// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2015 Linaro Ltd. * Author: Shannon Zhao */ #include #include #include #include #include #include #include #include #include static void kvm_pmu_create_perf_event(struct kvm_vcpu *vcpu, u64 select_idx); static void kvm_pmu_update_pmc_chained(struct kvm_vcpu *vcpu, u64 select_idx); static void kvm_pmu_stop_counter(struct kvm_vcpu *vcpu, struct kvm_pmc *pmc); #define PERF_ATTR_CFG1_KVM_PMU_CHAINED 0x1 static u32 kvm_pmu_event_mask(struct kvm *kvm) { switch (kvm->arch.pmuver) { case ID_AA64DFR0_PMUVER_8_0: return GENMASK(9, 0); case ID_AA64DFR0_PMUVER_8_1: case ID_AA64DFR0_PMUVER_8_4: case ID_AA64DFR0_PMUVER_8_5: return GENMASK(15, 0); default: /* Shouldn't be here, just for sanity */ WARN_ONCE(1, "Unknown PMU version %d\n", kvm->arch.pmuver); return 0; } } /** * kvm_pmu_idx_is_64bit - determine if select_idx is a 64bit counter * @vcpu: The vcpu pointer * @select_idx: The counter index */ static bool kvm_pmu_idx_is_64bit(struct kvm_vcpu *vcpu, u64 select_idx) { return (select_idx == ARMV8_PMU_CYCLE_IDX && __vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_LC); } static struct kvm_vcpu *kvm_pmc_to_vcpu(struct kvm_pmc *pmc) { struct kvm_pmu *pmu; struct kvm_vcpu_arch *vcpu_arch; pmc -= pmc->idx; pmu = container_of(pmc, struct kvm_pmu, pmc[0]); vcpu_arch = container_of(pmu, struct kvm_vcpu_arch, pmu); return container_of(vcpu_arch, struct kvm_vcpu, arch); } /** * kvm_pmu_pmc_is_chained - determine if the pmc is chained * @pmc: The PMU counter pointer */ static bool kvm_pmu_pmc_is_chained(struct kvm_pmc *pmc) { struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc); return test_bit(pmc->idx >> 1, vcpu->arch.pmu.chained); } /** * kvm_pmu_idx_is_high_counter - determine if select_idx is a high/low counter * @select_idx: The counter index */ static bool kvm_pmu_idx_is_high_counter(u64 select_idx) { return select_idx & 0x1; } /** * kvm_pmu_get_canonical_pmc - obtain the canonical pmc * @pmc: The PMU counter pointer * * When a pair of PMCs are chained together we use the low counter (canonical) * to hold the underlying perf event. */ static struct kvm_pmc *kvm_pmu_get_canonical_pmc(struct kvm_pmc *pmc) { if (kvm_pmu_pmc_is_chained(pmc) && kvm_pmu_idx_is_high_counter(pmc->idx)) return pmc - 1; return pmc; } static struct kvm_pmc *kvm_pmu_get_alternate_pmc(struct kvm_pmc *pmc) { if (kvm_pmu_idx_is_high_counter(pmc->idx)) return pmc - 1; else return pmc + 1; } /** * kvm_pmu_idx_has_chain_evtype - determine if the event type is chain * @vcpu: The vcpu pointer * @select_idx: The counter index */ static bool kvm_pmu_idx_has_chain_evtype(struct kvm_vcpu *vcpu, u64 select_idx) { u64 eventsel, reg; select_idx |= 0x1; if (select_idx == ARMV8_PMU_CYCLE_IDX) return false; reg = PMEVTYPER0_EL0 + select_idx; eventsel = __vcpu_sys_reg(vcpu, reg) & kvm_pmu_event_mask(vcpu->kvm); return eventsel == ARMV8_PMUV3_PERFCTR_CHAIN; } /** * kvm_pmu_get_pair_counter_value - get PMU counter value * @vcpu: The vcpu pointer * @pmc: The PMU counter pointer */ static u64 kvm_pmu_get_pair_counter_value(struct kvm_vcpu *vcpu, struct kvm_pmc *pmc) { u64 counter, counter_high, reg, enabled, running; if (kvm_pmu_pmc_is_chained(pmc)) { pmc = kvm_pmu_get_canonical_pmc(pmc); reg = PMEVCNTR0_EL0 + pmc->idx; counter = __vcpu_sys_reg(vcpu, reg); counter_high = __vcpu_sys_reg(vcpu, reg + 1); counter = lower_32_bits(counter) | (counter_high << 32); } else { reg = (pmc->idx == ARMV8_PMU_CYCLE_IDX) ? PMCCNTR_EL0 : PMEVCNTR0_EL0 + pmc->idx; counter = __vcpu_sys_reg(vcpu, reg); } /* * The real counter value is equal to the value of counter register plus * the value perf event counts. */ if (pmc->perf_event) counter += perf_event_read_value(pmc->perf_event, &enabled, &running); return counter; } /** * kvm_pmu_get_counter_value - get PMU counter value * @vcpu: The vcpu pointer * @select_idx: The counter index */ u64 kvm_pmu_get_counter_value(struct kvm_vcpu *vcpu, u64 select_idx) { u64 counter; struct kvm_pmu *pmu = &vcpu->arch.pmu; struct kvm_pmc *pmc = &pmu->pmc[select_idx]; counter = kvm_pmu_get_pair_counter_value(vcpu, pmc); if (kvm_pmu_pmc_is_chained(pmc) && kvm_pmu_idx_is_high_counter(select_idx)) counter = upper_32_bits(counter); else if (select_idx != ARMV8_PMU_CYCLE_IDX) counter = lower_32_bits(counter); return counter; } /** * kvm_pmu_set_counter_value - set PMU counter value * @vcpu: The vcpu pointer * @select_idx: The counter index * @val: The counter value */ void kvm_pmu_set_counter_value(struct kvm_vcpu *vcpu, u64 select_idx, u64 val) { u64 reg; reg = (select_idx == ARMV8_PMU_CYCLE_IDX) ? PMCCNTR_EL0 : PMEVCNTR0_EL0 + select_idx; __vcpu_sys_reg(vcpu, reg) += (s64)val - kvm_pmu_get_counter_value(vcpu, select_idx); /* Recreate the perf event to reflect the updated sample_period */ kvm_pmu_create_perf_event(vcpu, select_idx); } /** * kvm_pmu_release_perf_event - remove the perf event * @pmc: The PMU counter pointer */ static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc) { pmc = kvm_pmu_get_canonical_pmc(pmc); if (pmc->perf_event) { perf_event_disable(pmc->perf_event); perf_event_release_kernel(pmc->perf_event); pmc->perf_event = NULL; } } /** * kvm_pmu_stop_counter - stop PMU counter * @pmc: The PMU counter pointer * * If this counter has been configured to monitor some event, release it here. */ static void kvm_pmu_stop_counter(struct kvm_vcpu *vcpu, struct kvm_pmc *pmc) { u64 counter, reg, val; pmc = kvm_pmu_get_canonical_pmc(pmc); if (!pmc->perf_event) return; counter = kvm_pmu_get_pair_counter_value(vcpu, pmc); if (pmc->idx == ARMV8_PMU_CYCLE_IDX) { reg = PMCCNTR_EL0; val = counter; } else { reg = PMEVCNTR0_EL0 + pmc->idx; val = lower_32_bits(counter); } __vcpu_sys_reg(vcpu, reg) = val; if (kvm_pmu_pmc_is_chained(pmc)) __vcpu_sys_reg(vcpu, reg + 1) = upper_32_bits(counter); kvm_pmu_release_perf_event(pmc); } /** * kvm_pmu_vcpu_init - assign pmu counter idx for cpu * @vcpu: The vcpu pointer * */ void kvm_pmu_vcpu_init(struct kvm_vcpu *vcpu) { int i; struct kvm_pmu *pmu = &vcpu->arch.pmu; for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) pmu->pmc[i].idx = i; } /** * kvm_pmu_vcpu_reset - reset pmu state for cpu * @vcpu: The vcpu pointer * */ void kvm_pmu_vcpu_reset(struct kvm_vcpu *vcpu) { unsigned long mask = kvm_pmu_valid_counter_mask(vcpu); struct kvm_pmu *pmu = &vcpu->arch.pmu; int i; for_each_set_bit(i, &mask, 