// SPDX-License-Identifier: GPL-2.0-only /* * VGICv2 MMIO handling functions */ #include #include #include #include #include #include #include "vgic.h" #include "vgic-mmio.h" /* * The Revision field in the IIDR have the following meanings: * * Revision 1: Report GICv2 interrupts as group 0 instead of group 1 * Revision 2: Interrupt groups are guest-configurable and signaled using * their configured groups. */ static unsigned long vgic_mmio_read_v2_misc(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len) { struct vgic_dist *vgic = &vcpu->kvm->arch.vgic; u32 value; switch (addr & 0x0c) { case GIC_DIST_CTRL: value = vgic->enabled ? GICD_ENABLE : 0; break; case GIC_DIST_CTR: value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS; value = (value >> 5) - 1; value |= (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5; break; case GIC_DIST_IIDR: value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) | (vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) | (IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT); break; default: return 0; } return value; } static void vgic_mmio_write_v2_misc(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len, unsigned long val) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; bool was_enabled = dist->enabled; switch (addr & 0x0c) { case GIC_DIST_CTRL: dist->enabled = val & GICD_ENABLE; if (!was_enabled && dist->enabled) vgic_kick_vcpus(vcpu->kvm); break; case GIC_DIST_CTR: case GIC_DIST_IIDR: /* Nothing to do */ return; } } static int vgic_mmio_uaccess_write_v2_misc(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len, unsigned long val) { switch (addr & 0x0c) { case GIC_DIST_IIDR: if (val != vgic_mmio_read_v2_misc(vcpu, addr, len)) return -EINVAL; /* * If we observe a write to GICD_IIDR we know that userspace * has been updated and has had a chance to cope with older * kernels (VGICv2 IIDR.Revision == 0) incorrectly reporting * interrupts as group 1, and therefore we now allow groups to * be user writable. Doing this by default would break * migration from old kernels to new kernels with legacy * userspace. */ vcpu->kvm->arch.vgic.v2_groups_user_writable = true; return 0; } vgic_mmio_write_v2_misc(vcpu, addr, len, val); return 0; } static int vgic_mmio_uaccess_write_v2_group(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len, unsigned long val) { if (vcpu->kvm->arch.vgic.v2_groups_user_writable) vgic_mmio_write_group(vcpu, addr, len, val); return 0; } static void vgic_mmio_write_sgir(struct kvm_vcpu *source_vcpu, gpa_t addr, unsigned int len, unsigned long val) { int nr_vcpus = atomic_read(&source_vcpu->kvm->online_vcpus); int intid = val & 0xf; int targets = (val >> 16) & 0xff; int mode = (val >> 24) & 0x03; int c; struct kvm_vcpu *vcpu; unsigned long flags; switch (mode) { case 0x0: /* as specified by targets */ break; case 0x1: targets = (1U << nr_vcpus) - 1; /* all, ... */ targets &= ~(1U << source_vcpu->vcpu_id); /* but self */ break; case 0x2: /* this very vCPU only */ targets = (1U << source_vcpu->vcpu_id); break; case 0x3: /* reserved */ return; } kvm_for_each_vcpu(c, vcpu, source_vcpu->kvm) { struct vgic_irq *irq; if (!