RRDTUTORIAL(1) rrdtool RRDTUTORIAL(1)

NAME

rrdtutorial — Alex van den Bogaerdt’s RRDtool tutorial

DESCRIPTION

RRDtool is written by Tobias Oetiker <tobi@oetiker.ch> with contributions from many people all around
the world. This document is written by Alex van den Bogaerdt <alex@vandenbogaerdt.nl> to help you
understand what RRDtool is and what it can do for you.

The documentation provided with RRDtool can be too technical for some people. This tutorial is here to
help you understand the basics of RRDtool. It should prepare you to read the documentation yourself. It
also explains the general things about statistics with a focus on networking.

TUTORIAL
Important

Please don’t skip ahead in this document! The first part of this document explains the basics and may be
boring. But if you don’t understand the basics, the examples will not be as meaningful to you.

Sometimes things change. This example used to provide numbers like “0.04” instead of “4.00000e—02".
Those are really the same numbers, just written down differently. Don’t be alarmed if a future version of
rrdtool displays a slightly different form of output. The examples in this document are correct for version
1.2.0 of RRDtool.

Also, sometimes bugs do occur. They may also influence the outcome of the examples. Example
speed4.png was suffering from this (the handling of unknown data in an if-statement was wrong). Normal
data will be just fine (a bug in rrdtool wouldn’t last long) but special cases like NaN, INF and so on may last
a bit longer. Try another version if you can, or just live with it.

I fixed the speed4.png example (and added a note). There may be other examples which suffer from the
same or a similar bug. Try to fix it yourself, which is a great exercise. But please do not submit your result
as a fix to the source of this document. Discuss it on the user’s list, or write to me.

What is RRDtool?

RRDtool refers to Round Robin Database tool. Round robin is a technique that works with a fixed amount
of data, and a pointer to the current element. Think of a circle with some dots plotted on the edge. These
dots are the places where data can be stored. Draw an arrow from the center of the circle to one of the dots;
this is the pointer. When the current data is read or written, the pointer moves to the next element. As we
are on a circle there is neither a beginning nor an end, you can go on and on and on. After a while, all the
available places will be used and the process automatically reuses old locations. This way, the dataset will
not grow in size and therefore requires no maintenance. RRDtool works with Round Robin Databases
(RRDs). It stores and retrieves data from them.

What data can be put into an RRD?

You name it, it will probably fit as long as it is some sort of time-series data. This means you have to be
able to measure some value at several points in time and provide this information to RRDtool. If you can do
this, RRDtool will be able to store it. The values must be numerical but don’t have to be integers, as is the
case with MRTG (the next section will give more details on this more specialized application).

Many examples below talk about SNMP which is an acronym for Simple Network Management Protocol.
“Simple” refers to the protocol. It does not mean it is simple to manage or monitor a network. After
working your way through this document, you should know enough to be able to understand what people
are talking about. For now, just realize that SNMP can be used to query devices for the values of counters
they keep. It is the value from those counters that we want to store in the RRD.

What can I do with this tool?

1.71

RRDtool originated from MRTG (Multi Router Traffic Grapher). MRTG started as a tiny little script for
graphing the use of a university’s connection to the Internet. MRTG was later (ab—)used as a tool for
graphing other data sources including temperature, speed, voltage, number of printouts and the like.

Most likely you will start to use RRDtool to store and process data collected via SNMP. The data will most
likely be bytes (or bits) transferred from and to a network or a computer. But it can also be used to display
tidal waves, solar radiation, power consumption, number of visitors at an exhibition, noise levels near an

2019-02-04 1

RRDTUTORIAL(1) rrdtool RRDTUTORIAL(1)

airport, temperature on your favorite holiday location, temperature in the fridge and whatever your
imagination can come up with.

You only need a sensor to measure the data and be able to feed the numbers into RRDtool. RRDtool then
lets you create a database, store data in it, retrieve that data and create graphs in PNG format for display on
a web browser. Those PNG images are dependent on the data you collected and could be, for instance, an
overview of the average network usage, or the peaks that occurred.

What if I still have problems after reading this document?

First of all: read it again! You may have missed something. If you are unable to compile the sources and
you have a fairly common OS, it will probably not be the fault of RRDtool. There may be pre-compiled
versions around on the Internet. If they come from trusted sources, get one of those.

If on the other hand the program works but does not give you the expected results, it will be a problem with
configuring it. Review your configuration and compare it with the examples that follow.

There is a mailing list and an archive of it. Read the list for a few weeks and search the archive. It is
considered rude to just ask a question without searching the archives: your problem may already have been
solved for somebody else! This is true for most, if not all, mailing lists and not only for this particular one.
Look in the documentation that came with RRDtool for the location and usage of the list.

I suggest you take a moment to subscribe to the mailing list right now by sending an email to
<rrd—users—request @lists.oetiker.ch> with a subject of ““‘subscribe”. If you ever want to leave this list, just
write an email to the same address but now with a subject of “‘unsubscribe”.

How will you help me?

By giving you some detailed descriptions with detailed examples. I assume that following the instructions
in the order presented will give you enough knowledge of RRDtool to experiment for yourself. If it doesn’t
work the first time, don’t give up. Reread the stuff that you did understand, you may have missed
something.

By following the examples you get some hands-on experience and, even more important, some background
information of how it works.

You will need to know something about hexadecimal numbers. If you don’t, start with reading bin_dec_hex
before you continue here.

Your first Round Robin Database

1.71

In my opinion the best way to learn something is to actually do it. Why not start right now? We will create
a database, put some values in it and extract this data again. Your output should be the same as the output
that is included in this document.

We will start with some easy stuff and compare a car with a router, or compare kilometers (miles if you
wish) with bits and bytes. It’s all the same: some number over some time.