32) kvm_pmu_stop_counter(vcpu, &pmu->pmc[i]); bitmap_zero(vcpu->arch.pmu.chained, ARMV8_PMU_MAX_COUNTER_PAIRS); } /** * kvm_pmu_vcpu_destroy - free perf event of PMU for cpu * @vcpu: The vcpu pointer * */ void kvm_pmu_vcpu_destroy(struct kvm_vcpu *vcpu) { int i; struct kvm_pmu *pmu = &vcpu->arch.pmu; for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) kvm_pmu_release_perf_event(&pmu->pmc[i]); irq_work_sync(&vcpu->arch.pmu.overflow_work); } u64 kvm_pmu_valid_counter_mask(struct kvm_vcpu *vcpu) { u64 val = __vcpu_sys_reg(vcpu, PMCR_EL0) >> ARMV8_PMU_PMCR_N_SHIFT; val &= ARMV8_PMU_PMCR_N_MASK; if (val == 0) return BIT(ARMV8_PMU_CYCLE_IDX); else return GENMASK(val - 1, 0) | BIT(ARMV8_PMU_CYCLE_IDX); } /** * kvm_pmu_enable_counter_mask - enable selected PMU counters * @vcpu: The vcpu pointer * @val: the value guest writes to PMCNTENSET register * * Call perf_event_enable to start counting the perf event */ void kvm_pmu_enable_counter_mask(struct kvm_vcpu *vcpu, u64 val) { int i; struct kvm_pmu *pmu = &vcpu->arch.pmu; struct kvm_pmc *pmc; if (!(__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E) || !val) return; for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) { if (!(val & BIT(i))) continue; pmc = &pmu->pmc[i]; /* A change in the enable state may affect the chain state */ kvm_pmu_update_pmc_chained(vcpu, i); kvm_pmu_create_perf_event(vcpu, i); /* At this point, pmc must be the canonical */ if (pmc->perf_event) { perf_event_enable(pmc->perf_event); if (pmc->perf_event->state != PERF_EVENT_STATE_ACTIVE) kvm_debug("fail to enable perf event\n"); } } } /** * kvm_pmu_disable_counter_mask - disable selected PMU counters * @vcpu: The vcpu pointer * @val: the value guest writes to PMCNTENCLR register * * Call perf_event_disable to stop counting the perf event */ void kvm_pmu_disable_counter_mask(struct kvm_vcpu *vcpu, u64 val) { int i; struct kvm_pmu *pmu = &vcpu->arch.pmu; struct kvm_pmc *pmc; if (!val) return; for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) { if (!(val & BIT(i))) continue; pmc = &pmu->pmc[i]; /* A change in the enable state may affect the chain state */ kvm_pmu_update_pmc_chained(vcpu, i); kvm_pmu_create_perf_event(vcpu, i); /* At this point, pmc must be the canonical */ if (pmc->perf_event) perf_event_disable(pmc->perf_event); } } static u64 kvm_pmu_overflow_status(struct kvm_vcpu *vcpu) { u64 reg = 0; if ((__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E)) { reg = __vcpu_sys_reg(vcpu, PMOVSSET_EL0); reg &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0); reg &= __vcpu_sys_reg(vcpu, PMINTENSET_EL1); } return reg; } static void kvm_pmu_update_state(struct kvm_vcpu *vcpu) { struct kvm_pmu *pmu = &vcpu->arch.pmu; bool overflow; if (!kvm_vcpu_has_pmu(vcpu)) return; overflow = !!kvm_pmu_overflow_status(vcpu); if (pmu->irq_level == overflow) return; pmu->irq_level = overflow; if (likely(irqchip_in_kernel(vcpu->kvm))) { int ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id, pmu->irq_num, overflow, pmu); WARN_ON(ret); } } bool kvm_pmu_should_notify_user(struct kvm_vcpu *vcpu) { struct kvm_pmu *pmu = &vcpu->arch.pmu; struct kvm_sync_regs *sregs = &vcpu->run->s.regs; bool run_level = sregs->device_irq_level & KVM_ARM_DEV_PMU; if (likely(irqchip_in_kernel(vcpu->kvm))) return