/* * OMAP2+ DMA driver * * Copyright (C) 2003 - 2008 Nokia Corporation * Author: Juha Yrjölä <juha.yrjola@nokia.com> * DMA channel linking for 1610 by Samuel Ortiz <samuel.ortiz@nokia.com> * Graphics DMA and LCD DMA graphics tranformations * by Imre Deak <imre.deak@nokia.com> * OMAP2/3 support Copyright (C) 2004-2007 Texas Instruments, Inc. * Some functions based on earlier dma-omap.c Copyright (C) 2001 RidgeRun, Inc. * * Copyright (C) 2009 Texas Instruments * Added OMAP4 support - Santosh Shilimkar <santosh.shilimkar@ti.com> * * Copyright (C) 2010 Texas Instruments Incorporated - http://www.ti.com/ * Converted DMA library into platform driver * - G, Manjunath Kondaiah <manjugk@ti.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/err.h> #include <linux/io.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/init.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include <linux/dmaengine.h> #include <linux/of.h> #include <linux/omap-dma.h> #include "soc.h" #include "omap_hwmod.h" #include "omap_device.h" static enum omap_reg_offsets dma_common_ch_end; static const struct omap_dma_reg reg_map[] = { [REVISION] = { 0x0000, 0x00, OMAP_DMA_REG_32BIT }, [GCR] = { 0x0078, 0x00, OMAP_DMA_REG_32BIT }, [IRQSTATUS_L0] = { 0x0008, 0x00, OMAP_DMA_REG_32BIT }, [IRQSTATUS_L1] = { 0x000c, 0x00, OMAP_DMA_REG_32BIT }, [IRQSTATUS_L2] = { 0x0010, 0x00, OMAP_DMA_REG_32BIT }, [IRQSTATUS_L3] = { 0x0014, 0x00, OMAP_DMA_REG_32BIT }, [IRQENABLE_L0] = { 0x0018, 0x00, OMAP_DMA_REG_32BIT }, [IRQENABLE_L1] = { 0x001c, 0x00, OMAP_DMA_REG_32BIT }, [IRQENABLE_L2] = { 0x0020, 0x00, OMAP_DMA_REG_32BIT }, [IRQENABLE_L3] = { 0x0024, 0x00, OMAP_DMA_REG_32BIT }, [SYSSTATUS] = { 0x0028, 0x00, OMAP_DMA_REG_32BIT }, [OCP_SYSCONFIG] = { 0x002c, 0x00, OMAP_DMA_REG_32BIT }, [CAPS_0] = { 0x0064, 0x00, OMAP_DMA_REG_32BIT }, [CAPS_2] = { 0x006c, 0x00, OMAP_DMA_REG_32BIT }, [CAPS_3] = { 0x0070, 0x00, OMAP_DMA_REG_32BIT }, [CAPS_4] = { 0x0074, 0x00, OMAP_DMA_REG_32BIT }, /* Common register offsets */ [CCR] = { 0x0080, 0x60, OMAP_DMA_REG_32BIT }, [CLNK_CTRL] = { 0x0084, 0x60, OMAP_DMA_REG_32BIT }, [CICR] = { 0x0088, 0x60, OMAP_DMA_REG_32BIT }, [CSR] = { 0x008c, 0x60, OMAP_DMA_REG_32BIT }, [CSDP] = { 0x0090, 0x60, OMAP_DMA_REG_32BIT }, [CEN] = { 0x0094, 0x60, OMAP_DMA_REG_32BIT }, [CFN] = { 0x0098, 0x60, OMAP_DMA_REG_32BIT }, [CSEI] = { 0x00a4, 0x60, OMAP_DMA_REG_32BIT }, [CSFI] = { 0x00a8, 0x60, OMAP_DMA_REG_32BIT }, [CDEI] = { 0x00ac, 0x60, OMAP_DMA_REG_32BIT }, [CDFI] = { 0x00b0, 0x60, OMAP_DMA_REG_32BIT }, [CSAC] = { 0x00b4, 0x60, OMAP_DMA_REG_32BIT }, [CDAC] = { 0x00b8, 0x60, OMAP_DMA_REG_32BIT }, /* Channel specific register offsets */ [CSSA] = { 0x009c, 0x60, OMAP_DMA_REG_32BIT }, [CDSA] = { 0x00a0, 0x60, OMAP_DMA_REG_32BIT }, [CCEN] = { 0x00bc, 0x60, OMAP_DMA_REG_32BIT }, [CCFN] = { 0x00c0, 0x60, OMAP_DMA_REG_32BIT }, [COLOR] = { 0x00c4, 0x60, OMAP_DMA_REG_32BIT }, /* OMAP4 specific registers */ [CDP] = { 0x00d0, 0x60, OMAP_DMA_REG_32BIT }, [CNDP] = { 0x00d4, 0x60, OMAP_DMA_REG_32BIT }, [CCDN] = { 0x00d8, 0x60, OMAP_DMA_REG_32BIT }, }; static void __iomem *dma_base; static inline void dma_write(u32 val, int reg, int lch) { void __iomem *addr = dma_base; addr += reg_map[reg].offset; addr += reg_map[reg].stride * lch; writel_relaxed(val, addr); } static inline u32 dma_read(int reg, int lch) { void __iomem *addr = dma_base; addr += reg_map[reg].offset; addr += reg_map[reg].stride * lch; return readl_relaxed(addr); } static void omap2_clear_dma(int lch) { int i; for (i = CSDP; i <= dma_common_ch_end; i += 1) dma_write(0, i, lch); } static void omap2_show_dma_caps(void) { u8 revision = dma_read(REVISION, 0) & 0xff; printk(KERN_INFO "OMAP DMA hardware revision %d.%d\n", revision >> 4, revision & 0xf); } static unsigned configure_dma_errata(void) { unsigned errata = 0; /* * Errata applicable for OMAP2430ES1.0 and all omap2420 * * I. * Erratum ID: Not Available * Inter Frame DMA buffering issue DMA will wrongly * buffer elements if packing and bursting is enabled. This might * result in data gets stalled in FIFO at the end of the block. * Workaround: DMA channels must have BUFFERING_DISABLED bit set to * guarantee no data will stay in the DMA FIFO in case inter frame * buffering occurs * * II. * Erratum ID: Not Available * DMA may hang when several channels are used in parallel * In the following configuration, DMA channel hanging can occur: * a. Channel i, hardware synchronized, is enabled * b. Another channel (Channel x), software synchronized, is enabled. * c. Channel i is disabled before end of transfer * d. Channel i is reenabled. * e. Steps 1 to 4 are repeated a certain number of times. * f. A third channel (Channel y), software synchronized, is enabled. * Channel x and Channel y may hang immediately after step 'f'. * Workaround: * For any channel used - make sure NextLCH_ID is set to the value j. */ if (cpu_is_omap2420() || (cpu_is_omap2430() && (omap_type() == OMAP2430_REV_ES1_0))) { SET_DMA_ERRATA(DMA_ERRATA_IFRAME_BUFFERING); SET_DMA_ERRATA(DMA_ERRATA_PARALLEL_CHANNELS); } /* * Erratum ID: i378: OMAP2+: sDMA Channel is not disabled * after a transaction error. * Workaround: SW should explicitely disable the channel. */ if (cpu_class_is_omap2()) SET_DMA_ERRATA(DMA_ERRATA_i378); /* * Erratum ID: i541: sDMA FIFO draining does not finish * If sDMA channel is disabled on the fly, sDMA enters standby even * through FIFO Drain is still in progress * Workaround: Put sDMA in NoStandby more before a logical channel is * disabled, then put it back to SmartStandby right after the channel * finishes FIFO draining. */ if (cpu_is_omap34xx()) SET_DMA_ERRATA(DMA_ERRATA_i541); /* * Erratum ID: i88 : Special programming model needed to disable DMA * before end of block. * Workaround: software must ensure that the DMA is configured in No * Standby mode(DMAx_OCP_SYSCONFIG.MIDLEMODE = "01") */ if (omap_type() == OMAP3430_REV_ES1_0) SET_DMA_ERRATA(DMA_ERRATA_i88); /* * Erratum 3.2/3.3: sometimes 0 is returned if CSAC/CDAC is * read before the DMA controller finished disabling the channel. */ SET_DMA_ERRATA(DMA_ERRATA_3_3); /* * Erratum ID: Not Available * A bug in ROM code leaves IRQ status for channels 0 and 1 uncleared * after secure sram context save and restore. * Work around: Hence we need to manually clear those IRQs to avoid * spurious interrupts. This affects only secure devices. */ if (cpu_is_omap34xx() && (omap_type() != OMAP2_DEVICE_TYPE_GP)) SET_DMA_ERRATA(DMA_ROMCODE_BUG); return errata; } static const struct dma_slave_map omap24xx_sdma_map[] = { { "omap-gpmc", "rxtx", SDMA_FILTER_PARAM(4) }, { "omap-aes", "tx", SDMA_FILTER_PARAM(9) }, { "omap-aes", "rx", SDMA_FILTER_PARAM(10) }, { "omap-sham", "rx", SDMA_FILTER_PARAM(13) }, { "omap2_mcspi.2", "tx0", SDMA_FILTER_PARAM(15) }, { "omap2_mcspi.2", "rx0", SDMA_FILTER_PARAM(16) }, { "omap-mcbsp.3", "tx", SDMA_FILTER_PARAM(17) }, { "omap-mcbsp.3", "rx", SDMA_FILTER_PARAM(18) }, { "omap-mcbsp.4", "tx", SDMA_FILTER_PARAM(19) }, { "omap-mcbsp.4", "rx", SDMA_FILTER_PARAM(20) }, { "omap-mcbsp.5", "tx", SDMA_FILTER_PARAM(21) }, { "omap-mcbsp.5", "rx", SDMA_FILTER_PARAM(22) }, { "omap2_mcspi.2", "tx1", SDMA_FILTER_PARAM(23) }, { "omap2_mcspi.2", "rx1", SDMA_FILTER_PARAM(24) }, { "omap_i2c.1", "tx", SDMA_FILTER_PARAM(27) }, { "omap_i2c.1", "rx", SDMA_FILTER_PARAM(28) }, { "omap_i2c.2", "tx", SDMA_FILTER_PARAM(29) }, { "omap_i2c.2", "rx", SDMA_FILTER_PARAM(30) }, { "omap-mcbsp.1", "tx", SDMA_FILTER_PARAM(31) }, { "omap-mcbsp.1", "rx", SDMA_FILTER_PARAM(32) }, { "omap-mcbsp.2", "tx", SDMA_FILTER_PARAM(33) }, { "omap-mcbsp.2", "rx", SDMA_FILTER_PARAM(34) }, { "omap2_mcspi.0", "tx0", SDMA_FILTER_PARAM(35) }, { "omap2_mcspi.0", "rx0", SDMA_FILTER_PARAM(36) }, { "omap2_mcspi.0", "tx1", SDMA_FILTER_PARAM(37) }, { "omap2_mcspi.0", "rx1", SDMA_FILTER_PARAM(38) }, { "omap2_mcspi.0", "tx2", SDMA_FILTER_PARAM(39) }, { "omap2_mcspi.0", "rx2", SDMA_FILTER_PARAM(40) }, { "omap2_mcspi.0", "tx3", SDMA_FILTER_PARAM(41) }, { "omap2_mcspi.0", "rx3", SDMA_FILTER_PARAM(42) }, { "omap2_mcspi.1", "tx0", SDMA_FILTER_PARAM(43) }, { "omap2_mcspi.1", "rx0", SDMA_FILTER_PARAM(44) }, { "omap2_mcspi.1", "tx1", SDMA_FILTER_PARAM(45) }, { "omap2_mcspi.1", "rx1", SDMA_FILTER_PARAM(46) }, { "omap_hsmmc.1