/* * Copyright 2013 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Christian König <christian.koenig@amd.com> */ #include <linux/firmware.h> #include <drm/drmP.h> #include "amdgpu.h" #include "amdgpu_uvd.h" #include "cikd.h" #include "uvd/uvd_4_2_d.h" #include "uvd/uvd_4_2_sh_mask.h" #include "oss/oss_2_0_d.h" #include "oss/oss_2_0_sh_mask.h" #include "bif/bif_4_1_d.h" static void uvd_v4_2_mc_resume(struct amdgpu_device *adev); static void uvd_v4_2_init_cg(struct amdgpu_device *adev); static void uvd_v4_2_set_ring_funcs(struct amdgpu_device *adev); static void uvd_v4_2_set_irq_funcs(struct amdgpu_device *adev); static int uvd_v4_2_start(struct amdgpu_device *adev); static void uvd_v4_2_stop(struct amdgpu_device *adev); /** * uvd_v4_2_ring_get_rptr - get read pointer * * @ring: amdgpu_ring pointer * * Returns the current hardware read pointer */ static uint32_t uvd_v4_2_ring_get_rptr(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; return RREG32(mmUVD_RBC_RB_RPTR); } /** * uvd_v4_2_ring_get_wptr - get write pointer * * @ring: amdgpu_ring pointer * * Returns the current hardware write pointer */ static uint32_t uvd_v4_2_ring_get_wptr(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; return RREG32(mmUVD_RBC_RB_WPTR); } /** * uvd_v4_2_ring_set_wptr - set write pointer * * @ring: amdgpu_ring pointer * * Commits the write pointer to the hardware */ static void uvd_v4_2_ring_set_wptr(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; WREG32(mmUVD_RBC_RB_WPTR, ring->wptr); } static int uvd_v4_2_early_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; uvd_v4_2_set_ring_funcs(adev); uvd_v4_2_set_irq_funcs(adev); return 0; } static int uvd_v4_2_sw_init(void *handle) { struct amdgpu_ring *ring; struct amdgpu_device *adev = (struct amdgpu_device *)handle; int r; /* UVD TRAP */ r = amdgpu_irq_add_id(adev, 124, &adev->uvd.irq); if (r) return r; r = amdgpu_uvd_sw_init(adev); if (r) return r; r = amdgpu_uvd_resume(adev); if (r) return r; ring = &adev->uvd.ring; sprintf(ring->name, "uvd"); r = amdgpu_ring_init(adev, ring, 512, PACKET0(mmUVD_NO_OP, 0), 0xf, &adev->uvd.irq, 0, AMDGPU_RING_TYPE_UVD); return r; } static int uvd_v4_2_sw_fini(void *handle) { int r; struct amdgpu_device *adev = (struct amdgpu_device *)handle; r = amdgpu_uvd_suspend(adev); if (r) return r; r = amdgpu_uvd_sw_fini(adev); if (r) return r; return r; } /** * uvd_v4_2_hw_init - start and test UVD block * * @adev: amdgpu_device pointer * * Initialize the hardware, boot up the VCPU and do some testing */ static int uvd_v4_2_hw_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct amdgpu_ring *ring = &adev->uvd.ring; uint32_t tmp; int r; /* raise clocks while booting up the VCPU */ amdgpu_asic_set_uvd_clocks(adev, 53300, 40000); r = uvd_v4_2_start(adev); if (r) goto done; ring->ready = true; r = amdgpu_ring_test_ring(ring); if (r) { ring->ready = false; goto done; } r = amdgpu_ring_alloc(ring, 10); if (r) { DRM_ERROR("amdgpu: ring failed to lock UVD ring (%d).