Assume we have a device that transfers bytes to and from the Internet. This device keeps a counter that
starts at zero when it is turned on, increasing with every byte that is transferred. This counter will probably
have a maximum value. If this value is reached and an extra byte is counted, the counter starts over at zero.
This is the same as many counters in the world such as the mileage counter in a car.

Most discussions about networking talk about bits per second so let’s get used to that right away. Assume a
byte is eight bits and start to think in bits not bytes. The counter, however, still counts bytes! In the SNMP
world most of the counters are 32 bits. That means they are counting from O to 4294967295. We will use
these values in the examples. The device, when asked, returns the current value of the counter. We know
the time that has passes since we last asked so we now know how many bytes have been transferred ***on
average™** per second. This is not very hard to calculate. First in words, then in calculations:

1. Take the current counter, subtract the previous value from it.
2. Do the same with the current time and the previous time (in seconds).

3. Divide the outcome of (1) by the outcome of (2), the result is the amount of bytes per second. Multiply
by eight to get the number of bits per second (bps).

2019-02-04 2

RRDTUTORIAL(1) rrdtool RRDTUTORIAL(1)

bps = (counter_now - counter_before) / (time_now - time_before) * 8

For some people it may help to translate this to an automobile example. Do not try this example, and if you
do, don’t blame me for the results!

People who are not used to think in kilometers per hour can translate most into miles per hour by dividing
km by 1.6 (close enough). I will use the following abbreviations:

m: meter

km: kilometer (= 1000 meters).
h: hour

s: second

km/h: kilometers per hour
m/s: meters per second

You are driving a car. At 12:05 you read the counter in the dashboard and it tells you that the car has moved
12345 km until that moment. At 12:10 you look again, it reads 12357 km. This means you have traveled 12
km in five minutes. A scientist would translate that into meters per second and this makes a nice
comparison toward the problem of (bytes per five minutes) versus (bits per second).

We traveled 12 kilometers which is 12000 meters. We did that in five minutes or 300 seconds. Our speed is
12000m / 300s or 40 m/s.

We could also calculate the speed in km/h: 12 times 5 minutes is an hour, so we have to multiply 12 km by
12 to get 144 km/h. For our native English speaking friends: that’s 90 mph so don’t try this example at
home or where I live :)

Remember: these numbers are averages only. There is no way to figure out from the numbers, if you drove
at a constant speed. There is an example later on in this tutorial that explains this.

I hope you understand that there is no difference in calculating m/s or bps; only the way we collect the data
is different. Even the k from kilo is the same as in networking terms k also means 1000.

We will now create a database where we can keep all these interesting numbers. The method used to start
the program may differ slightly from OS to OS, but I assume you can figure it out if it works different on
yours. Make sure you do not overwrite any file on your system when executing the following command and
type the whole line as one long line (I had to split it for readability) and skip all of the ’\’ characters.

rrdtool create test.rrd \
-—start 920804400 \
DS:speed:COUNTER:600:U:U \
RRA:AVERAGE:0.5:1:24 \
RRA:AVERAGE:0.5:6:10

(Soenter: rrdtool create test.rrd —--start 920804400 DS ...)

What has been created?

1.71

We created the round robin database called test (test.rrd) which starts at noon the day I started writing this
document, 7th of March, 1999 (this date translates to 920804400 seconds as explained below). Our
database holds one data source (DS) named ““speed” that represents a counter. This counter is read every
five minutes (this is the default therefore you don’t have to put ——step=300). In the same database two
round robin archives (RRAs) are kept, one averages the data every time it is read (i.e., there’s nothing to
average) and keeps 24 samples (24 times 5 minutes is 2 hours). The other averages 6 values (half hour) and
contains 10 such averages (e.g. 5 hours).

RRDtool works with special time stamps coming from the UNIX world. This time stamp is the number of
seconds that passed since January 1st 1970 UTC. The time stamp value is translated into local time and it
will therefore look different for different time zones.

Chances are that you are not in the same part of the world as I am. This means your time zone is different.
In all examples where I talk about time, the hours may be wrong for you. This has little effect on the results
of the examples, just correct the hours while reading. As an example: where I will see “12:05 the UK
folks will see “11:05”.

2019-02-04 3

RRDTUTORIAL(1)

rrdtool

RRDTUTORIAL(1)

‘We now have to fill our database with some numbers. We’ll pretend to have read the following numbers:

12:05
12:10
12:15
12:20
12:25
12:30
12:35
12:40
12:45
12:50
12:55
13:00
13:05
13:10
13:15

‘We fill the database as follows:

rrdtool
rrdtool
rrdtool
rrdtool
rrdtool

12345
12357
12363
12363
12363
12373
12383
12393
12399
12405
12411
12415
12420
12422
12423

km
km
km
km
km
km
km
km
km
km
km
km
km
km
km

update
update
update
update
update

test
test
test
test
test

.rrd
.rrd
.rrd
.rrd
.rrd

920804700:
920805600
920806500
920807400:
920808300

12345
12363
12383
12405
12420

920805000
920805900
920806800:
920807700:
920808600:

This reads: update our test database with the following numbers

time 92
time 92

etcetera.

0804700,
0805000,

value 12345
value 12357

12357
12363
12393
12411
12422

920805300:12363
920806200:12373
920807100:12399
920808000:12415
920808900:12423

As you can see, it is possible to feed more than one value into the database in one command. I had to stop
at three for readability but the real maximum per line is OS dependent.

