu_forced_tick_exp) continue; rdp->rcu_forced_tick_exp = false; tick_dep_clear_cpu(cpu, TICK_DEP_BIT_RCU_EXP); } __rcu_report_exp_rnp(rnp, wake, flags); /* Releases rnp->lock. */ } /* * Report expedited quiescent state for specified rcu_data (CPU). */ static void rcu_report_exp_rdp(struct rcu_data *rdp) { WRITE_ONCE(rdp->exp_deferred_qs, false); rcu_report_exp_cpu_mult(rdp->mynode, rdp->grpmask, true); } /* Common code for work-done checking. */ static bool sync_exp_work_done(unsigned long s) { if (rcu_exp_gp_seq_done(s)) { trace_rcu_exp_grace_period(rcu_state.name, s, TPS("done")); smp_mb(); /* Ensure test happens before caller kfree(). */ return true; } return false; } /* * Funnel-lock acquisition for expedited grace periods. Returns true * if some other task completed an expedited grace period that this task * can piggy-back on, and with no mutex held. Otherwise, returns false * with the mutex held, indicating that the caller must actually do the * expedited grace period. */ static bool exp_funnel_lock(unsigned long s) { struct rcu_data *rdp = per_cpu_ptr(&rcu_data, raw_smp_processor_id()); struct rcu_node *rnp = rdp->mynode; struct rcu_node *rnp_root = rcu_get_root(); /* Low-contention fastpath. */ if (ULONG_CMP_LT(READ_ONCE(rnp->exp_seq_rq), s) && (rnp == rnp_root || ULONG_CMP_LT(READ_ONCE(rnp_root->exp_seq_rq), s)) && mutex_trylock(&rcu_state.exp_mutex)) goto fastpath; /* * Each pass through the following loop works its way up * the rcu_node tree, returning if others have done the work or * otherwise falls through to acquire ->exp_mutex. The mapping * from CPU to rcu_node structure can be inexact, as it is just * promoting locality and is not strictly needed for correctness. */ for (; rnp != NULL; rnp = rnp->parent) { if (sync_exp_work_done(s)) return true; /* Work not done, either wait here or go up. */ spin_lock(&rnp->exp_lock); if (ULONG_CMP_GE(rnp->exp_seq_rq, s)) { /* Someone else doing GP, so wait for them. */ spin_unlock(&rnp->exp_lock); trace_rcu_exp_funnel_lock(rcu_state.name, rnp->level, rnp->grplo, rnp->grphi, TPS("wait")); wait_event(rnp->exp_wq[rcu_seq_ctr(s) & 0x3], sync_exp_work_done(s)); return true; } WRITE_ONCE(rnp->exp_seq_rq, s); /* Followers can wait on us. */ spin_unlock(&rnp->exp_lock); trace_rcu_exp_funnel_lock(rcu_state.name, rnp->level, rnp->grplo, rnp->grphi, TPS("nxtlvl")); } mutex_lock(&rcu_state.exp_mutex); fastpath: if (sync_exp_work_done(s)) { mutex_unlock(&rcu_state.exp_mutex); return true; } rcu_exp_gp_seq_start(); trace_rcu_exp_grace_period(rcu_state.name, s, TPS("start")); return false; } /* * Select the CPUs within the specified rcu_node that the upcoming * expedited grace period needs to wait for. */ static void sync_rcu_exp_select_node_cpus(struct work_struct *wp) { int cpu; unsigned long flags; unsigned long mask_ofl_test; unsigned long mask_ofl_ipi; int ret; struct rcu_exp_work *rewp = container_of(wp, struct rcu_exp_work, rew_work); struct rcu_node *rnp = container_of(rewp, struct rcu_node, rew); raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Each pass checks a CPU for identity, offline, and idle. */ mask_ofl_test = 0; for_each_leaf_node_cpu_mask(rnp, cpu, rnp->expmask) { struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); unsigned long mask = rdp->grpmask; int snap; if (raw_smp_processor_id() == cpu || !