\n", r); goto done; } tmp = PACKET0(mmUVD_SEMA_WAIT_FAULT_TIMEOUT_CNTL, 0); amdgpu_ring_write(ring, tmp); amdgpu_ring_write(ring, 0xFFFFF); tmp = PACKET0(mmUVD_SEMA_WAIT_INCOMPLETE_TIMEOUT_CNTL, 0); amdgpu_ring_write(ring, tmp); amdgpu_ring_write(ring, 0xFFFFF); tmp = PACKET0(mmUVD_SEMA_SIGNAL_INCOMPLETE_TIMEOUT_CNTL, 0); amdgpu_ring_write(ring, tmp); amdgpu_ring_write(ring, 0xFFFFF); /* Clear timeout status bits */ amdgpu_ring_write(ring, PACKET0(mmUVD_SEMA_TIMEOUT_STATUS, 0)); amdgpu_ring_write(ring, 0x8); amdgpu_ring_write(ring, PACKET0(mmUVD_SEMA_CNTL, 0)); amdgpu_ring_write(ring, 3); amdgpu_ring_commit(ring); done: /* lower clocks again */ amdgpu_asic_set_uvd_clocks(adev, 0, 0); if (!r) DRM_INFO("UVD initialized successfully.\n"); return r; } /** * uvd_v4_2_hw_fini - stop the hardware block * * @adev: amdgpu_device pointer * * Stop the UVD block, mark ring as not ready any more */ static int uvd_v4_2_hw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct amdgpu_ring *ring = &adev->uvd.ring; uvd_v4_2_stop(adev); ring->ready = false; return 0; } static int uvd_v4_2_suspend(void *handle) { int r; struct amdgpu_device *adev = (struct amdgpu_device *)handle; r = uvd_v4_2_hw_fini(adev); if (r) return r; r = amdgpu_uvd_suspend(adev); if (r) return r; return r; } static int uvd_v4_2_resume(void *handle) { int r; struct amdgpu_device *adev = (struct amdgpu_device *)handle; r = amdgpu_uvd_resume(adev); if (r) return r; r = uvd_v4_2_hw_init(adev); if (r) return r; return r; } /** * uvd_v4_2_start - start UVD block * * @adev: amdgpu_device pointer * * Setup and start the UVD block */ static int uvd_v4_2_start(struct amdgpu_device *adev) { struct amdgpu_ring *ring = &adev->uvd.ring; uint32_t rb_bufsz; int i, j, r; /* disable byte swapping */ u32 lmi_swap_cntl = 0; u32 mp_swap_cntl = 0; uvd_v4_2_mc_resume(adev); /* disable clock gating */ WREG32(mmUVD_CGC_GATE, 0); /* disable interupt */ WREG32_P(mmUVD_MASTINT_EN, 0, ~(1 << 1)); /* Stall UMC and register bus before resetting VCPU */ WREG32_P(mmUVD_LMI_CTRL2, 1 << 8, ~(1 << 8)); mdelay(1); /* put LMI, VCPU, RBC etc... into reset */ WREG32(mmUVD_SOFT_RESET, UVD_SOFT_RESET__LMI_SOFT_RESET_MASK | UVD_SOFT_RESET__VCPU_SOFT_RESET_MASK | UVD_SOFT_RESET__LBSI_SOFT_RESET_MASK | UVD_SOFT_RESET__RBC_SOFT_RESET_MASK | UVD_SOFT_RESET__CSM_SOFT_RESET_MASK | UVD_SOFT_RESET__CXW_SOFT_RESET_MASK | UVD_SOFT_RESET__TAP_SOFT_RESET_MASK | UVD_SOFT_RESET__LMI_UMC_SOFT_RESET_MASK); mdelay(5); /* take UVD block out of reset */ WREG32_P(mmSRBM_SOFT_RESET, 0, ~SRBM_SOFT_RESET__SOFT_RESET_UVD_MASK); mdelay(5); /* initialize UVD memory controller */ WREG32(mmUVD_LMI_CTRL, 0x40 | (1 << 8) | (1 << 13) | (1 << 21) | (1 << 9) | (1 << 20)); #ifdef __BIG_ENDIAN /* swap (8 in 32) RB and IB */ lmi_swap_cntl = 0xa; mp_swap_cntl = 0; #endif WREG32(mmUVD_LMI_SWAP_CNTL, lmi_swap_cntl); WREG32(mmUVD_MP_SWAP_CNTL, mp_swap_cntl); WREG32(mmUVD_MPC_SET_MUXA0, 