(targets & (1U << c))) continue; irq = vgic_get_irq(source_vcpu->kvm, vcpu, intid); raw_spin_lock_irqsave(&irq->irq_lock, flags); irq->pending_latch = true; irq->source |= 1U << source_vcpu->vcpu_id; vgic_queue_irq_unlock(source_vcpu->kvm, irq, flags); vgic_put_irq(source_vcpu->kvm, irq); } } static unsigned long vgic_mmio_read_target(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len) { u32 intid = VGIC_ADDR_TO_INTID(addr, 8); int i; u64 val = 0; for (i = 0; i < len; i++) { struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); val |= (u64)irq->targets << (i * 8); vgic_put_irq(vcpu->kvm, irq); } return val; } static void vgic_mmio_write_target(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len, unsigned long val) { u32 intid = VGIC_ADDR_TO_INTID(addr, 8); u8 cpu_mask = GENMASK(atomic_read(&vcpu->kvm->online_vcpus) - 1, 0); int i; unsigned long flags; /* GICD_ITARGETSR[0-7] are read-only */ if (intid < VGIC_NR_PRIVATE_IRQS) return; for (i = 0; i < len; i++) { struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid + i); int target; raw_spin_lock_irqsave(&irq->irq_lock, flags); irq->targets = (val >> (i * 8)) & cpu_mask; target = irq->targets ? __ffs(irq->targets) : 0; irq->target_vcpu = kvm_get_vcpu(vcpu->kvm, target); raw_spin_unlock_irqrestore(&irq->irq_lock, flags); vgic_put_irq(vcpu->kvm, irq); } } static unsigned long vgic_mmio_read_sgipend(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len) { u32 intid = addr & 0x0f; int i; u64 val = 0; for (i = 0; i < len; i++) { struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); val |= (u64)irq->source << (i * 8); vgic_put_irq(vcpu->kvm, irq); } return val; } static void vgic_mmio_write_sgipendc(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len, unsigned long val) { u32 intid = addr & 0x0f; int i; unsigned long flags; for (i = 0; i < len; i++) { struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); raw_spin_lock_irqsave(&irq->irq_lock, flags); irq->source &= ~((val >> (i * 8)) & 0xff); if (!irq->source) irq->pending_latch = false; raw_spin_unlock_irqrestore(&irq->irq_lock, flags); vgic_put_irq(vcpu->kvm, irq); } } static void vgic_mmio_write_sgipends(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len, unsigned long val) { u32 intid = addr & 0x0f; int i; unsigned long flags; for (i = 0; i < len; i++) { struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i); raw_spin_lock_irqsave(&irq->irq_lock, flags); irq->source |= (val >> (i * 8)) & 0xff; if (irq->source) { irq->pending_latch = true; vgic_queue_irq_unlock(vcpu->kvm, irq, flags); } else { raw_spin_unlock_irqrestore(&irq->irq_lock, flags); } vgic_put_irq(vcpu->kvm, irq); } } #define GICC_ARCH_VERSION_V2 0x2 /* These are for userland accesses only, there is no guest-facing emulation. */ static unsigned long vgic_mmio_read_vcpuif(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len) { struct vgic_vmcr vmcr; u32 val; vgic_get_vmcr(vcpu, &vmcr); switch (addr & 0xff) { case GIC_CPU_CTRL: val = vmcr.grpen0 << GIC_CPU_CTRL_EnableGrp0_SHIFT; val |= vmcr.grpen1 << GIC_CPU_CTRL_EnableGrp1_SHIFT; val |= vmcr.ackctl << GIC_CPU_CTRL_AckCtl_SHIFT; val |= vmcr.fiqen << GIC_CPU_CTRL_FIQEn_SHIFT; val |= vmcr.cbpr << GIC_CPU_CTRL_CBPR_SHIFT; val |= vmcr.eoim << GIC_CPU_CTRL_EOImodeNS_SHIFT; break; case GIC_CPU_PRIMASK: /* * Our KVM_DEV_TYPE_ARM_VGIC_V2 device ABI exports the * PMR field as GICH_VMCR.VMPriMask rather than * GICC_PMR.Priority, so we expose the upper five bits of * priority mask to userspace using the lower bits in the * unsigned long. */ val = (vmcr.pmr & GICV_PMR_PRIORITY_MASK) >> GICV_PMR_PRIORITY_SHIFT; break; case GIC_CPU_BINPOINT: val = vmcr.bpr; break; case GIC_CPU_ALIAS_BINPOINT: val = vmcr.abpr; break; case GIC_CPU_IDENT: val = ((PRODUCT_ID_KVM << 20) | (GICC_ARCH_VERSION_V2 << 16) | IMPLEMENTER_ARM); break; default: return 0; } return val; } static void vgic_mmio_write_vcpuif(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len, unsigned long val) { struct vgic_vmcr vmcr; vgic_get_vmcr(vcpu, &vmcr); switch (addr & 0xff) { case GIC_CPU_CTRL: vmcr.grpen0 = !!