// SPDX-License-Identifier: GPL-2.0-or-later /* * drivers.c * * Copyright (c) 1999 The Puffin Group * Copyright (c) 2001 Matthew Wilcox for Hewlett Packard * Copyright (c) 2001 Helge Deller * Copyright (c) 2001,2002 Ryan Bradetich * Copyright (c) 2004-2005 Thibaut VARENE * * The file handles registering devices and drivers, then matching them. * It's the closest we get to a dating agency. * * If you're thinking about modifying this file, here are some gotchas to * bear in mind: * - 715/Mirage device paths have a dummy device between Lasi and its children * - The EISA adapter may show up as a sibling or child of Wax * - Dino has an optionally functional serial port. If firmware enables it, * it shows up as a child of Dino. If firmware disables it, the buswalk * finds it and it shows up as a child of Cujo * - Dino has both parisc and pci devices as children * - parisc devices are discovered in a random order, including children * before parents in some cases. */ #include #include #include #include #include #include #include #include #include #include #include #include #include /* See comments in include/asm-parisc/pci.h */ const struct dma_map_ops *hppa_dma_ops __ro_after_init; EXPORT_SYMBOL(hppa_dma_ops); static struct device root = { .init_name = "parisc", }; static inline int check_dev(struct device *dev) { if (dev->bus == &parisc_bus_type) { struct parisc_device *pdev; pdev = to_parisc_device(dev); return pdev->id.hw_type != HPHW_FAULTY; } return 1; } static struct device * parse_tree_node(struct device *parent, int index, struct hardware_path *modpath); struct recurse_struct { void * obj; int (*fn)(struct device *, void *); }; static int descend_children(struct device * dev, void * data) { struct recurse_struct * recurse_data = (struct recurse_struct *)data; if (recurse_data->fn(dev, recurse_data->obj)) return 1; else return device_for_each_child(dev, recurse_data, descend_children); } /** * for_each_padev - Iterate over all devices in the tree * @fn: Function to call for each device. * @data: Data to pass to the called function. * * This performs a depth-first traversal of the tree, calling the * function passed for each node. It calls the function for parents * before children. */ static int for_each_padev(int (*fn)(struct device *, void *), void * data) { struct recurse_struct recurse_data = { .obj = data, .fn = fn, }; return device_for_each_child(&root, &recurse_data, descend_children); } /** * match_device - Report whether this driver can handle this device * @driver: the PA-RISC driver to try * @dev: the PA-RISC device to try */ static int match_device(struct parisc_driver *driver, struct parisc_device *dev) { const struct parisc_device_id *ids; for (ids = driver->id_table; ids->sversion; ids++) { if ((ids->sversion != SVERSION_ANY_ID) && (ids->sversion != dev->id.sversion)) continue; if ((ids->hw_type != HWTYPE_ANY_ID) && (ids->hw_type != dev->id.hw_type)) continue; if ((ids->hversion != HVERSION_ANY_ID) && (ids->hversion != dev->id.hversion)) continue; return 1; } return 0; } static int parisc_driver_probe(struct device *dev) { int rc; struct parisc_device *pa_dev = to_parisc_device(dev); struct parisc_driver *pa_drv = to_parisc_driver(dev->driver); rc = pa_drv->probe(pa_dev); if (!rc) pa_dev->driver = pa_drv; return rc; } static void __exit parisc_driver_remove(struct device *dev) { struct parisc_device *pa_dev = to_parisc_device(dev); struct parisc_driver *pa_drv = to_parisc_driver(dev->driver); if (pa_drv->remove) pa_drv->remove(pa_dev); } /** * register_parisc_driver - Register this driver if it can handle a device * @driver: the PA-RISC driver to try */ int register_parisc_driver(struct parisc_driver *driver) { /* FIXME: we need this because apparently the sti * driver can be registered twice */ if (driver->drv.name) { pr_warn("BUG: skipping previously registered driver %s\n", driver->name); return 1; } if (!driver->probe) { pr_warn("BUG: driver %s has no probe routine\n", driver->name); return 1; } driver->drv.bus = &parisc_bus_type; /* We install our own probe and remove routines */ WARN_ON(driver->drv.probe != NULL); WARN_ON(driver->drv.remove != NULL); driver->drv.name = driver->name; return driver_register(&driver->drv); } EXPORT_SYMBOL(register_parisc_driver); struct