false; return pmu->irq_level != run_level; } /* * Reflect the PMU overflow interrupt output level into the kvm_run structure */ void kvm_pmu_update_run(struct kvm_vcpu *vcpu) { struct kvm_sync_regs *regs = &vcpu->run->s.regs; /* Populate the timer bitmap for user space */ regs->device_irq_level &= ~KVM_ARM_DEV_PMU; if (vcpu->arch.pmu.irq_level) regs->device_irq_level |= KVM_ARM_DEV_PMU; } /** * kvm_pmu_flush_hwstate - flush pmu state to cpu * @vcpu: The vcpu pointer * * Check if the PMU has overflowed while we were running in the host, and inject * an interrupt if that was the case. */ void kvm_pmu_flush_hwstate(struct kvm_vcpu *vcpu) { kvm_pmu_update_state(vcpu); } /** * kvm_pmu_sync_hwstate - sync pmu state from cpu * @vcpu: The vcpu pointer * * Check if the PMU has overflowed while we were running in the guest, and * inject an interrupt if that was the case. */ void kvm_pmu_sync_hwstate(struct kvm_vcpu *vcpu) { kvm_pmu_update_state(vcpu); } /** * When perf interrupt is an NMI, we cannot safely notify the vcpu corresponding * to the event. * This is why we need a callback to do it once outside of the NMI context. */ static void kvm_pmu_perf_overflow_notify_vcpu(struct irq_work *work) { struct kvm_vcpu *vcpu; struct kvm_pmu *pmu; pmu = container_of(work, struct kvm_pmu, overflow_work); vcpu = kvm_pmc_to_vcpu(pmu->pmc); kvm_vcpu_kick(vcpu); } /** * When the perf event overflows, set the overflow status and inform the vcpu. */ static void kvm_pmu_perf_overflow(struct perf_event *perf_event, struct perf_sample_data *data, struct pt_regs *regs) { struct kvm_pmc *pmc = perf_event->overflow_handler_context; struct arm_pmu *cpu_pmu = to_arm_pmu(perf_event->pmu); struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc); int idx = pmc->idx; u64 period; cpu_pmu->pmu.stop(perf_event, PERF_EF_UPDATE); /* * Reset the sample period to the architectural limit, * i.e. the point where the counter overflows. */ period = -(local64_read(&perf_event->count)); if (!kvm_pmu_idx_is_64bit(vcpu, pmc->idx)) period &= GENMASK(31, 0); local64_set(&perf_event->hw.period_left, 0); perf_event->attr.sample_period = period; perf_event->hw.sample_period = period; __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(idx); if (kvm_pmu_overflow_status(vcpu)) { kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); if (!in_nmi()) kvm_vcpu_kick(vcpu); else irq_work_queue(&vcpu->arch.pmu.overflow_work); } cpu_pmu->pmu.start(perf_event, PERF_EF_RELOAD); } /** * kvm_pmu_software_increment - do software increment * @vcpu: The vcpu pointer * @val: the value guest writes to PMSWINC register */ void kvm_pmu_software_increment(struct kvm_vcpu *vcpu, u64 val) { struct kvm_pmu *pmu = &vcpu->arch.pmu; int i; if (!(__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E)) return; /* Weed out disabled counters */ val &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0); for (i = 0; i < ARMV8_PMU_CYCLE_IDX; i++) { u64 type, reg; if (!