0x40c2040); WREG32(mmUVD_MPC_SET_MUXA1, 0x0); WREG32(mmUVD_MPC_SET_MUXB0, 0x40c2040); WREG32(mmUVD_MPC_SET_MUXB1, 0x0); WREG32(mmUVD_MPC_SET_ALU, 0); WREG32(mmUVD_MPC_SET_MUX, 0x88); /* take all subblocks out of reset, except VCPU */ WREG32(mmUVD_SOFT_RESET, UVD_SOFT_RESET__VCPU_SOFT_RESET_MASK); mdelay(5); /* enable VCPU clock */ WREG32(mmUVD_VCPU_CNTL, 1 << 9); /* enable UMC */ WREG32_P(mmUVD_LMI_CTRL2, 0, ~(1 << 8)); /* boot up the VCPU */ WREG32(mmUVD_SOFT_RESET, 0); mdelay(10); for (i = 0; i < 10; ++i) { uint32_t status; for (j = 0; j < 100; ++j) { status = RREG32(mmUVD_STATUS); if (status & 2) break; mdelay(10); } r = 0; if (status & 2) break; DRM_ERROR("UVD not responding, trying to reset the VCPU!!!\n"); WREG32_P(mmUVD_SOFT_RESET, UVD_SOFT_RESET__VCPU_SOFT_RESET_MASK, ~UVD_SOFT_RESET__VCPU_SOFT_RESET_MASK); mdelay(10); WREG32_P(mmUVD_SOFT_RESET, 0, ~UVD_SOFT_RESET__VCPU_SOFT_RESET_MASK); mdelay(10); r = -1; } if (r) { DRM_ERROR("UVD not responding, giving up!!!\n"); return r; } /* enable interupt */ WREG32_P(mmUVD_MASTINT_EN, 3<<1, ~(3 << 1)); /* force RBC into idle state */ WREG32(mmUVD_RBC_RB_CNTL, 0x11010101); /* Set the write pointer delay */ WREG32(mmUVD_RBC_RB_WPTR_CNTL, 0); /* programm the 4GB memory segment for rptr and ring buffer */ WREG32(mmUVD_LMI_EXT40_ADDR, upper_32_bits(ring->gpu_addr) | (0x7 << 16) | (0x1 << 31)); /* Initialize the ring buffer's read and write pointers */ WREG32(mmUVD_RBC_RB_RPTR, 0x0); ring->wptr = RREG32(mmUVD_RBC_RB_RPTR); WREG32(mmUVD_RBC_RB_WPTR, ring->wptr); /* set the ring address */ WREG32(mmUVD_RBC_RB_BASE, ring->gpu_addr); /* Set ring buffer size */ rb_bufsz = order_base_2(ring->ring_size); rb_bufsz = (0x1 << 8) | rb_bufsz; WREG32_P(mmUVD_RBC_RB_CNTL, rb_bufsz, ~0x11f1f); return 0; } /** * uvd_v4_2_stop - stop UVD block * * @adev: amdgpu_device pointer * * stop the UVD block */ static void uvd_v4_2_stop(struct amdgpu_device *adev) { /* force RBC into idle state */ WREG32(mmUVD_RBC_RB_CNTL, 0x11010101); /* Stall UMC and register bus before resetting VCPU */ WREG32_P(mmUVD_LMI_CTRL2, 1 << 8, ~(1 << 8)); mdelay(1); /* put VCPU into reset */ WREG32(mmUVD_SOFT_RESET, UVD_SOFT_RESET__VCPU_SOFT_RESET_MASK); mdelay(5); /* disable VCPU clock */ WREG32(mmUVD_VCPU_CNTL, 0x0); /* Unstall UMC and register bus */ WREG32_P(mmUVD_LMI_CTRL2, 0, ~(1 << 8)); } /** * uvd_v4_2_ring_emit_fence - emit an fence & trap command * * @ring: amdgpu_ring pointer * @fence: fence to emit * * Write a fence and a trap command to the ring. */ static void uvd_v4_2_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq, unsigned flags) { WARN_ON(flags & AMDGPU_FENCE_FLAG_64BIT); amdgpu_ring_write(ring, PACKET0(mmUVD_CONTEXT_ID, 0)); amdgpu_ring_write(ring, seq); amdgpu_ring_write(ring, PACKET0(mmUVD_GPCOM_VCPU_DATA0, 0)); amdgpu_ring_write(ring, addr & 0xffffffff); amdgpu_ring_write(ring, PACKET0(mmUVD_GPCOM_VCPU_DATA1, 0)); amdgpu_ring_write(ring, upper_32_bits(addr) & 0xff); amdgpu_ring_write(ring, PACKET0(mmUVD_GPCOM_VCPU_CMD, 