We can now retrieve the data from our database using ““rrdtool fetch™:

rrdtool fetch test.rrd AVERAGE --start 920804400 —--end 920809200

It should return the following output:

speed

1.71

920804700: nan

920805000: 4.0000000000e-02
920805300: 2.0000000000e-02
920805600: 0.0000000000e+00
920805900: 0.0000000000e+00
920806200: 3.3333333333e-02
920806500: 3.3333333333e-02
920806800: 3.3333333333e-02
920807100: 2.0000000000e-02
920807400: 2.0000000000e-02
920807700: 2.0000000000e-02
920808000: 1.3333333333e-02
920808300: 1.6666666667e-02
920808600: 6.6666666667e-03
920808900: 3.3333333333e-03
920809200: nan

920809500: nan

2019-02-04

RRDTUTORIAL(1) rrdtool RRDTUTORIAL(1)

Note that you might get more rows than you expect. The reason for this is that you ask for a time range that
ends on 920809200. The number that is written behind 920809200: in the list above covers the time range
from 920808900 to 920809200, EXCLUDING 920809200. Hence to be on the sure side, you receive the entry
from 920809200 to 920809500 as well since it INCLUDES 920809200. You may also see “NaN’’ instead of
“nan” this is OS dependent. “NaN’’ stands for “Not A Number”. If your OS writes “U” or “UNKN” or
something similar that’s okay. If something else is wrong, it will probably be due to an error you made
(assuming that my tutorial is correct of course :—). In that case: delete the database and try again.

The meaning of the above output will become clear below.

Time to create some graphics

Try the following command:

rrdtool graph speed.png \
——start 920804400 —--end 920808000 \
DEF :myspeed=test.rrd:speed:AVERAGE \

LINE2 :myspeed#FF0000

This will create speed.png which starts at 12:00 and ends at 13:00. There is a definition of a variable called
myspeed, using the data from RRA “speed” out of database “‘test.rrd”’. The line drawn is 2 pixels high and
represents the variable myspeed. The color is red (specified by its rgb-representation, see below).

You’ll notice that the start of the graph is not at 12:00 but at 12:05. This is because we have insufficient
data to tell the average before that time. This will only happen when you miss some samples, this will not
happen a lot, hopefully.

If this has worked: congratulations! If not, check what went wrong.

The colors are built up from red, green and blue. For each of the components, you specify how much to use
in hexadecimal where 00 means not included and FF means fully included. The “color” white is a mixture
of red, green and blue: FFFFFF The ““color” black is all colors off: 000000

red #FF0000

green #00FF0O0

blue #0000FF

magenta #FFOOFF (mixed red with blue)

gray #555555 (one third of all components)

Additionally you can (with a recent RRDtool) add an alpha channel (transparency). The default will be
“FF” which means non-transparent.

The PNG you just created can be displayed using your favorite image viewer. Web browsers will display
the PNG via the URL ‘“file:///the/path/to/speed.png”

Graphics with some math

1.71

When looking at the image, you notice that the horizontal axis is labeled 12:10, 12:20, 12:30, 12:40 and
12:50. Sometimes a label doesn’t fit (12:00 and 13:00 would be likely candidates) so they are skipped.

The vertical axis displays the range we entered. We provided kilometers and when divided by 300 seconds,
we get very small numbers. To be exact, the first value was 12 (12357-12345) and divided by 300 this
makes 0.04, which is displayed by RRDtool as “40 m” meaning “40/1000”. The “m” (milli) has nothing
to do with meters (also m), kilometers or millimeters! RRDtool doesn’t know about the physical units of
our data, it just works with dimensionless numbers.

If we had measured our distances in meters, this would have been (12357000-12345000)/300 = 12000/300
=40.

As most people have a better feel for numbers in this range, we’ll correct that. We could recreate our
database and store the correct data, but there is a better way: we do some calculations while creating the
png file!

2019-02-04 5

RRDTUTORIAL(1) rrdtool RRDTUTORIAL(1)

1.71

rrdtool graph speed2.png
——start 920804400 —--end 920808000
——vertical-label m/s
DEF :myspeed=test.rrd:speed:AVERAGE
CDEF :realspeed=myspeed, 1000, \ *
LINE2:realspeed#FF0000

o

Note: I need to escape the multiplication operator * with a backslash. If I don’t, the operating system may
interpret it and use it for file name expansion. You could also place the line within quotation marks like so:

"CDEF:realspeed=myspeed, 1000, *" \

It boils down to: it is RRDtool which should see *, not your shell. And it is your shell interpreting \, not
RRDtool. You may need to adjust examples accordingly if you happen to use an operating system or shell
which behaves differently.

After viewing this PNG, you notice the “m” (milli) has disappeared. This is what the correct result would
be. Also, a label has been added to the image. Apart from the things mentioned above, the PNG should
look the same.

The calculations are specified in the CDEF part above and are in Reverse Polish Notation (“RPN”’). What
we requested RRDtool to do is: “take the data source myspeed and the number 1000; multiply those”.
Don’t bother with RPN yet, it will be explained later on in more detail. Also, you may want to read my
tutorial on CDEFs and Steve Rader’s tutorial on RPN. But first finish this tutorial.

Hang on! If we can multiply values with 1000, it should also be possible to display kilometers per hour
from the same data!

To change a value that is measured in meters per second:

Calculate meters per hour: value * 3600
Calculate kilometers per hour: value / 1000
Together this makes: value * (3600/1000) or value * 3.6

In our example database we made a mistake and we need to compensate for this by multiplying with 1000.
Applying that correction:

value * 3.6 * 1000 == value * 3600
Now let’s create this PNG, and add some more magic ...

rrdtool graph speed3.png
—--start 920804400 --end 920808000
—-vertical-label km/h
DEF :myspeed=test.rrd:speed:AVERAGE
"CDEF : kmh=myspeed, 3600, *"
CDEF:fast=kmh, 100, GT, kmh, 0, IF
CDEF:good=kmh, 100, GT, 0, kmh, IF
HRULE:100#0000FF: "Maximum allowed"
AREA:good#00FF00: "Good speed"
AREA:fast#FF0000:"Too fast"

S s s s s

Note: here we use another means to escape the * operator by enclosing the whole string in double quotes.