(val & BIT(i))) continue; /* PMSWINC only applies to ... SW_INC! */ type = __vcpu_sys_reg(vcpu, PMEVTYPER0_EL0 + i); type &= kvm_pmu_event_mask(vcpu->kvm); if (type != ARMV8_PMUV3_PERFCTR_SW_INCR) continue; /* increment this even SW_INC counter */ reg = __vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i) + 1; reg = lower_32_bits(reg); __vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i) = reg; if (reg) /* no overflow on the low part */ continue; if (kvm_pmu_pmc_is_chained(&pmu->pmc[i])) { /* increment the high counter */ reg = __vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i + 1) + 1; reg = lower_32_bits(reg); __vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i + 1) = reg; if (!reg) /* mark overflow on the high counter */ __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(i + 1); } else { /* mark overflow on low counter */ __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(i); } } kvm_vcpu_pmu_restore_guest(vcpu); } /** * kvm_pmu_handle_pmcr - handle PMCR register * @vcpu: The vcpu pointer * @val: the value guest writes to PMCR register */ void kvm_pmu_handle_pmcr(struct kvm_vcpu *vcpu, u64 val) { int i; if (val & ARMV8_PMU_PMCR_E) { kvm_pmu_enable_counter_mask(vcpu, __vcpu_sys_reg(vcpu, PMCNTENSET_EL0)); } else { kvm_pmu_disable_counter_mask(vcpu, __vcpu_sys_reg(vcpu, PMCNTENSET_EL0)); } if (val & ARMV8_PMU_PMCR_C) kvm_pmu_set_counter_value(vcpu, ARMV8_PMU_CYCLE_IDX, 0); if (val & ARMV8_PMU_PMCR_P) { unsigned long mask = kvm_pmu_valid_counter_mask(vcpu); mask &= ~BIT(ARMV8_PMU_CYCLE_IDX); for_each_set_bit(i, &mask, 32) kvm_pmu_set_counter_value(vcpu, i, 0); } } static bool kvm_pmu_counter_is_enabled(struct kvm_vcpu *vcpu, u64 select_idx) { return (__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E) && (__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & BIT(select_idx)); } /** * kvm_pmu_create_perf_event - create a perf event for a counter * @vcpu: The vcpu pointer * @select_idx: The number of selected counter */ static void kvm_pmu_create_perf_event(struct kvm_vcpu *vcpu, u64 select_idx) { struct kvm_pmu *pmu = &vcpu->arch.pmu; struct kvm_pmc *pmc; struct perf_event *event; struct perf_event_attr attr; u64 eventsel, counter, reg, data; /* * For chained counters the event type and filtering attributes are * obtained from the low/even counter. We also use this counter to * determine if the event is enabled/disabled. */ pmc = kvm_pmu_get_canonical_pmc(&pmu->pmc[select_idx]); reg = (pmc->idx == ARMV8_PMU_CYCLE_IDX) ? PMCCFILTR_EL0 : PMEVTYPER0_EL0 + pmc->idx; data = __vcpu_sys_reg(vcpu, reg); kvm_pmu_stop_counter(vcpu, pmc); if (pmc->idx == ARMV8_PMU_CYCLE_IDX) eventsel = ARMV8_PMUV3_PERFCTR_CPU_CYCLES; else eventsel = data & kvm_pmu_event_mask(vcpu->kvm); /* Software increment event doesn't need to be backed by a perf event */ if (eventsel == ARMV8_PMUV3_PERFCTR_SW_INCR) return; /* * If we have a filter in place and that the event isn't allowed, do * not install a perf event either. */ if (vcpu->kvm->arch.pmu_filter && !test_bit(eventsel, vcpu->kvm->arch.pmu_filter)) return; memset(&attr, 0, sizeof(struct perf_event_attr)); attr.type = PERF_TYPE_RAW; attr.size = sizeof(attr); attr.pinned = 1; attr.disabled = !kvm_pmu_counter_is_enabled(vcpu, pmc->idx); attr.exclude_user = data & ARMV8_PMU_EXCLUDE_EL0 ? 1 : 0; attr.exclude_kernel = data & ARMV8_PMU_EXCLUDE_EL1 ? 