0)); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, PACKET0(mmUVD_GPCOM_VCPU_DATA0, 0)); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, PACKET0(mmUVD_GPCOM_VCPU_DATA1, 0)); amdgpu_ring_write(ring, 0); amdgpu_ring_write(ring, PACKET0(mmUVD_GPCOM_VCPU_CMD, 0)); amdgpu_ring_write(ring, 2); } /** * uvd_v4_2_ring_emit_hdp_flush - emit an hdp flush * * @ring: amdgpu_ring pointer * * Emits an hdp flush. */ static void uvd_v4_2_ring_emit_hdp_flush(struct amdgpu_ring *ring) { amdgpu_ring_write(ring, PACKET0(mmHDP_MEM_COHERENCY_FLUSH_CNTL, 0)); amdgpu_ring_write(ring, 0); } /** * uvd_v4_2_ring_hdp_invalidate - emit an hdp invalidate * * @ring: amdgpu_ring pointer * * Emits an hdp invalidate. */ static void uvd_v4_2_ring_emit_hdp_invalidate(struct amdgpu_ring *ring) { amdgpu_ring_write(ring, PACKET0(mmHDP_DEBUG0, 0)); amdgpu_ring_write(ring, 1); } /** * uvd_v4_2_ring_test_ring - register write test * * @ring: amdgpu_ring pointer * * Test if we can successfully write to the context register */ static int uvd_v4_2_ring_test_ring(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; uint32_t tmp = 0; unsigned i; int r; WREG32(mmUVD_CONTEXT_ID, 0xCAFEDEAD); r = amdgpu_ring_alloc(ring, 3); if (r) { DRM_ERROR("amdgpu: cp failed to lock ring %d (%d).\n", ring->idx, r); return r; } amdgpu_ring_write(ring, PACKET0(mmUVD_CONTEXT_ID, 0)); amdgpu_ring_write(ring, 0xDEADBEEF); amdgpu_ring_commit(ring); for (i = 0; i < adev->usec_timeout; i++) { tmp = RREG32(mmUVD_CONTEXT_ID); if (tmp == 0xDEADBEEF) break; DRM_UDELAY(1); } if (i < adev->usec_timeout) { DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i); } else { DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n", ring->idx, tmp); r = -EINVAL; } return r; } /** * uvd_v4_2_ring_emit_ib - execute indirect buffer * * @ring: amdgpu_ring pointer * @ib: indirect buffer to execute * * Write ring commands to execute the indirect buffer */ static void uvd_v4_2_ring_emit_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib, unsigned vm_id, bool ctx_switch) { amdgpu_ring_write(ring, PACKET0(mmUVD_RBC_IB_BASE, 0)); amdgpu_ring_write(ring, ib->gpu_addr); amdgpu_ring_write(ring, PACKET0(mmUVD_RBC_IB_SIZE, 0)); amdgpu_ring_write(ring, ib->length_dw); } static unsigned uvd_v4_2_ring_get_emit_ib_size(struct amdgpu_ring *ring) { return 4; /* uvd_v4_2_ring_emit_ib */ } static unsigned uvd_v4_2_ring_get_dma_frame_size(struct amdgpu_ring *ring) { return 2 + /* uvd_v4_2_ring_emit_hdp_flush */ 2 + /* uvd_v4_2_ring_emit_hdp_invalidate */ 14; /* uvd_v4_2_ring_emit_fence x1 no user fence */ } /** * uvd_v4_2_mc_resume - memory controller programming * * @adev: amdgpu_device pointer * * Let the UVD memory controller know it's offsets */ static void uvd_v4_2_mc_resume(struct amdgpu_device *adev) { uint64_t addr; uint32_t size; /* programm the VCPU memory controller bits 0-27 */ addr = (adev->uvd.gpu_addr + AMDGPU_UVD_FIRMWARE_OFFSET) >> 3; size = AMDGPU_GPU_PAGE_ALIGN(adev->uvd.fw->size + 4) >> 3; WREG32(mmUVD_VCPU_CACHE_OFFSET0, addr); WREG32(mmUVD_VCPU_CACHE_SIZE0, size); addr += size; size = AMDGPU_UVD_HEAP_SIZE >> 3; WREG32(mmUVD_VCPU_CACHE_OFFSET1, addr); WREG32(mmUVD_VCPU_CACHE_SIZE1, size); addr += size; size = (AMDGPU_UVD_STACK_SIZE + (AMDGPU_UVD_SESSION_SIZE * adev->uvd.max_handles)) >> 3; WREG32(mmUVD_VCPU_CACHE_OFFSET2, addr); WREG32(mmUVD_VCPU_CACHE_SIZE2, size); /* bits 28-31 */ addr = (adev->uvd.gpu_addr >> 28) & 0xF; WREG32(mmUVD_LMI_ADDR_EXT, (addr << 12) | (addr << 0)); /* bits 32-39 */ addr = (adev->uvd.gpu_addr >> 32) & 0xFF; WREG32(mmUVD_LMI_EXT40_ADDR, addr | (0x9 << 16) | (0x1 << 31)); WREG32(mmUVD_UDEC_ADDR_CONFIG, adev->gfx.config.gb_addr_config); WREG32(mmUVD_UDEC_DB_ADDR_CONFIG, adev->gfx.config.gb_addr_config); WREG32(mmUVD_UDEC_DBW_ADDR_CONFIG, adev->gfx.config.gb_addr_config); uvd_v4_2_init_cg(adev); } static void uvd_v4_2_enable_mgcg(struct amdgpu_device *adev, bool enable) { u32 orig, data; if (enable && (adev->cg_flags & AMD_CG_SUPPORT_UVD_MGCG)) { data = RREG32_UVD_CTX(ixUVD_CGC_MEM_CTRL); data = 0xfff; WREG32_UVD_CTX(ixUVD_CGC_MEM_CTRL, data); orig = data = RREG32(mmUVD_CGC_CTRL); data |= UVD_CGC_CTRL__DYN_CLOCK_MODE_MASK; if (orig != data) WREG32(mmUVD_CGC_CTRL, data); } else { data = RREG32_UVD_CTX(ixUVD_CGC_MEM_CTRL); data &= ~0xfff; WREG32_UVD_CTX(ixUVD_CGC_MEM_CTRL, data); orig = data = RREG32(mmUVD_CGC_CTRL); data &= ~UVD_CGC_CTRL__DYN_CLOCK_MODE_MASK; if (orig != data) WREG32(mmUVD_CGC_CTRL, data); } } static void uvd_v4_2_set_dcm(struct amdgpu_device *adev, bool sw_mode) { u32 tmp, tmp2; tmp = RREG32(mmUVD_CGC_CTRL); tmp &= ~(UVD_CGC_CTRL__CLK_OFF_DELAY_MASK | UVD_CGC_CTRL__CLK_GATE_DLY_TIMER_MASK); tmp |= UVD_CGC_CTRL__DYN_CLOCK_MODE_MASK | (1 << UVD_CGC_CTRL__CLK_GATE_DLY_TIMER__SHIFT) | (4 << UVD_CGC_CTRL__CLK_OFF_DELAY__SHIFT); if (sw_mode) { tmp &= ~0x7ffff800; tmp2 = UVD_CGC_CTRL2__DYN_OCLK_RAMP_EN_MASK | UVD_CGC_CTRL2__DYN_RCLK_RAMP_EN_MASK | (7 << UVD_CGC_CTRL2__GATER_DIV_ID__SHIFT); } else { tmp |= 0x7ffff800; tmp2 = 0; } WREG32(mmUVD_CGC_CTRL, tmp); WREG32_UVD_CTX(ixUVD_CGC_CTRL2, tmp2); } static void uvd_v4_2_init_cg(struct amdgpu_device *adev) { bool hw_mode = true; if (hw_mode) { uvd_v4_2_set_dcm(adev, false); } else { u32 tmp = RREG32(mmUVD_CGC_CTRL); tmp &= ~UVD_CGC_CTRL__DYN_CLOCK_MODE_MASK; WREG32(mmUVD_CGC_CTRL, tmp); } } static bool uvd_v4_2_is_idle(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; return !(RREG32(mmSRBM_STATUS) & SRBM_STATUS__UVD_BUSY_MASK); } static int uvd_v4_2_wait_for_idle(void *handle) { unsigned i; struct amdgpu_device *adev = (struct amdgpu_device *)handle; for (i = 0; i < adev->usec_timeout; i++) { if (!