(rnp->qsmaskinitnext & mask)) { mask_ofl_test |= mask; } else { snap = rcu_dynticks_snap(rdp); if (rcu_dynticks_in_eqs(snap)) mask_ofl_test |= mask; else rdp->exp_dynticks_snap = snap; } } mask_ofl_ipi = rnp->expmask & ~mask_ofl_test; /* * Need to wait for any blocked tasks as well. Note that * additional blocking tasks will also block the expedited GP * until such time as the ->expmask bits are cleared. */ if (rcu_preempt_has_tasks(rnp)) WRITE_ONCE(rnp->exp_tasks, rnp->blkd_tasks.next); raw_spin_unlock_irqrestore_rcu_node(rnp, flags); /* IPI the remaining CPUs for expedited quiescent state. */ for_each_leaf_node_cpu_mask(rnp, cpu, mask_ofl_ipi) { struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); unsigned long mask = rdp->grpmask; retry_ipi: if (rcu_dynticks_in_eqs_since(rdp, rdp->exp_dynticks_snap)) { mask_ofl_test |= mask; continue; } if (get_cpu() == cpu) { mask_ofl_test |= mask; put_cpu(); continue; } ret = smp_call_function_single(cpu, rcu_exp_handler, NULL, 0); put_cpu(); /* The CPU will report the QS in response to the IPI. */ if (!ret) continue; /* Failed, raced with CPU hotplug operation. */ raw_spin_lock_irqsave_rcu_node(rnp, flags); if ((rnp->qsmaskinitnext & mask) && (rnp->expmask & mask)) { /* Online, so delay for a bit and try again. */ raw_spin_unlock_irqrestore_rcu_node(rnp, flags); trace_rcu_exp_grace_period(rcu_state.name, rcu_exp_gp_seq_endval(), TPS("selectofl")); schedule_timeout_idle(1); goto retry_ipi; } /* CPU really is offline, so we must report its QS. */ if (rnp->expmask & mask) mask_ofl_test |= mask; raw_spin_unlock_irqrestore_rcu_node(rnp, flags); } /* Report quiescent states for those that went offline. */ if (mask_ofl_test) rcu_report_exp_cpu_mult(rnp, mask_ofl_test, false); } /* * Select the nodes that the upcoming expedited grace period needs * to wait for. */ static void sync_rcu_exp_select_cpus(void) { int cpu; struct rcu_node *rnp; trace_rcu_exp_grace_period(rcu_state.name, rcu_exp_gp_seq_endval(), TPS("reset")); sync_exp_reset_tree(); trace_rcu_exp_grace_period(rcu_state.name, rcu_exp_gp_seq_endval(), TPS("select")); /* Schedule work for each leaf rcu_node structure. */ rcu_for_each_leaf_node(rnp) { rnp->exp_need_flush = false; if (!READ_ONCE(rnp->expmask)) continue; /* Avoid early boot non-existent wq. */ if (!READ_ONCE(rcu_par_gp_wq) || rcu_scheduler_active != RCU_SCHEDULER_RUNNING || rcu_is_last_leaf_node(rnp)) { /* No workqueues yet or last leaf, do direct call. */ sync_rcu_exp_select_node_cpus(&rnp->rew.rew_work); continue; } INIT_WORK(&rnp->rew.rew_work, sync_rcu_exp_select_node_cpus); cpu = find_next_bit(&rnp->ffmask, BITS_PER_LONG, -1); /* If all offline, queue the work on an unbound CPU. */ if (unlikely(cpu > rnp->grphi - rnp->grplo)) cpu = WORK_CPU_UNBOUND; else cpu += rnp->grplo; queue_work_on(cpu, rcu_par_gp_wq, &rnp->rew.rew_work); rnp->exp_need_flush = true; } /* Wait for workqueue jobs (if any) to complete. */ rcu_for_each_leaf_node(rnp) if (rnp->exp_need_flush) flush_work(&rnp->rew.rew_work); } /* * Wait for the expedited grace period to elapse, within time limit. * If the time limit is exceeded without the grace period elapsing, * return false, otherwise return true. */ static bool synchronize_rcu_expedited_wait_once(long tlimit) { int t; struct rcu_node *rnp_root = rcu_get_root(); t = swait_event_timeout_exclusive(rcu_state.expedited_wq, sync_rcu_exp_done_unlocked(rnp_root), tlimit); // Workqueues should not be signaled. if (t > 0 || sync_rcu_exp_done_unlocked(rnp_root)) return true; WARN_ON(t < 0); /* workqueues should not be signaled. */ return false; } /* * Wait for the expedited grace period to elapse, issuing any needed * RCU CPU stall warnings along the way. */ static void synchronize_rcu_expedited_wait(void) { int cpu; unsigned long j; unsigned long jiffies_stall; unsigned long jiffies_start; unsigned long mask; int ndetected; struct rcu_data *rdp; struct rcu_node *rnp; struct rcu_node *rnp_root = rcu_get_root(); trace_rcu_exp_grace_period(rcu_state.name, rcu_exp_gp_seq_endval(), TPS("startwait")); jiffies_stall = rcu_jiffies_till_stall_check(); jiffies_start = jiffies; if (tick_nohz_full_enabled() && rcu_inkernel_boot_has_ended()) { if (synchronize_rcu_expedited_wait_once(1)) return; rcu_for_each_leaf_node(rnp) { for_each_leaf_node_cpu_mask(rnp, cpu, rnp->expmask) { rdp = per_cpu_ptr(&rcu_data, cpu); if (rdp->rcu_forced_tick_exp) continue; rdp->rcu_forced_tick_exp = true; tick_dep_set_cpu(cpu, TICK_DEP_BIT_RCU_EXP); } } j = READ_ONCE(jiffies_till_first_fqs); if (synchronize_rcu_expedited_wait_once(j + HZ)) return; WARN_ON_ONCE(IS_ENABLED(CONFIG_PREEMPT_RT)); } for (;;) { if (synchronize_rcu_expedited_wait_once(jiffies_stall)) return; if (rcu_stall_is_suppressed()) continue; panic_on_rcu_stall(); trace_rcu_stall_warning(rcu_state.name, TPS("ExpeditedStall")); pr_err("INFO: %s detected expedited stalls on CPUs/tasks: {", rcu_state.name); ndetected = 0; rcu_for_each_leaf_node(rnp) { ndetected += rcu_print_task_exp_stall(rnp); for_each_leaf_node_possible_cpu(rnp, cpu) { struct rcu_data *rdp; mask = leaf_node_cpu_bit(rnp, cpu); if (!(READ_ONCE(rnp->expmask) & mask)) continue; ndetected++; rdp = per_cpu_ptr(&rcu_data, cpu); pr_cont(" %d-%c%c%c", cpu, "O."[!!cpu_online(cpu)], "o."[!!(rdp->grpmask & rnp->expmaskinit)], "N."[!!(rdp->grpmask & rnp->expmaskinitnext)]); } } pr_cont(" } %lu jiffies s: %lu root: %#lx/%c\n", jiffies - jiffies_start, rcu_state.expedited_sequence, data_race(rnp_root->expmask), ".T"[!!data_race(rnp_root->exp_tasks)]); if (ndetected) { pr_err("blocking rcu_node structures (internal RCU debug):"); rcu_for_each_node_breadth_first(rnp) { if (rnp == rnp_root) continue; /* printed unconditionally */ if (sync_rcu_exp_done_unlocked(rnp)) continue; pr_cont(" l=%u:%d-%d:%#lx/%c", rnp->level, rnp->grplo, rnp->grphi, data_race(rnp->expmask), ".T"[!!data_race(rnp->exp_tasks)]); } pr_cont("\n"); } rcu_for_each_leaf_node(rnp) { for_each_leaf_node_possible_cpu(rnp, cpu) { mask = leaf_node_cpu_bit(rnp, cpu); if (!(READ_ONCE(rnp->expmask) & mask)) continue; preempt_disable(); // For smp_processor_id() in dump_cpu_task(). dump_cpu_task(cpu); preempt_enable(); } } jiffies_stall = 3 * rcu_jiffies_till_stall_check() + 3; } } /* * Wait for the current expedited grace period to complete, and then * wake up everyone who piggybacked on the just-completed expedited * grace period. Also update all the ->exp_seq_rq counters as needed * in order to avoid counter-wrap problems. */ static void rcu_exp_wait_wake(unsigned long s) { struct rcu_node *rnp; synchronize_rcu_expedited_wait(); // Switch over to wakeup mode, allowing the next GP to proceed. // End the previous grace period only after acquiring the mutex // to ensure that only one GP runs concurrently with wakeups. mutex_lock(&rcu_state.exp_wake_mutex); rcu_exp_gp_seq_end(); trace_rcu_exp_grace_period(rcu_state.name, s, TPS("end")); rcu_for_each_node_breadth_first(rnp) { if (ULONG_CMP_LT(READ_ONCE(rnp->exp_seq_rq), s)) { spin_lock(&rnp->exp_lock); /* Recheck, avoid hang in case someone just arrived. */ if (ULONG_CMP_LT(rnp->exp_seq_rq, s)) WRITE_ONCE(rnp->exp_seq_rq, s); spin_unlock(&rnp->exp_lock); } smp_mb(); /* All above changes before wakeup. */ wake_up_all(&rnp->exp_wq[rcu_seq_ctr(s) & 0x3]); } trace_rcu_exp_grace_period(rcu_state.name, s, TPS("endwake")); mutex_unlock(&rcu_state.exp_wake_mutex); } /* * Common code to drive an expedited grace period forward, used by * workqueues and mid-boot-time tasks. */ static void rcu_exp_sel_wait_wake(unsigned long s) { /* Initialize the rcu_node tree in preparation for the wait. */ sync_rcu_exp_select_cpus(); /* Wait and clean up, including waking everyone. */ rcu_exp_wait_wake(s); } /* * Work-queue handler to drive an expedited grace period forward. */ static void wait_rcu_exp_gp(struct work_struct *wp) { struct rcu_exp_work *rewp; rewp = container_of(wp, struct rcu_exp_work, rew_work); rcu_exp_sel_wait_wake(rewp->rew_s); } #ifdef CONFIG_PREEMPT_RCU /* * Remote handler for smp_call_function_single(). If there is an * RCU read-side critical section in effect, request that the * next rcu_read_unlock() record the quiescent state up the * ->expmask fields in the rcu_node tree. Otherwise, immediately * report the quiescent state. */ static void rcu_exp_handler(void *unused) { int depth = rcu_preempt_depth(); unsigned long flags; struct rcu_data *rdp = this_cpu_ptr(&rcu_data); struct rcu_node *rnp = rdp->mynode; struct task_struct *t = current; /* * First, the common case of not being in an RCU read-side * critical section. If also enabled or idle, immediately * report the quiescent state, otherwise defer. */ if (!depth) { if (!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK)) || rcu_dynticks_curr_cpu_in_eqs()) { rcu_report_exp_rdp(rdp); } else { rdp->exp_deferred_qs = true; set_tsk_need_resched(t); set_preempt_need_resched(); } return; } /* * Second, the less-common case of being in an RCU read-side * critical section. In this case we can count on a future * rcu_read_unlock(). However, this rcu_read_unlock() might * execute on some other CPU, but in that case there will be * a future context switch. Either way, if the expedited * grace period is still waiting on this CPU, set ->deferred_qs * so that the eventual quiescent state will be reported. * Note that there is a large group of race conditions that * can have caused this quiescent state to already have been * reported, so we really do need to check ->expmask. */ if (depth > 0) { raw_spin_lock_irqsave_rcu_node(rnp, flags); if (rnp->expmask & rdp->grpmask) { rdp->exp_deferred_qs = true; t->rcu_read_unlock_special.b.exp_hint = true; } raw_spin_unlock_irqrestore_rcu_node(rnp, flags); return; } // Finally, negative nesting depth should not happen. WARN_ON_ONCE(1); } /* PREEMPTION=y, so no PREEMPTION=n expedited grace period to clean up after. */ static void sync_sched_exp_online_cleanup(int cpu) { } /* * Scan the current list of tasks blocked within RCU read-side critical * sections, printing out the tid of each that is blocking the current * expedited grace period. */ static int rcu_print_task_exp_stall(struct rcu_node *rnp) { unsigned long flags; int ndetected = 0; struct task_struct *t; if (!READ_ONCE(rnp->exp_tasks)) return 0; raw_spin_lock_irqsave_rcu_node(rnp, flags); t = list_entry(rnp->exp_tasks->prev, struct task_struct, rcu_node_entry); list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) { pr_cont(" P%d", t->pid); ndetected++; } raw_spin_unlock_irqrestore_rcu_node(rnp, flags); return ndetected; } #else /* #ifdef CONFIG_PREEMPT_RCU */ /* Request an expedited quiescent state. */ static void rcu_exp_need_qs(void) { __this_cpu_write(rcu_data.cpu_no_qs.b.exp, true); /* Store .exp before .rcu_urgent_qs. */ smp_store_release(this_cpu_ptr(&rcu_data.rcu_urgent_qs), true); set_tsk_need_resched(current); set_preempt_need_resched(); } /* Invoked on each online non-idle CPU for expedited quiescent state. */ static void rcu_exp_handler(void *unused) { struct rcu_data *rdp = this_cpu_ptr(&rcu_data); struct rcu_node *rnp = rdp->mynode; if (!