", "tx", SDMA_FILTER_PARAM(47) }, { "omap_hsmmc.1", "rx", SDMA_FILTER_PARAM(48) }, { "omap_uart.0", "tx", SDMA_FILTER_PARAM(49) }, { "omap_uart.0", "rx", SDMA_FILTER_PARAM(50) }, { "omap_uart.1", "tx", SDMA_FILTER_PARAM(51) }, { "omap_uart.1", "rx", SDMA_FILTER_PARAM(52) }, { "omap_uart.2", "tx", SDMA_FILTER_PARAM(53) }, { "omap_uart.2", "rx", SDMA_FILTER_PARAM(54) }, { "omap_hsmmc.0", "tx", SDMA_FILTER_PARAM(61) }, { "omap_hsmmc.0", "rx", SDMA_FILTER_PARAM(62) }, }; static const struct dma_slave_map omap3xxx_sdma_map[] = { { "omap-gpmc", "rxtx", SDMA_FILTER_PARAM(4) }, { "omap2_mcspi.2", "tx0", SDMA_FILTER_PARAM(15) }, { "omap2_mcspi.2", "rx0", SDMA_FILTER_PARAM(16) }, { "omap-mcbsp.3", "tx", SDMA_FILTER_PARAM(17) }, { "omap-mcbsp.3", "rx", SDMA_FILTER_PARAM(18) }, { "omap-mcbsp.4", "tx", SDMA_FILTER_PARAM(19) }, { "omap-mcbsp.4", "rx", SDMA_FILTER_PARAM(20) }, { "omap-mcbsp.5", "tx", SDMA_FILTER_PARAM(21) }, { "omap-mcbsp.5", "rx", SDMA_FILTER_PARAM(22) }, { "omap2_mcspi.2", "tx1", SDMA_FILTER_PARAM(23) }, { "omap2_mcspi.2", "rx1", SDMA_FILTER_PARAM(24) }, { "omap_i2c.3", "tx", SDMA_FILTER_PARAM(25) }, { "omap_i2c.3", "rx", SDMA_FILTER_PARAM(26) }, { "omap_i2c.1", "tx", SDMA_FILTER_PARAM(27) }, { "omap_i2c.1", "rx", SDMA_FILTER_PARAM(28) }, { "omap_i2c.2", "tx", SDMA_FILTER_PARAM(29) }, { "omap_i2c.2", "rx", SDMA_FILTER_PARAM(30) }, { "omap-mcbsp.1", "tx", SDMA_FILTER_PARAM(31) }, { "omap-mcbsp.1", "rx", SDMA_FILTER_PARAM(32) }, { "omap-mcbsp.2", "tx", SDMA_FILTER_PARAM(33) }, { "omap-mcbsp.2", "rx", SDMA_FILTER_PARAM(34) }, { "omap2_mcspi.0", "tx0", SDMA_FILTER_PARAM(35) }, { "omap2_mcspi.0", "rx0", SDMA_FILTER_PARAM(36) }, { "omap2_mcspi.0", "tx1", SDMA_FILTER_PARAM(37) }, { "omap2_mcspi.0", "rx1", SDMA_FILTER_PARAM(38) }, { "omap2_mcspi.0", "tx2", SDMA_FILTER_PARAM(39) }, { "omap2_mcspi.0", "rx2", SDMA_FILTER_PARAM(40) }, { "omap2_mcspi.0", "tx3", SDMA_FILTER_PARAM(41) }, { "omap2_mcspi.0", "rx3", SDMA_FILTER_PARAM(42) }, { "omap2_mcspi.1", "tx0", SDMA_FILTER_PARAM(43) }, { "omap2_mcspi.1", "rx0", SDMA_FILTER_PARAM(44) }, { "omap2_mcspi.1", "tx1", SDMA_FILTER_PARAM(45) }, { "omap2_mcspi.1", "rx1", SDMA_FILTER_PARAM(46) }, { "omap_hsmmc.1", "tx", SDMA_FILTER_PARAM(47) }, { "omap_hsmmc.1", "rx", SDMA_FILTER_PARAM(48) }, { "omap_uart.0", "tx", SDMA_FILTER_PARAM(49) }, { "omap_uart.0", "rx", SDMA_FILTER_PARAM(50) }, { "omap_uart.1", "tx", SDMA_FILTER_PARAM(51) }, { "omap_uart.1", "rx", SDMA_FILTER_PARAM(52) }, { "omap_uart.2", "tx", SDMA_FILTER_PARAM(53) }, { "omap_uart.2", "rx", SDMA_FILTER_PARAM(54) }, { "omap_hsmmc.0", "tx", SDMA_FILTER_PARAM(61) }, { "omap_hsmmc.0", "rx", SDMA_FILTER_PARAM(62) }, { "omap-aes", "tx", SDMA_FILTER_PARAM(65) }, { "omap-aes", "rx", SDMA_FILTER_PARAM(66) }, { "omap-sham", "rx", SDMA_FILTER_PARAM(69) }, { "omap2_mcspi.3", "tx0", SDMA_FILTER_PARAM(70) }, { "omap2_mcspi.3", "rx0", SDMA_FILTER_PARAM(71) }, { "omap_hsmmc.2", "tx", SDMA_FILTER_PARAM(77) }, { "omap_hsmmc.2", "rx", SDMA_FILTER_PARAM(78) }, { "omap_uart.3", "tx", SDMA_FILTER_PARAM(81) }, { "omap_uart.3", "rx", SDMA_FILTER_PARAM(82) }, }; static