match_count { struct parisc_driver * driver; int count; }; static int match_and_count(struct device * dev, void * data) { struct match_count * m = data; struct parisc_device * pdev = to_parisc_device(dev); if (check_dev(dev)) { if (match_device(m->driver, pdev)) m->count++; } return 0; } /** * count_parisc_driver - count # of devices this driver would match * @driver: the PA-RISC driver to try * * Use by IOMMU support to "guess" the right size IOPdir. * Formula is something like memsize/(num_iommu * entry_size). */ int __init count_parisc_driver(struct parisc_driver *driver) { struct match_count m = { .driver = driver, .count = 0, }; for_each_padev(match_and_count, &m); return m.count; } /** * unregister_parisc_driver - Unregister this driver from the list of drivers * @driver: the PA-RISC driver to unregister */ int unregister_parisc_driver(struct parisc_driver *driver) { driver_unregister(&driver->drv); return 0; } EXPORT_SYMBOL(unregister_parisc_driver); struct find_data { unsigned long hpa; struct parisc_device * dev; }; static int find_device(struct device * dev, void * data) { struct parisc_device * pdev = to_parisc_device(dev); struct find_data * d = (struct find_data*)data; if (check_dev(dev)) { if (pdev->hpa.start == d->hpa) { d->dev = pdev; return 1; } } return 0; } static struct parisc_device *find_device_by_addr(unsigned long hpa) { struct find_data d = { .hpa = hpa, }; int ret; ret = for_each_padev(find_device, &d); return ret ? d.dev : NULL; } static int __init is_IKE_device(struct device *dev, void *data) { struct parisc_device *pdev = to_parisc_device(dev); if (!check_dev(dev)) return 0; if (pdev->id.hw_type != HPHW_BCPORT) return 0; if (IS_IKE(pdev) || (pdev->id.hversion == REO_MERCED_PORT) || (pdev->id.hversion == REOG_MERCED_PORT)) { return 1; } return 0; } int __init machine_has_merced_bus(void) { int ret; ret = for_each_padev(is_IKE_device, NULL); return ret ? 1 : 0; } /** * find_pa_parent_type - Find a parent of a specific type * @dev: The device to start searching from * @type: The device type to search for. * * Walks up the device tree looking for a device of the specified type. * If it finds it, it returns it. If not, it returns NULL. */ const struct parisc_device * find_pa_parent_type(const struct parisc_device *padev, int type) { const struct device *dev = &padev->dev; while (dev != &root) { struct parisc_device *candidate = to_parisc_device(dev); if (candidate->id.hw_type == type) return candidate; dev = dev->parent; } return NULL; } /* * get_node_path fills in @path with the firmware path to the device. * Note that if @node is a parisc device, we don't fill in the 'mod' field. * This is because both callers pass the parent and fill in the mod * themselves. If @node is a PCI device, we do fill it in, even though this * is inconsistent. */ static void get_node_path(struct device *dev, struct hardware_path *path) { int i = 5; memset(&path->bc, -1, 6); if (dev_is_pci(dev)) { unsigned int devfn = to_pci_dev(dev)->devfn; path->mod = PCI_FUNC(devfn); path->bc[i--] = PCI_SLOT(devfn); dev = dev->parent; } while (dev != &root) { if (dev_is_pci(dev)) { unsigned int devfn = to_pci_dev(dev)->devfn; path->bc[i--] = PCI_SLOT(devfn) | (PCI_FUNC(devfn)<< 5); } else if (dev->bus == &parisc_bus_type) { path->bc[i--] = to_parisc_device(dev)->hw_path; } dev = dev->parent; } } static char *print_hwpath(struct hardware_path *path, char *output) { int i; for (i = 0; i < 6; i++) { if (path->bc[i] == -1) continue; output += sprintf(output, "%u/", (unsigned char) path->bc[i]); } output += sprintf(output, "%u", (unsigned char) path->mod); return output; } /** * print_pa_hwpath - Returns hardware path for PA devices * dev: The device to return the path for * output: Pointer to a previously-allocated array to place the path in. * * This function fills in the output array with a human-readable path * to a PA device. This string is compatible with that used by PDC, and * may be printed on the outside of the box. */ char *print_pa_hwpath(struct parisc_device *dev, char *output) { struct hardware_path path; get_node_path(dev->dev.parent, &path); path.mod = dev->hw_path; return print_hwpath(&path, output); } EXPORT_SYMBOL(print_pa_hwpath); #if