1 : 0; attr.exclude_hv = 1; /* Don't count EL2 events */ attr.exclude_host = 1; /* Don't count host events */ attr.config = eventsel; counter = kvm_pmu_get_pair_counter_value(vcpu, pmc); if (kvm_pmu_pmc_is_chained(pmc)) { /** * The initial sample period (overflow count) of an event. For * chained counters we only support overflow interrupts on the * high counter. */ attr.sample_period = (-counter) & GENMASK(63, 0); attr.config1 |= PERF_ATTR_CFG1_KVM_PMU_CHAINED; event = perf_event_create_kernel_counter(&attr, -1, current, kvm_pmu_perf_overflow, pmc + 1); } else { /* The initial sample period (overflow count) of an event. */ if (kvm_pmu_idx_is_64bit(vcpu, pmc->idx)) attr.sample_period = (-counter) & GENMASK(63, 0); else attr.sample_period = (-counter) & GENMASK(31, 0); event = perf_event_create_kernel_counter(&attr, -1, current, kvm_pmu_perf_overflow, pmc); } if (IS_ERR(event)) { pr_err_once("kvm: pmu event creation failed %ld\n", PTR_ERR(event)); return; } pmc->perf_event = event; } /** * kvm_pmu_update_pmc_chained - update chained bitmap * @vcpu: The vcpu pointer * @select_idx: The number of selected counter * * Update the chained bitmap based on the event type written in the * typer register and the enable state of the odd register. */ static void kvm_pmu_update_pmc_chained(struct kvm_vcpu *vcpu, u64 select_idx) { struct kvm_pmu *pmu = &vcpu->arch.pmu; struct kvm_pmc *pmc = &pmu->pmc[select_idx], *canonical_pmc; bool new_state, old_state; old_state = kvm_pmu_pmc_is_chained(pmc); new_state = kvm_pmu_idx_has_chain_evtype(vcpu, pmc->idx) && kvm_pmu_counter_is_enabled(vcpu, pmc->idx | 0x1); if (old_state == new_state) return; canonical_pmc = kvm_pmu_get_canonical_pmc(pmc); kvm_pmu_stop_counter(vcpu, canonical_pmc); if (new_state) { /* * During promotion from !chained to chained we must ensure * the adjacent counter is stopped and its event destroyed */ kvm_pmu_stop_counter(vcpu, kvm_pmu_get_alternate_pmc(pmc)); set_bit(pmc->idx >> 1, vcpu->arch.pmu.chained); return; } clear_bit(pmc->idx >> 1, vcpu->arch.pmu.chained); } /** * kvm_pmu_set_counter_event_type - set selected counter to monitor some event * @vcpu: The vcpu pointer * @data: The data guest writes to PMXEVTYPER_EL0 * @select_idx: The number of selected counter * * When OS accesses PMXEVTYPER_EL0, that means it wants to set a PMC to count an * event with given hardware event number. Here we call perf_event API to * emulate this action and create a kernel perf event for it. */ void kvm_pmu_set_counter_event_type(struct kvm_vcpu *vcpu, u64 data, u64 select_idx) { u64 reg, mask; mask = ARMV8_PMU_EVTYPE_MASK; mask &= ~ARMV8_PMU_EVTYPE_EVENT; mask |= kvm_pmu_event_mask(vcpu->kvm); reg = (select_idx == ARMV8_PMU_CYCLE_IDX) ? PMCCFILTR_EL0 : PMEVTYPER0_EL0 + select_idx; __vcpu_sys_reg(vcpu, reg) = data & mask; kvm_pmu_update_pmc_chained(vcpu, select_idx); kvm_pmu_create_perf_event(vcpu, select_idx); } void kvm_host_pmu_init(struct arm_pmu *pmu) { if (pmu->pmuver != 0 && pmu->pmuver != ID_AA64DFR0_PMUVER_IMP_DEF && !kvm_arm_support_pmu_v3() && !is_protected_kvm_enabled()) static_branch_enable(&kvm_arm_pmu_available); } static int kvm_pmu_probe_pmuver(void) { struct perf_event_attr attr = { }; struct perf_event *event; struct arm_pmu *pmu; int pmuver = ID_AA64DFR0_PMUVER_IMP_DEF; /* * Create a dummy