(val & GIC_CPU_CTRL_EnableGrp0); vmcr.grpen1 = !!(val & GIC_CPU_CTRL_EnableGrp1); vmcr.ackctl = !!(val & GIC_CPU_CTRL_AckCtl); vmcr.fiqen = !!(val & GIC_CPU_CTRL_FIQEn); vmcr.cbpr = !!(val & GIC_CPU_CTRL_CBPR); vmcr.eoim = !!(val & GIC_CPU_CTRL_EOImodeNS); break; case GIC_CPU_PRIMASK: /* * Our KVM_DEV_TYPE_ARM_VGIC_V2 device ABI exports the * PMR field as GICH_VMCR.VMPriMask rather than * GICC_PMR.Priority, so we expose the upper five bits of * priority mask to userspace using the lower bits in the * unsigned long. */ vmcr.pmr = (val << GICV_PMR_PRIORITY_SHIFT) & GICV_PMR_PRIORITY_MASK; break; case GIC_CPU_BINPOINT: vmcr.bpr = val; break; case GIC_CPU_ALIAS_BINPOINT: vmcr.abpr = val; break; } vgic_set_vmcr(vcpu, &vmcr); } static unsigned long vgic_mmio_read_apr(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len) { int n; /* which APRn is this */ n = (addr >> 2) & 0x3; if (kvm_vgic_global_state.type == VGIC_V2) { /* GICv2 hardware systems support max. 32 groups */ if (n != 0) return 0; return vcpu->arch.vgic_cpu.vgic_v2.vgic_apr; } else { struct vgic_v3_cpu_if *vgicv3 = &vcpu->arch.vgic_cpu.vgic_v3; if (n > vgic_v3_max_apr_idx(vcpu)) return 0; n = array_index_nospec(n, 4); /* GICv3 only uses ICH_AP1Rn for memory mapped (GICv2) guests */ return vgicv3->vgic_ap1r[n]; } } static void vgic_mmio_write_apr(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len, unsigned long val) { int n; /* which APRn is this */ n = (addr >> 2) & 0x3; if (kvm_vgic_global_state.type == VGIC_V2) { /* GICv2 hardware systems support max. 32 groups */ if (n != 0) return; vcpu->arch.vgic_cpu.vgic_v2.vgic_apr = val; } else { struct vgic_v3_cpu_if *vgicv3 = &vcpu->arch.vgic_cpu.vgic_v3; if (n > vgic_v3_max_apr_idx(vcpu)) return; n = array_index_nospec(n, 4); /* GICv3 only uses ICH_AP1Rn for memory mapped (GICv2) guests */ vgicv3->vgic_ap1r[n] = val; } } static const struct vgic_register_region vgic_v2_dist_registers[] = { REGISTER_DESC_WITH_LENGTH_UACCESS(GIC_DIST_CTRL, vgic_mmio_read_v2_misc, vgic_mmio_write_v2_misc, NULL, vgic_mmio_uaccess_write_v2_misc, 12, VGIC_ACCESS_32bit), REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_IGROUP, vgic_mmio_read_group, vgic_mmio_write_group, NULL, vgic_mmio_uaccess_write_v2_group, 1, VGIC_ACCESS_32bit), REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ENABLE_SET, vgic_mmio_read_enable, vgic_mmio_write_senable, NULL, vgic_uaccess_write_senable, 1, VGIC_ACCESS_32bit), REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ENABLE_CLEAR, vgic_mmio_read_enable, vgic_mmio_write_cenable, NULL, vgic_uaccess_write_cenable, 1, VGIC_ACCESS_32bit), REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PENDING_SET, vgic_mmio_read_pending, vgic_mmio_write_spending, vgic_uaccess_read_pending, vgic_uaccess_write_spending, 1, VGIC_ACCESS_32bit), REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PENDING_CLEAR, vgic_mmio_read_pending, vgic_mmio_write_cpending, vgic_uaccess_read_pending, vgic_uaccess_write_cpending, 1, VGIC_ACCESS_32bit), REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ACTIVE_SET, vgic_mmio_read_active, vgic_mmio_write_sactive, vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1, VGIC_ACCESS_32bit), REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ACTIVE_CLEAR, vgic_mmio_read_active, vgic_mmio_write_cactive, vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 