defined(CONFIG_PCI) || defined(CONFIG_ISA) /** * get_pci_node_path - Determines the hardware path for a PCI device * @pdev: The device to return the path for * @path: Pointer to a previously-allocated array to place the path in. * * This function fills in the hardware_path structure with the route to * the specified PCI device. This structure is suitable for passing to * PDC calls. */ void get_pci_node_path(struct pci_dev *pdev, struct hardware_path *path) { get_node_path(&pdev->dev, path); } EXPORT_SYMBOL(get_pci_node_path); /** * print_pci_hwpath - Returns hardware path for PCI devices * dev: The device to return the path for * output: Pointer to a previously-allocated array to place the path in. * * This function fills in the output array with a human-readable path * to a PCI device. This string is compatible with that used by PDC, and * may be printed on the outside of the box. */ char *print_pci_hwpath(struct pci_dev *dev, char *output) { struct hardware_path path; get_pci_node_path(dev, &path); return print_hwpath(&path, output); } EXPORT_SYMBOL(print_pci_hwpath); #endif /* defined(CONFIG_PCI) || defined(CONFIG_ISA) */ static void setup_bus_id(struct parisc_device *padev) { struct hardware_path path; char name[28]; char *output = name; int i; get_node_path(padev->dev.parent, &path); for (i = 0; i < 6; i++) { if (path.bc[i] == -1) continue; output += sprintf(output, "%u:", (unsigned char) path.bc[i]); } sprintf(output, "%u", (unsigned char) padev->hw_path); dev_set_name(&padev->dev, name); } struct parisc_device * __init create_tree_node(char id, struct device *parent) { struct parisc_device *dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return NULL; dev->hw_path = id; dev->id.hw_type = HPHW_FAULTY; dev->dev.parent = parent; setup_bus_id(dev); dev->dev.bus = &parisc_bus_type; dev->dma_mask = 0xffffffffUL; /* PARISC devices are 32-bit */ /* make the generic dma mask a pointer to the parisc one */ dev->dev.dma_mask = &dev->dma_mask; dev->dev.coherent_dma_mask = dev->dma_mask; if (device_register(&dev->dev)) { kfree(dev); return NULL; } return dev; } struct match_id_data { char id; struct parisc_device * dev; }; static int match_by_id(struct device * dev, void * data) { struct parisc_device * pdev = to_parisc_device(dev); struct match_id_data * d = data; if (pdev->hw_path == d->id) { d->dev = pdev; return 1; } return 0; } /** * alloc_tree_node - returns a device entry in the iotree * @parent: the parent node in the tree * @id: the element of the module path for this entry * * Checks all the children of @parent for a matching @id. If none * found, it allocates a new device and returns it. */ static struct parisc_device * __init alloc_tree_node( struct device *parent, char id) { struct match_id_data d = { .id = id, }; if (device_for_each_child(parent, &d, match_by_id)) return d.dev; else return create_tree_node(id, parent); } static struct parisc_device *create_parisc_device(struct hardware_path *modpath) { int i; struct device *parent = &root; for (i = 0; i < 6; i++) { if (modpath->bc[i] == -1) continue; parent = &alloc_tree_node(parent, modpath->bc[i])->dev; } return alloc_tree_node(parent, modpath->mod); } struct parisc_device * __init alloc_pa_dev(unsigned long hpa, struct hardware_path *mod_path) { int status; unsigned long bytecnt; u8 iodc_data[32]; struct parisc_device *dev; const char *name; /* Check to make sure this device has not already been added - Ryan */ if (find_device_by_addr(hpa) != NULL) return NULL; status = pdc_iodc_read(&bytecnt, hpa, 0, &iodc_data, 32); if (status != PDC_OK) return NULL; dev = create_parisc_device(mod_path); if (dev->id.hw_type != HPHW_FAULTY) { pr_err("Two devices have hardware path [%s]. IODC data for second device: %7phN\n" "Rearranging GSC cards sometimes helps\n", parisc_pathname(dev), iodc_data); return NULL; } dev->id.hw_type = iodc_data[3] & 0x1f; dev->id.hversion = (iodc_data[0] << 4) | ((iodc_data[1] & 0xf0) >> 4); dev->id.hversion_rev = iodc_data[1] & 0x0f; dev->id.sversion = ((iodc_data[4] & 0x0f) << 16) | (iodc_data[5] << 8) | iodc_data[6]; dev->hpa.start = hpa; /* This is awkward. The STI spec says that gfx devices may occupy * 32MB or 64MB. Unfortunately, we don't know how to tell whether * it's the former or the