This graph looks much better. Speed is shown in km/h and there is even an extra line with the maximum
allowed speed (on the road I travel on). I also changed the colors used to display speed and changed it from
a line into an area.

The calculations are more complex now. For speed measurements within the speed limit they are:

Check if kmh is greater than 100 (kmh,100) GT
If so, return 0, else kmh (((kmh,100) GT), 0, kmh) IF

For values above the speed limit:

2019-02-04 6

RRDTUTORIAL(1) rrdtool RRDTUTORIAL(1)

Check if kmh is greater than 100 (kmh,100) GT
If so, return kmh, else return 0 (((kmh,100) GT), kmh, 0) IF
Graphics Magic

I like to believe there are virtually no limits to how RRDtool graph can manipulate data. I will not explain
how it works, but look at the following PNG:

rrdtool graph speed4.png
—-—-start 920804400 —--end 920808000
——vertical-label km/h
DEF :myspeed=test.rrd:speed:AVERAGE
CDEF:nonans=myspeed, UN, 0, myspeed, IF
CDEF : kmh=nonans, 3600, *
CDEF:fast=kmh,100,GT,100,0, IF
CDEF:over=kmh, 100, GT, kmh,100,-,0, IF
CDEF :good=kmh, 100, GT, 0, kmh, IF
HRULE:100#0000FF: "Maximum allowed"
AREA:good#00FF00:"Good speed"
AREA:fast#550000:"Too fast"
STACK:over#FF0000:"Over speed"

S s s s o

Remember the note in the beginning? I had to remove unknown data from this example. The 'nonans’
CDEEF is new, and the 6th line (which used to be the 5th line) used to read ’CDEF:kmh=myspeed,3600,*’

Let’s create a quick and dirty HTML page to view the three PNGs:

<HTML><HEAD><TITLE>Speed</TITLE></HEAD><BODY>

</BODY></HTML>

Name the file “speed.html” or similar, and look at it in your web browser.

Now, all you have to do is measure the values regularly and update the database. When you want to view
the data, recreate the PNGs and make sure to refresh them in your browser. (Note: just clicking reload may
not be enough, especially when proxies are involved. Try shift-reload or ctrl-F5).

Updates in Reality

We’ve already used the update command: it took one or more parameters in the form of
“<time>:<value>”. You’ll be glad to know that you can specify the current time by filling in a “N”’ as the
time. Or you could use the “time” function in Perl (the shortest example in this tutorial):

perl -e 'print time, "\n" '
How to run a program on regular intervals is OS specific. But here is an example in pseudo code:

- Get the value and put it in variable "$speed"
- rrdtool update speed.rrd N:S$speed

(do not try this with our test database, we’ll use it in further examples)

This is all. Run the above script every five minutes. When you need to know what the graphs look like, run
the examples above. You could put them in a script as well. After running that script, view the page
speed.html we created above.

Some words on SNMP

1.71

I can imagine very few people that will be able to get real data from their car every five minutes. All other
people will have to settle for some other kind of counter. You could measure the number of pages printed
by a printer, for example, the cups of coffee made by the coffee machine, a device that counts the electricity
used, whatever. Any incrementing counter can be monitored and graphed using the stuff you learned so far.

2019-02-04 7

RRDTUTORIAL(1) rrdtool RRDTUTORIAL(1)

1.71

Later on we will also be able to monitor other types of values like temperature.

Many people interested in RRDtool will use the counter that keeps track of octets (bytes) transferred by a
network device. So let’s do just that next. We will start with a description of how to collect data.

Some people will make a remark that there are tools which can do this data collection for you. They are
right! However, I feel it is important that you understand they are not necessary. When you have to
determine why things went wrong you need to know how they work.

One tool used in the example has been talked about very briefly in the beginning of this document, it is
called SNMP. It is a way of talking to networked equipment. The tool I use below is called *“snmpget™ and
this is how it works:

snmpget device password OID
or
snmpget -v[version] -c[password] device OID

For device you substitute the name, or the IP address, of your device. For password you use the
“community read string” as it is called in the SNMP world. For some devices the default of “public”
might work, however this can be disabled, altered or protected for privacy and security reasons. Read the
documentation that comes with your device or program.

Then there is this parameter, called OID, which means ‘“‘object identifier”.

When you start to learn about SNMP it looks very confusing. It isn’t all that difficult when you look at the
Management Information Base (“MIB”’). It is an upside-down tree that describes data, with a single node
as the root and from there a number of branches. These branches end up in another node, they branch out,
etc. All the branches have a name and they form the path that we follow all the way down. The branches
that we follow are named: iso, org, dod, internet, mgmt and mib—2. These names can also be written down
asnumbersandare 13612 1.

iso.org.dod.internet .mgmt.mib-2 (1.3.6.1.2.1)

There is a lot of confusion about the leading dot that some programs use. There is *no* leading dot in an
OID. However, some programs can use the above part of OIDs as a default. To indicate the difference
between abbreviated OIDs and full OIDs they need a leading dot when you specify the complete OID.
Often those programs will leave out the default portion when returning the data to you. To make things
worse, they have several default prefixes ...

Ok, lets continue to the start of our OID: we had 1.3.6.1.2.1 From there, we are especially interested in the
branch ““interfaces’ which has number 2 (e.g., 1.3.6.1.2.1.2 or 1.3.6.1.2.1.interfaces).

First, we have to get some SNMP program. First look if there is a pre-compiled package available for your
OS. This is the preferred way. If not, you will have to get the sources yourself and compile those. The
Internet is full of sources, programs etc. Find information using a search engine or whatever you prefer.