1, VGIC_ACCESS_32bit), REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PRI, vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL, 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit), REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_TARGET, vgic_mmio_read_target, vgic_mmio_write_target, NULL, NULL, 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit), REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_CONFIG, vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2, VGIC_ACCESS_32bit), REGISTER_DESC_WITH_LENGTH(GIC_DIST_SOFTINT, vgic_mmio_read_raz, vgic_mmio_write_sgir, 4, VGIC_ACCESS_32bit), REGISTER_DESC_WITH_LENGTH(GIC_DIST_SGI_PENDING_CLEAR, vgic_mmio_read_sgipend, vgic_mmio_write_sgipendc, 16, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit), REGISTER_DESC_WITH_LENGTH(GIC_DIST_SGI_PENDING_SET, vgic_mmio_read_sgipend, vgic_mmio_write_sgipends, 16, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit), }; static const struct vgic_register_region vgic_v2_cpu_registers[] = { REGISTER_DESC_WITH_LENGTH(GIC_CPU_CTRL, vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4, VGIC_ACCESS_32bit), REGISTER_DESC_WITH_LENGTH(GIC_CPU_PRIMASK, vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4, VGIC_ACCESS_32bit), REGISTER_DESC_WITH_LENGTH(GIC_CPU_BINPOINT, vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4, VGIC_ACCESS_32bit), REGISTER_DESC_WITH_LENGTH(GIC_CPU_ALIAS_BINPOINT, vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4, VGIC_ACCESS_32bit), REGISTER_DESC_WITH_LENGTH(GIC_CPU_ACTIVEPRIO, vgic_mmio_read_apr, vgic_mmio_write_apr, 16, VGIC_ACCESS_32bit), REGISTER_DESC_WITH_LENGTH(GIC_CPU_IDENT, vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4, VGIC_ACCESS_32bit), }; unsigned int vgic_v2_init_dist_iodev(struct vgic_io_device *dev) { dev->regions = vgic_v2_dist_registers; dev->nr_regions = ARRAY_SIZE(vgic_v2_dist_registers); kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops); return SZ_4K; } int vgic_v2_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr) { const struct vgic_register_region *region; struct vgic_io_device iodev; struct vgic_reg_attr reg_attr; struct kvm_vcpu *vcpu; gpa_t addr; int ret; ret = vgic_v2_parse_attr(dev, attr, ®_attr); if (ret) return ret; vcpu = reg_attr.vcpu; addr = reg_attr.addr; switch (attr->group) { case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: iodev.regions = vgic_v2_dist_registers; iodev.nr_regions = ARRAY_SIZE(vgic_v2_dist_registers); iodev.base_addr = 0; break; case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: iodev.regions = vgic_v2_cpu_registers; iodev.nr_regions = ARRAY_SIZE(vgic_v2_cpu_registers); iodev.base_addr = 0; break; default: return -ENXIO; } /* We only support aligned 32-bit accesses. */ if (addr & 3) return -ENXIO; region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32)); if (!region) return -ENXIO; return 0; } int vgic_v2_cpuif_uaccess(struct kvm_vcpu *vcpu, bool is_write, int offset, u32 *val) { struct vgic_io_device dev = { .regions = vgic_v2_cpu_registers, .nr_regions = ARRAY_SIZE(vgic_v2_cpu_registers), .iodev_type = IODEV_CPUIF, }; return vgic_uaccess(vcpu, &dev, is_write, offset, val); } int vgic_v2_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write, int offset, u32 *val) { struct vgic_io_device dev = { .regions = vgic_v2_dist_registers, .nr_regions = ARRAY_SIZE(vgic_v2_dist_registers), .iodev_type = IODEV_DIST, }; return vgic_uaccess(vcpu, &dev, is_write, offset, val); }