event that only counts user cycles. As we'll never * leave this function with the event being live, it will never * count anything. But it allows us to probe some of the PMU * details. Yes, this is terrible. */ attr.type = PERF_TYPE_RAW; attr.size = sizeof(attr); attr.pinned = 1; attr.disabled = 0; attr.exclude_user = 0; attr.exclude_kernel = 1; attr.exclude_hv = 1; attr.exclude_host = 1; attr.config = ARMV8_PMUV3_PERFCTR_CPU_CYCLES; attr.sample_period = GENMASK(63, 0); event = perf_event_create_kernel_counter(&attr, -1, current, kvm_pmu_perf_overflow, &attr); if (IS_ERR(event)) { pr_err_once("kvm: pmu event creation failed %ld\n", PTR_ERR(event)); return ID_AA64DFR0_PMUVER_IMP_DEF; } if (event->pmu) { pmu = to_arm_pmu(event->pmu); if (pmu->pmuver) pmuver = pmu->pmuver; } perf_event_disable(event); perf_event_release_kernel(event); return pmuver; } u64 kvm_pmu_get_pmceid(struct kvm_vcpu *vcpu, bool pmceid1) { unsigned long *bmap = vcpu->kvm->arch.pmu_filter; u64 val, mask = 0; int base, i, nr_events; if (!pmceid1) { val = read_sysreg(pmceid0_el0); base = 0; } else { val = read_sysreg(pmceid1_el0); /* * Don't advertise STALL_SLOT, as PMMIR_EL0 is handled * as RAZ */ if (vcpu->kvm->arch.pmuver >= ID_AA64DFR0_PMUVER_8_4) val &= ~BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT - 32); base = 32; } if (!bmap) return val; nr_events = kvm_pmu_event_mask(vcpu->kvm) + 1; for (i = 0; i < 32; i += 8) { u64 byte; byte = bitmap_get_value8(bmap, base + i); mask |= byte << i; if (nr_events >= (0x4000 + base + 32)) { byte = bitmap_get_value8(bmap, 0x4000 + base + i); mask |= byte << (32 + i); } } return val & mask; } int kvm_arm_pmu_v3_enable(struct kvm_vcpu *vcpu) { if (!kvm_vcpu_has_pmu(vcpu)) return 0; if (!vcpu->arch.pmu.created) return -EINVAL; /* * A valid interrupt configuration for the PMU is either to have a * properly configured interrupt number and using an in-kernel * irqchip, or to not have an in-kernel GIC and not set an IRQ. */ if (irqchip_in_kernel(vcpu->kvm)) { int irq = vcpu->arch.pmu.irq_num; /* * If we are using an in-kernel vgic, at this point we know * the vgic will be initialized, so we can check the PMU irq * number against the dimensions of the vgic and make sure * it's valid. */ if (!irq_is_ppi(irq) && !vgic_valid_spi(vcpu->kvm, irq)) return -EINVAL; } else if (kvm_arm_pmu_irq_initialized(vcpu)) { return -EINVAL; } /* One-off reload of the PMU on first run */ kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu); return 0; } static int kvm_arm_pmu_v3_init(struct kvm_vcpu *vcpu) { if (irqchip_in_kernel(vcpu->kvm)) { int ret; /* * If using the PMU with an in-kernel virtual GIC * implementation, we require the GIC to be already * initialized when initializing the PMU. */ if (!vgic_initialized(vcpu->kvm)) return -ENODEV; if (!kvm_arm_pmu_irq_initialized(vcpu)) return -ENXIO; ret = kvm_vgic_set_owner(vcpu, vcpu->arch.pmu.irq_num, &vcpu->arch.pmu); if (ret) return ret; } init_irq_work(&vcpu->arch.pmu.overflow_work, kvm_pmu_perf_overflow_notify_vcpu); vcpu->arch.pmu.created = true; return 0; } /* * For one VM the interrupt type must be same for each vcpu. * As a PPI, the interrupt number is the same for all vcpus, * while as an SPI it must be a