Assume you got the program. First try to collect some data that is available on most systems. Remember:
there is a short name for the part of the tree that interests us most in the world we live in!

I will give an example which can be used on Fedora Core 3. If it doesn’t work for you, work your way
through the manual of snmp and adapt the example to make it work.

snmpget -v2c —-c public myrouter system.sysDescr.0

The device should answer with a description of itself, perhaps an empty one. Until you got a valid answer
from a device, perhaps using a different “password”, or a different device, there is no point in continuing.

snmpget -v2c —-c public myrouter interfaces.ifNumber.O

Hopefully you get a number as a result, the number of interfaces. If so, you can carry on and try a different
program called ““snmpwalk™.

snmpwalk -v2c —-c public myrouter interfaces.ifTable.ifEntry.ifDescr

If it returns with a list of interfaces, you’re almost there. Here’s an example:

2019-02-04 8

RRDTUTORIAL(1) rrdtool RRDTUTORIAL(1)

[user@host /home/alex]$ snmpwalk —v2c —c public cisco 2.2.1.2

interfaces.ifTable.ifEntry.ifDescr.1l = "BRIO: B-Channel 1"
interfaces.ifTable.ifEntry.ifDescr.2 = "BRIO: B-Channel 2"
interfaces.ifTable.ifEntry.ifDescr.3 = "BRIO" Hex: 42 52 49 30
interfaces.ifTable.ifEntry.ifDescr.4 = "EthernetO"
interfaces.ifTable.ifEntry.ifDescr.5 = "LoopbackO"

On this cisco equipment, I would like to monitor the “Ethernet0” interface and from the above output I see
that it is number four. I try:

[user@host /home/alex]$ snmpget -v2c -c public cisco 2.2.1.10.4 2.2.1.16.4

interfaces.ifTable.ifEntry.ifInOctets.4 = 2290729126
interfaces.ifTable.ifEntry.ifOutOctets.4 = 1256486519

So now I have two OIDs to monitor and they are (in full, this time):
1.3.6.1.2.1.2.2.1.10

and
1.3.6.1.2.1.2.2.1.16

both with an interface number of 4.

Don’t get fooled, this wasn’t my first try. It took some time for me too to understand what all these numbers
mean. It does help a lot when they get translated into descriptive text... At least, when people are talking
about MIBs and OIDs you know what it’s all about. Do not forget the interface number (0 if it is not
interface dependent) and try snmpwalk if you don’t get an answer from snmpget.

If you understand the above section and get numbers from your device, continue on with this tutorial. If not,
then go back and re-read this part.

A Real World Example

1.71

Let the fun begin. First, create a new database. It contains data from two counters, called input and output.
The data is put into archives that average it. They take 1, 6, 24 or 288 samples at a time. They also go into
archives that keep the maximum numbers. This will be explained later on. The time in-between samples is
300 seconds, a good starting point, which is the same as five minutes.

1 sample "averaged" stays 1 period of 5 minutes

6 samples averaged become one average on 30 minutes
24 samples averaged become one average on 2 hours
288 samples averaged become one average on 1 day

Lets try to be compatible with MRTG which stores about the following amount of data:

600 5-minute samples: 2 days and 2 hours
600 30-minute samples: 12.5 days
600 2-hour samples: 50 days
732 l-day samples: 732 days

These ranges are appended, so the total amount of data stored in the database is approximately 797 days.
RRDtool stores the data differently, it doesn’t start the ‘““weekly” archive where the ‘“daily” archive
stopped. For both archives the most recent data will be near “now” and therefore we will need to keep
more data than MRTG does!

We will need:

600 samples of 5 minutes
700 samples of 30 minutes
775 samples of 2 hours
797 samples of 1 day

(2 days and 2 hours)

(2 days and 2 hours, plus 12.5 days)
(above + 50 days)

(above + 732 days, rounded up to 797)

rrdtool create myrouter.rrd \

2019-02-04 9

RRDTUTORIAL(1) rrdtool RRDTUTORIAL(1)

DS:input : COUNTER:600:U:U
DS:output : COUNTER:600:U:U
RRA:AVERAGE:0.5:1:600
RRA:AVERAGE:0.5:6:700
RRA:AVERAGE:0.5:24:775
RRA:AVERAGE:0.5:288:797
RRA:MAX:0.5:1:600
RRA:MAX:0.5:6:700
RRA:MAX:0.5:24:775
RRA:MAX:0.5:288:797

S s s s

Next thing to do is to collect data and store it. Here is an example. It is written partially in pseudo code,
you will have to find out what to do exactly on your OS to make it work.

while not the end of the universe
do
get result of
snmpget router community 2.2.1.10.4
into variable $in
get result of
snmpget router community 2.2.1.16.4
into variable $out

rrdtool update myrouter.rrd N:$in:$out

wait for 5 minutes
done

Then, after collecting data for a day, try to create an image using:

rrdtool graph myrouter-day.png —--start -86400 \
DEF:inoctets=myrouter.rrd:input :AVERAGE \
DEF:outoctets=myrouter.rrd:output :AVERAGE \
AREA:inoctets#00FF00:"In traffic" \
LINEl:outoctets#0000FF:"Out traffic"

This should produce a picture with one day worth of traffic. One day is 24 hours of 60 minutes of 60
seconds: 24*60*60=86400, we start at now minus 86400 seconds. We define (with DEFs) inoctets and
outoctets as the average values from the database myrouter.rrd and draw an area for the “in” traffic and a
line for the “out” traffic.

View the image and keep logging data for a few more days. If you like, you could try the examples from
the test database and see if you can get various options and calculations to work.

Suggestion: Display in bytes per second and in bits per second. Make the Ethernet graphics go red if they
are over four megabits per second.