(READ_ONCE(rnp->expmask) & rdp->grpmask) || __this_cpu_read(rcu_data.cpu_no_qs.b.exp)) return; if (rcu_is_cpu_rrupt_from_idle()) { rcu_report_exp_rdp(this_cpu_ptr(&rcu_data)); return; } rcu_exp_need_qs(); } /* Send IPI for expedited cleanup if needed at end of CPU-hotplug operation. */ static void sync_sched_exp_online_cleanup(int cpu) { unsigned long flags; int my_cpu; struct rcu_data *rdp; int ret; struct rcu_node *rnp; rdp = per_cpu_ptr(&rcu_data, cpu); rnp = rdp->mynode; my_cpu = get_cpu(); /* Quiescent state either not needed or already requested, leave. */ if (!(READ_ONCE(rnp->expmask) & rdp->grpmask) || rdp->cpu_no_qs.b.exp) { put_cpu(); return; } /* Quiescent state needed on current CPU, so set it up locally. */ if (my_cpu == cpu) { local_irq_save(flags); rcu_exp_need_qs(); local_irq_restore(flags); put_cpu(); return; } /* Quiescent state needed on some other CPU, send IPI. */ ret = smp_call_function_single(cpu, rcu_exp_handler, NULL, 0); put_cpu(); WARN_ON_ONCE(ret); } /* * Because preemptible RCU does not exist, we never have to check for * tasks blocked within RCU read-side critical sections that are * blocking the current expedited grace period. */ static int rcu_print_task_exp_stall(struct rcu_node *rnp) { return 0; } #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ /** * synchronize_rcu_expedited - Brute-force RCU grace period * * Wait for an RCU grace period, but expedite it. The basic idea is to * IPI all non-idle non-nohz online CPUs. The IPI handler checks whether * the CPU is in an RCU critical section, and if so, it sets a flag that * causes the outermost rcu_read_unlock() to report the quiescent state * for RCU-preempt or asks the scheduler for help for RCU-sched. On the * other hand, if the CPU is not in an RCU read-side critical section, * the IPI handler reports the quiescent state immediately. * * Although this is a great improvement over previous expedited * implementations, it is still unfriendly to real-time workloads, so is * thus not recommended for any sort of common-case code. In fact, if * you are using synchronize_rcu_expedited() in a loop, please restructure * your code to batch your updates, and then use a single synchronize_rcu() * instead. * * This has the same semantics as (but is more brutal than) synchronize_rcu(). */ void synchronize_rcu_expedited(void) { bool boottime = (rcu_scheduler_active == RCU_SCHEDULER_INIT); struct rcu_exp_work rew; struct rcu_node *rnp; unsigned long s; RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || lock_is_held(&rcu_lock_map) || lock_is_held(&rcu_sched_lock_map), "Illegal synchronize_rcu_expedited() in RCU read-side critical section"); /* Is the state is such that the call is a grace period? */ if (rcu_blocking_is_gp()) return; /* If expedited grace periods are prohibited, fall back to normal. */ if (rcu_gp_is_normal()) { wait_rcu_gp(call_rcu); return; } /* Take a snapshot of the sequence number. */ s = rcu_exp_gp_seq_snap(); if (exp_funnel_lock(s)) return; /* Someone else did our work for us. */ /* Ensure that load happens before action based on it. */ if (unlikely(boottime)) { /* Direct call during scheduler init and early_initcalls(). */ rcu_exp_sel_wait_wake(s); } else { /* Marshall arguments & schedule the expedited grace period. */ rew.rew_s = s; INIT_WORK_ONSTACK(&rew.rew_work, wait_rcu_exp_gp); queue_work(rcu_gp_wq, &rew.rew_work); } /* Wait for expedited grace period to complete. */ rnp = rcu_get_root(); wait_event(rnp->exp_wq[rcu_seq_ctr(s) & 0x3], sync_exp_work_done(s)); smp_mb(); /* Workqueue actions happen before return. */ /* Let the next expedited grace period start. */ mutex_unlock(&rcu_state.exp_mutex); if (likely(!boottime)) destroy_work_on_stack(&rew.rew_work); } EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);