separate number per vcpu. */ static bool pmu_irq_is_valid(struct kvm *kvm, int irq) { int i; struct kvm_vcpu *vcpu; kvm_for_each_vcpu(i, vcpu, kvm) { if (!kvm_arm_pmu_irq_initialized(vcpu)) continue; if (irq_is_ppi(irq)) { if (vcpu->arch.pmu.irq_num != irq) return false; } else { if (vcpu->arch.pmu.irq_num == irq) return false; } } return true; } int kvm_arm_pmu_v3_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr) { if (!kvm_vcpu_has_pmu(vcpu)) return -ENODEV; if (vcpu->arch.pmu.created) return -EBUSY; if (!vcpu->kvm->arch.pmuver) vcpu->kvm->arch.pmuver = kvm_pmu_probe_pmuver(); if (vcpu->kvm->arch.pmuver == ID_AA64DFR0_PMUVER_IMP_DEF) return -ENODEV; switch (attr->attr) { case KVM_ARM_VCPU_PMU_V3_IRQ: { int __user *uaddr = (int __user *)(long)attr->addr; int irq; if (!irqchip_in_kernel(vcpu->kvm)) return -EINVAL; if (get_user(irq, uaddr)) return -EFAULT; /* The PMU overflow interrupt can be a PPI or a valid SPI. */ if (!(irq_is_ppi(irq) || irq_is_spi(irq))) return -EINVAL; if (!pmu_irq_is_valid(vcpu->kvm, irq)) return -EINVAL; if (kvm_arm_pmu_irq_initialized(vcpu)) return -EBUSY; kvm_debug("Set kvm ARM PMU irq: %d\n", irq); vcpu->arch.pmu.irq_num = irq; return 0; } case KVM_ARM_VCPU_PMU_V3_FILTER: { struct kvm_pmu_event_filter __user *uaddr; struct kvm_pmu_event_filter filter; int nr_events; nr_events = kvm_pmu_event_mask(vcpu->kvm) + 1; uaddr = (struct kvm_pmu_event_filter __user *)(long)attr->addr; if (copy_from_user(&filter, uaddr, sizeof(filter))) return -EFAULT; if (((u32)filter.base_event + filter.nevents) > nr_events || (filter.action != KVM_PMU_EVENT_ALLOW && filter.action != KVM_PMU_EVENT_DENY)) return -EINVAL; mutex_lock(&vcpu->kvm->lock); if (!vcpu->kvm->arch.pmu_filter) { vcpu->kvm->arch.pmu_filter = bitmap_alloc(nr_events, GFP_KERNEL); if (!vcpu->kvm->arch.pmu_filter) { mutex_unlock(&vcpu->kvm->lock); return -ENOMEM; } /* * The default depends on the first applied filter. * If it allows events, the default is to deny. * Conversely, if the first filter denies a set of * events, the default is to allow. */ if (filter.action == KVM_PMU_EVENT_ALLOW) bitmap_zero(vcpu->kvm->arch.pmu_filter, nr_events); else bitmap_fill(vcpu->kvm->arch.pmu_filter, nr_events); } if (filter.action == KVM_PMU_EVENT_ALLOW) bitmap_set(vcpu->kvm->arch.pmu_filter, filter.base_event, filter.nevents); else bitmap_clear(vcpu->kvm->arch.pmu_filter, filter.base_event, filter.nevents); mutex_unlock(&vcpu->kvm->lock); return 0; } case KVM_ARM_VCPU_PMU_V3_INIT: return kvm_arm_pmu_v3_init(vcpu); } return -ENXIO; } int kvm_arm_pmu_v3_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr) { switch (attr->attr) { case KVM_ARM_VCPU_PMU_V3_IRQ: { int __user *uaddr = (int __user *)(long)attr->addr; int irq; if (!irqchip_in_kernel(vcpu->kvm)) return -EINVAL; if (!kvm_vcpu_has_pmu(vcpu)) return -ENODEV; if (!kvm_arm_pmu_irq_initialized(vcpu)) return -ENXIO; irq = vcpu->arch.pmu.irq_num; return put_user(irq, uaddr); } } return -ENXIO; } int kvm_arm_pmu_v3_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr) { switch (attr->attr) { case KVM_ARM_VCPU_PMU_V3_IRQ: case KVM_ARM_VCPU_PMU_V3_INIT: case KVM_ARM_VCPU_PMU_V3_FILTER: if (kvm_vcpu_has_pmu(vcpu)) return 0; } return -ENXIO; }