Consolidation Functions

1.71

A few paragraphs back I mentioned the possibility of keeping the maximum values instead of the average
values. Let’s go into this a bit more.

Recall all the stuff about the speed of the car. Suppose we drove at 144 km/h during 5 minutes and then
were stopped by the police for 25 minutes. At the end of the lecture we would take our laptop and create
and view the image taken from the database. If we look at the second RRA we did create, we would have
the average from 6 samples. The samples measured would be 144+0+0+0+0+0=144, divided by 30
minutes, corrected for the error by 1000, translated into km/h, with a result of 24 km/h. T would still get a
ticket but not for speeding anymore :)

Obviously, in this case we shouldn’t look at the averages. In some cases they are handy. If you want to
know how many km you had traveled, the averaged picture would be the right one to look at. On the other

2019-02-04 10

RRDTUTORIAL(1) rrdtool RRDTUTORIAL(1)

hand, for the speed that we traveled at, the maximum numbers seen is much more interesting. Later we will
see more types.

It is the same for data. If you want to know the amount, look at the averages. If you want to know the rate,
look at the maximum. Over time, they will grow apart more and more. In the last database we have created,
there are two archives that keep data per day. The archive that keeps averages will show low numbers, the
archive that shows maxima will have higher numbers.

For my car this would translate in averages per day of 96/24=4 km/h (as I travel about 94 kilometers on a
day) during working days, and maxima of 120 km/h (my top speed that I reach every day).

Big difference. Do not look at the second graph to estimate the distances that I travel and do not look at the
first graph to estimate my speed. This will work if the samples are close together, as they are in five
minutes, but not if you average.

On some days, I go for a long ride. If I go across Europe and travel for 12 hours, the first graph will rise to
about 60 km/h. The second one will show 180 km/h. This means that I traveled a distance of 60 km/h times
24 h = 1440 km. I did this with a higher speed and a maximum around 180 km/h. However, it probably
doesn’t mean that I traveled for 8 hours at a constant speed of 180 km/h!

This is a real example: go with the flow through Germany (fast!) and stop a few times for gas and coffee.
Drive slowly through Austria and the Netherlands. Be careful in the mountains and villages. If you would
look at the graphs created from the five-minute averages you would get a totally different picture. You
would see the same values on the average and maximum graphs (provided I measured every 300 seconds).
You would be able to see when I stopped, when I was in top gear, when I drove over fast highways etc. The
granularity of the data is much higher, so you can see more. However, this takes 12 samples per hour, or
288 values per day, so it would be a lot of data over a longer period of time. Therefore we average it,
eventually to one value per day. From this one value, we cannot see much detail, of course.

Make sure you understand the last few paragraphs. There is no value in only a line and a few axis, you need
to know what they mean and interpret the data in an appropriate way. This is true for all data.

The biggest mistake you can make is to use the collected data for something that it is not suitable for. You
would be better off if you didn’t have the graph at all.

Let’s review what you now should know

You know how to create a database and can put data in it. You can get the numbers out again by creating an
image, do math on the data from the database and view the result instead of the raw data. You know about
the difference between averages and maximum, and when to use which (or at least you should have an
idea).

RRDtool can do more than what we have learned up to now. Before you continue with the rest of this doc, I
recommend that you reread from the start and try some modifications on the examples. Make sure you fully
understand everything. It will be worth the effort and helps you not only with the rest of this tutorial, but
also in your day to day monitoring long after you read this introduction.

Data Source Types

1.71

All right, you feel like continuing. Welcome back and get ready for an increased speed in the examples and
explanations.

You know that in order to view a counter over time, you have to take two numbers and divide the difference
of them by the time lapsed. This makes sense for the examples I gave you but there are other possibilities.
For instance, I'm able to retrieve the temperature from my router in three places namely the inlet, the so
called hot-spot and the exhaust. These values are not counters. If I take the difference of the two samples
and divide that by 300 seconds I would be asking for the temperature change per second. Hopefully this is
zero! If not, the computer room is probably on fire :)

So, what can we do? We can tell RRDtool to store the values we measure directly as they are (this is not
entirely true but close enough). The graphs we make will look much better, they will show a rather constant
value. I know when the router is busy (it works —> it uses more electricity —> it generates more heat —> the
temperature rises). I know when the doors are left open (the room is air conditioned) —> the warm air from
the rest of the building flows into the computer room —> the inlet temperature rises). Etc. The data type we

2019-02-04 11

RRDTUTORIAL(1)

rrdtool

RRDTUTORIAL(1)

use when creating the database before was counter, we now have a different data type and thus a different
name for it. It is called GAUGE. There are more such data types:

COUNTER
GAUGE

DERIVE

ABSOLUTE

we already know this one
we Jjust learned this one

The two additional types are DERIVE and ABSOLUTE. Absolute can be used like counter with one
difference: RRDtool assumes the counter is reset when it’s read. That is: its delta is known without
calculation by RRDtool whereas RRDtool needs to calculate it for the counter type. Example: our first
example (12345, 12357, 12363, 12363) would read: unknown, 12, 6, 0. The rest of the calculations stay the
same. The other one, derive, is like counter. Unlike counter, it can also decrease so it can have a negative
delta. Again, the rest of the calculations stay the same.

Let’s try them all:

rrdtool create all.rrd --start 978300900 \
DS:a:COUNTER:600:U:U \
DS:b:GAUGE:600:U:U \

DS:c:DERIVE:600:U:U \

DS:d:ABSOLUTE
RRA:AVERAGE: 0

rrdtool update all
978301200:
978301500
978301800
978302100:
978302400:
978302700

978303000
978303300
978303600

.rrd

978303900
rrdtool graph alll

DEF
DEF:
DEF:
DEF:

RRDtool under the Microscope
* Line A is a COUNTER type, so it should continuously increment and RRDtool must calculate the
differences. Also, RRDtool needs to divide the difference by the amount of time lapsed. This should end

up as a straight line at 1 (the deltas are 300, the time is 300).