struct omap_system_dma_plat_info dma_plat_info __initdata = { .reg_map = reg_map, .channel_stride = 0x60, .show_dma_caps = omap2_show_dma_caps, .clear_dma = omap2_clear_dma, .dma_write = dma_write, .dma_read = dma_read, }; static struct platform_device_info omap_dma_dev_info = { .name = "omap-dma-engine", .id = -1, .dma_mask = DMA_BIT_MASK(32), }; /* One time initializations */ static int __init omap2_system_dma_init_dev(struct omap_hwmod *oh, void *unused) { struct platform_device *pdev; struct omap_system_dma_plat_info p; struct omap_dma_dev_attr *d; struct resource *mem; char *name = "omap_dma_system"; p = dma_plat_info; p.dma_attr = (struct omap_dma_dev_attr *)oh->dev_attr; p.errata = configure_dma_errata(); if (!of_have_populated_dt()) { if (soc_is_omap24xx()) { p.slave_map = omap24xx_sdma_map; p.slavecnt = ARRAY_SIZE(omap24xx_sdma_map); } else if (soc_is_omap34xx() || soc_is_omap3630()) { p.slave_map = omap3xxx_sdma_map; p.slavecnt = ARRAY_SIZE(omap3xxx_sdma_map); } else { pr_err("%s: The legacy DMA map is not provided!\n", __func__); return -ENODEV; } } pdev = omap_device_build(name, 0, oh, &p, sizeof(p)); if (IS_ERR(pdev)) { pr_err("%s: Can't build omap_device for %s:%s.\n", __func__, name, oh->name); return PTR_ERR(pdev); } omap_dma_dev_info.res = pdev->resource; omap_dma_dev_info.num_res = pdev->num_resources; mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!mem) { dev_err(&pdev->dev, "%s: no mem resource\n", __func__); return -EINVAL; } dma_base = ioremap(mem->start, resource_size(mem)); if (!dma_base) { dev_err(&pdev->dev, "%s: ioremap fail\n", __func__); return -ENOMEM; } d = oh->dev_attr; if (cpu_is_omap34xx() && (omap_type() != OMAP2_DEVICE_TYPE_GP)) d->dev_caps |= HS_CHANNELS_RESERVED; if (platform_get_irq_byname(pdev, "0") < 0) d->dev_caps |= DMA_ENGINE_HANDLE_IRQ; /* Check the capabilities register for descriptor loading feature */ if (dma_read(CAPS_0, 0) & DMA_HAS_DESCRIPTOR_CAPS) dma_common_ch_end = CCDN; else dma_common_ch_end = CCFN; return 0; } static int __init omap2_system_dma_init(void) { struct platform_device *pdev; int res; res = omap_hwmod_for_each_by_class("dma", omap2_system_dma_init_dev, NULL); if (res) return res; if (of_have_populated_dt()) return res; pdev = platform_device_register_full(&omap_dma_dev_info); if (IS_ERR(pdev)) return PTR_ERR(pdev); return res; } omap_arch_initcall(omap2_system_dma_init);