(RREG32(mmSRBM_STATUS) & SRBM_STATUS__UVD_BUSY_MASK)) return 0; } return -ETIMEDOUT; } static int uvd_v4_2_soft_reset(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; uvd_v4_2_stop(adev); WREG32_P(mmSRBM_SOFT_RESET, SRBM_SOFT_RESET__SOFT_RESET_UVD_MASK, ~SRBM_SOFT_RESET__SOFT_RESET_UVD_MASK); mdelay(5); return uvd_v4_2_start(adev); } static int uvd_v4_2_set_interrupt_state(struct amdgpu_device *adev, struct amdgpu_irq_src *source, unsigned type, enum amdgpu_interrupt_state state) { // TODO return 0; } static int uvd_v4_2_process_interrupt(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { DRM_DEBUG("IH: UVD TRAP\n"); amdgpu_fence_process(&adev->uvd.ring); return 0; } static int uvd_v4_2_set_clockgating_state(void *handle, enum amd_clockgating_state state) { bool gate = false; struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (!(adev->cg_flags & AMD_CG_SUPPORT_UVD_MGCG)) return 0; if (state == AMD_CG_STATE_GATE) gate = true; uvd_v4_2_enable_mgcg(adev, gate); return 0; } static int uvd_v4_2_set_powergating_state(void *handle, enum amd_powergating_state state) { /* This doesn't actually powergate the UVD block. * That's done in the dpm code via the SMC. This * just re-inits the block as necessary. The actual * gating still happens in the dpm code. We should * revisit this when there is a cleaner line between * the smc and the hw blocks */ struct amdgpu_device *adev = (struct amdgpu_device *)handle; if (!(adev->pg_flags & AMD_PG_SUPPORT_UVD)) return 0; if (state == AMD_PG_STATE_GATE) { uvd_v4_2_stop(adev); return 0; } else { return uvd_v4_2_start(adev); } } const struct amd_ip_funcs uvd_v4_2_ip_funcs = { .name = "uvd_v4_2", .early_init = uvd_v4_2_early_init, .late_init = NULL, .sw_init = uvd_v4_2_sw_init, .sw_fini = uvd_v4_2_sw_fini, .hw_init = uvd_v4_2_hw_init, .hw_fini = uvd_v4_2_hw_fini, .suspend = uvd_v4_2_suspend, .resume = uvd_v4_2_resume, .is_idle = uvd_v4_2_is_idle, .wait_for_idle = uvd_v4_2_wait_for_idle, .soft_reset = uvd_v4_2_soft_reset, .set_clockgating_state = uvd_v4_2_set_clockgating_state, .set_powergating_state = uvd_v4_2_set_powergating_state, }; static const struct amdgpu_ring_funcs uvd_v4_2_ring_funcs = { .get_rptr = uvd_v4_2_ring_get_rptr, .get_wptr = uvd_v4_2_ring_get_wptr, .set_wptr = uvd_v4_2_ring_set_wptr, .parse_cs = amdgpu_uvd_ring_parse_cs, .emit_ib = uvd_v4_2_ring_emit_ib, .emit_fence = uvd_v4_2_ring_emit_fence, .emit_hdp_flush = uvd_v4_2_ring_emit_hdp_flush, .emit_hdp_invalidate = uvd_v4_2_ring_emit_hdp_invalidate, .test_ring = uvd_v4_2_ring_test_ring, .test_ib = amdgpu_uvd_ring_test_ib, .insert_nop = amdgpu_ring_insert_nop, .pad_ib = amdgpu_ring_generic_pad_ib, .begin_use = amdgpu_uvd_ring_begin_use, .end_use = amdgpu_uvd_ring_end_use, .get_emit_ib_size = uvd_v4_2_ring_get_emit_ib_size, .get_dma_frame_size = uvd_v4_2_ring_get_dma_frame_size, }; static void uvd_v4_2_set_ring_funcs(struct amdgpu_device *adev) { adev->uvd.ring.funcs = &uvd_v4_2_ring_funcs; } static const struct amdgpu_irq_src_funcs uvd_v4_2_irq_funcs = { .set = uvd_v4_2_set_interrupt_state, .process = uvd_v4_2_process_interrupt, }; static void uvd_v4_2_set_irq_funcs(struct amdgpu_device *adev) { adev->uvd.irq.num_types = 1; adev->uvd.irq.funcs = &uvd_v4_2_irq_funcs; }