\

:600:U:U \
.5:1:10

300:1:600:300
600:3:1200:600
900:5:1800:900

1200:
1500:
1800:
:2100:
:2400:
:2700:
3000:

-png

:linea=all
lineb=all
linec=all
lined=all

N OB DNEFE W

-S

:2400:1200
:2400:1500
:1800:1800
:0:2100
:600:2400
:600:2700
:1200:3000

978300600

.rrd:a:AVERAGE
.rrd:b:AVERAGE
.rrd:c:AVERAGE
.rrd:d:AVERAGE

S s s

—e 978304200 -h 400
LINE3:1inea#FF0000

LINE3:1ineb#00FF00:
LINE3:1inec#0000FF:
LINE3:1ined#000000:

\
:"Line
"Line
"Line
"Line

A"
B n
C n
D n

P

* Line B is of type GAUGE. These are “real” values so they should match what we put in: a sort of a wave.

* Line C is of type DERIVE. It should be a counter that can decrease. It does so between 2400 and 0, with
1800 in-between.

* Line D is of type ABSOLUTE. This is like counter but it works on values without calculating the

difference. The numbers are the same and as you can see (hopefully) this has a different result.

This translates in the following values, starting at 23:10 and ending at 00:10 the next day (where “u”
means unknown/unplotted):

1.71

Line
Line
Line
Line

A:

B:
C:
D

€ e c c
[l R e o
N DN W

w N o

SN W

U O - B

1 1 1
2 4 6
-2 -6 2
6 7 8

2019-02-04

O O b
o NDN B
€ e c c

12

RRDTUTORIAL(1) rrdtool RRDTUTORIAL(1)

If your PNG shows all this, you know you have entered the data correctly, the RRDtool executable is
working properly, your viewer doesn’t fool you, and you successfully entered the year 2000 :)

You could try the same example four times, each time with only one of the lines.
Let’s go over the data again:

e Line A: 300,600,900 and so on. The counter delta is a constant 300 and so is the time delta. A number
divided by itself is always 1 (except when dividing by zero which is undefined/illegal).

Why is it that the first point is unknown? We do know what we put into the database, right? True, But we
didn’t have a value to calculate the delta from, so we don’t know where we started. It would be wrong to
assume we started at zero so we don’t!

* Line B: There is nothing to calculate. The numbers are as they are.

* Line C: Again, the start-out value is unknown. This is the same story as for line A. In this case the deltas
are not constant, therefore the line is not either. If we would put the same numbers in the database as we
did for line A, we would have gotten the same line. Unlike type counter, this type can decrease and I
hope to show you later on why this makes a difference.

* Line D: Here the device calculates the deltas. Therefore we DO know the first delta and it is plotted. We
had the same input as with line A, but the meaning of this input is different and thus the line is different.
In this case the deltas increase each time with 300. The time delta stays at a constant 300 and therefore
the division of the two gives increasing values.

Counter Wraps

1.71

There are a few more basics to show. Some important options are still to be covered and we haven’t look at
counter wraps yet. First the counter wrap: In our car we notice that the counter shows 999987. We travel 20
km and the counter should go to 1000007. Unfortunately, there are only six digits on our counter so it really
shows 000007. If we would plot that on a type DERIVE, it would mean that the counter was set back
999980 km. It wasn’t, and there has to be some protection for this. This protection is only available for type
COUNTER which should be used for this kind of counter anyways. How does it work? Type counter should
never decrease and therefore RRDtool must assume it wrapped if it does decrease! If the delta is negative,
this can be compensated for by adding the maximum value of the counter + 1. For our car this would be:

Delta = 7 — 999987 = -999980 (instead of 1000007-999987=20)

Real delta = -999980 + 999999 + 1 = 20

At the time of writing this document, RRDtool knows of counters that are either 32 bits or 64 bits of size.
These counters can handle the following different values:

- 32 bits: 0 .. 4294967295
- 64 bits: 0 .. 18446744073709551615

If these numbers look strange to you, you can view them in their hexadecimal form:

- 32 bits: 0 .. FFFFFFFF
- 64 bits: 0 .. FFFFFFFFFFFFFFFF

RRDtool handles both counters the same. If an overflow occurs and the delta would be negative, RRDtool
first adds the maximum of a small counter + 1 to the delta. If the delta is still negative, it had to be the large
counter that wrapped. Add the maximum possible value of the large counter + 1 and subtract the
erroneously added small value.

There is a risk in this: suppose the large counter wrapped while adding a huge delta, it could happen,
theoretically, that adding the smaller value would make the delta positive. In this unlikely case the results
would not be correct. The increase should be nearly as high as the maximum counter value for that to
happen, so chances are you would have several other problems as well and this particular problem would
not even be worth thinking about. Even though, I did include an example, so you can judge for yourself.

The next section gives you some numerical examples for counter-wraps. Try to do the calculations yourself
or just believe me if your calculator can’t handle the numbers :)

2019-02-04 13

RRDTUTORIAL(1) rrdtool RRDTUTORIAL(1)

Correction numbers:

- 32 bits: (4294967295 + 1) = 4294967296
- 64 bits: (18446744073709551615 + 1)
— correctionl = 18446744069414584320

Before: 4294967200
Increase: 100
Should become: 4294967300
But really is: 4
Delta: -4294967196
Correctionl: -4294967196 + 4294967296 = 100
Before: 18446744073709551000
Increase: 800
Should become: 18446744073709551800
But really is: 184
Delta: -18446744073709550816
Correctionl: -18446744073709550816

+ 4294967296 = -18446744069414583520
Correction2: -18446744069414583520

+ 18446744069414584320 = 800

Before: 18446744073709551615 (maximum value)

Increase: 18446744069414584320 (absurd increase, minimum for
Should become: 36893488143124135935 this example to work)
But really is: 18446744069414584319

Delta: -4294967296

Correctionl: —-4294967296 + 4294967296 = 0

(not negative -> no correction?2)

Before: 18446744073709551615 (maximum value)
Increase: 18446744069414584319 (one less increase)
Should become: 36893488143124135934

But really is: 18446744069414584318

Delta: -4294967297
Correctionl: —4294967297 + 4294967296 = -1
Correction2: -1 + 18446744069414584320 = 18446744069414584319

As you can see from the last two examples, you need strange numbers for RRDtool to fail (provided it’s
bug free of course), so this should not happen. However, SNMP or whatever method you choose to collect
the data, might also report wrong numbers occasionally. We can’t prevent all errors, but there are some
things we can do. The RRDtool “create”” command takes two special parameters for this. They define the
minimum and maximum allowed values. Until now, we used “U”, meaning ‘“‘unknown”. If you provide
values for one or both of them and if RRDtool receives data points that are outside these limits, it will
ignore those values. For a thermometer in degrees Celsius, the absolute minimum is just under —273. For
my router, I can assume this minimum is much higher so I would set it to 10, where as the maximum
temperature I would set to 80. Any higher and the device would be out of order.

For the speed of my car, I would never expect negative numbers and also I would not expect a speed higher
than 230. Anything else, and there must have been an error. Remember: the opposite is not true, if the
numbers pass this check, it doesn’t mean that they are correct. Always judge the graph with a healthy dose
of suspicion if it seems weird to you.

Data Resampling

One important feature of RRDtool has not been explained yet: it is virtually impossible to collect data and
feed it into RRDtool on exact intervals. RRDtool therefore interpolates the data, so they are stored on exact

2019-02-04 14

RRDTUTORIAL(1) rrdtool RRDTUTORIAL(1)

intervals. If you do not know what this means or how it works, then here’s the help you seek:

Suppose a counter increases by exactly one for every second. You want to measure it in 300 seconds
intervals. You should retrieve values that are exactly 300 apart. However, due to various circumstances you
are a few seconds late and the interval is 303. The delta will also be 303 in that case. Obviously, RRDtool
should not put 303 in the database and make you believe that the counter increased by 303 in 300 seconds.
This is where RRDtool interpolates: it alters the 303 value as if it would have been stored earlier and it will
be 300 in 300 seconds. Next time you are at exactly the right time. This means that the current interval is
297 seconds and also the counter increased by 297. Again, RRDtool interpolates and stores 300 as it should
be.

in the RRD in reality

time+000: 0 delta="U" time+000: 0 delta="U"
time+300: 300 delta=300 time+300: 300 delta=300
time+600: 600 delta=300 time+603: 603 delta=303
time+900: 900 delta=300 time+900: 900 delta=297

Let’s create two identical databases. I’ve chosen the time range 920805000 to 920805900 as this goes very
well with the example numbers.

rrdtool create secondsl.rrd \
-—start 920804700 \
DS:seconds:COUNTER:600:U:U \
RRA:AVERAGE:0.5:1:24

Make a copy
for Unix: cp secondsl.rrd seconds2.rrd
for Dos: copy secondsl.rrd seconds2.rrd
for vms: how would I know :)

Put in some data

rrdtool update secondsl.rrd \

920805000:000 920805300:300 920805600:600 920805900:900
rrdtool update seconds2.rrd \

920805000:000 920805300:300 920805603:603 920805900:900

Create output

rrdtool graph secondsl.png \
—--start 920804700 —--end 920806200 \
-—height 200 \
——upper—-limit 1.05 --lower-limit 0.95 —--rigid \
DEF :seconds=secondsl.rrd:seconds:AVERAGE \
CDEF :unknown=seconds, UN \
LINE2:seconds#0000FF \
AREA :unknown#FF0000

rrdtool graph seconds2.png \
—-—-start 920804700 —--end 920806200 \
-—height 200 \
——upper—-limit 1.05 --lower-limit 0.95 —--rigid \
DEF:seconds=seconds2.rrd:seconds:AVERAGE \
CDEF :unknown=seconds, UN \
LINE2:seconds#0000FF \

AREA :unknown#FF0000

View both images together (add them to your index.html file) and compare. Both graphs should show the
same, despite the input being different.

1.71 2019-02-04 15

RRDTUTORIAL(1) rrdtool RRDTUTORIAL(1)

WRAPUP
It’s time now to wrap up this tutorial. We covered all the basics for you to be able to work with RRDtool
and to read the additional documentation available. There is plenty more to discover about RRDtool and
you will find more and more uses for this package. You can easily create graphs using just the examples
provided and using only RRDtool. You can also use one of the front ends to RRDtool that are available.

MAILINGLIST
Remember to subscribe to the RRDtool mailing list. Even if you are not answering to mails that come by, it
helps both you and the rest of the users. A lot of the stuff that I know about MRTG (and therefore about
RRDtool) I've learned while just reading the list without posting to it. I did not need to ask the basic
questions as they are answered in the FAQ (read it!) and in various mails by other users. With thousands of
users all over the world, there will always be people who ask questions that you can answer because you
read this and other documentation and they didn’t.

SEE ALSO
The RRDtool manpages

AUTHOR
I hope you enjoyed the examples and their descriptions. If you do, help other people by pointing them to
this document when they are asking basic questions. They will not only get their answers, but at the same
time learn a whole lot more.

Alex van den Bogaerdt <alex @vandenbogaerdt.nl>

1.71 2019-02-04 16