latter. Assumptions either way can hurt us. */ if (hpa == 0xf4000000 || hpa == 0xf8000000) { dev->hpa.end = hpa + 0x03ffffff; } else if (hpa == 0xf6000000 || hpa == 0xfa000000) { dev->hpa.end = hpa + 0x01ffffff; } else { dev->hpa.end = hpa + 0xfff; } dev->hpa.flags = IORESOURCE_MEM; dev->hpa.name = dev->name; name = parisc_hardware_description(&dev->id) ? : "unknown"; snprintf(dev->name, sizeof(dev->name), "%s [%s]", name, parisc_pathname(dev)); /* Silently fail things like mouse ports which are subsumed within * the keyboard controller */ if ((hpa & 0xfff) == 0 && insert_resource(&iomem_resource, &dev->hpa)) pr_warn("Unable to claim HPA %lx for device %s\n", hpa, name); return dev; } static int parisc_generic_match(struct device *dev, struct device_driver *drv) { return match_device(to_parisc_driver(drv), to_parisc_device(dev)); } static ssize_t make_modalias(struct device *dev, char *buf) { const struct parisc_device *padev = to_parisc_device(dev); const struct parisc_device_id *id = &padev->id; return sprintf(buf, "parisc:t%02Xhv%04Xrev%02Xsv%08X\n", (u8)id->hw_type, (u16)id->hversion, (u8)id->hversion_rev, (u32)id->sversion); } static int parisc_uevent(struct device *dev, struct kobj_uevent_env *env) { const struct parisc_device *padev; char modalias[40]; if (!dev) return -ENODEV; padev = to_parisc_device(dev); if (!padev) return -ENODEV; if (add_uevent_var(env, "PARISC_NAME=%s", padev->name)) return -ENOMEM; make_modalias(dev, modalias); if (add_uevent_var(env, "MODALIAS=%s", modalias)) return -ENOMEM; return 0; } #define pa_dev_attr(name, field, format_string) \ static ssize_t name##_show(struct device *dev, struct device_attribute *attr, char *buf) \ { \ struct parisc_device *padev = to_parisc_device(dev); \ return sprintf(buf, format_string, padev->field); \ } \ static DEVICE_ATTR_RO(name); #define pa_dev_attr_id(field, format) pa_dev_attr(field, id.field, format) pa_dev_attr(irq, irq, "%u\n"); pa_dev_attr_id(hw_type, "0x%02x\n"); pa_dev_attr(rev, id.hversion_rev, "0x%x\n"); pa_dev_attr_id(hversion, "0x%03x\n"); pa_dev_attr_id(sversion, "0x%05x\n"); static ssize_t modalias_show(struct device *dev, struct device_attribute *attr, char *buf) { return make_modalias(dev, buf); } static DEVICE_ATTR_RO(modalias); static struct attribute *parisc_device_attrs[] = { &dev_attr_irq.attr, &dev_attr_hw_type.attr, &dev_attr_rev.attr, &dev_attr_hversion.attr, &dev_attr_sversion.attr, &dev_attr_modalias.attr, NULL, }; ATTRIBUTE_GROUPS(parisc_device); struct bus_type parisc_bus_type = { .name = "parisc", .match = parisc_generic_match, .uevent = parisc_uevent, .dev_groups = parisc_device_groups, .probe = parisc_driver_probe, .remove = __exit_p(parisc_driver_remove), }; /** * register_parisc_device - Locate a driver to manage this device. * @dev: The parisc device. * * Search the driver list for a driver that is willing to manage * this device. */ int __init register_parisc_device(struct parisc_device *dev) { if (!dev) return 0; if (dev->driver) return 1; return 0; } /** * match_pci_device - Matches a pci device against a given hardware path * entry. * @dev: the generic device (known to be contained by a pci_dev). * @index: the current BC index * @modpath: the hardware path. * @return: true if the device matches the hardware path. */ static int match_pci_device(struct device *dev, int index, struct hardware_path *modpath) { struct pci_dev *pdev = to_pci_dev(dev); int id; if (index == 5) { /* we are at the end of the path, and on the actual device */ unsigned int devfn = pdev->devfn; return ((modpath->bc[5] == PCI_SLOT(devfn)) && (modpath->mod == PCI_FUNC(devfn))); } /* index might be out of bounds for bc[] */ if (index >= 6) return 0; id = PCI_SLOT(pdev->devfn) | (PCI_FUNC(pdev->devfn) << 5); return (modpath->bc[index] == id); } /** * match_parisc_device - Matches a parisc device against a given hardware * path entry. * @dev: the generic device (known to be contained by a parisc_device). * @index: the current BC index * @modpath: the hardware path. * @return: true if the device matches the hardware path. */ static int match_parisc_device(struct device *dev, int index, struct hardware_path *modpath) { struct parisc_device *curr = to_parisc_device(dev); char id = (index == 6) ? modpath->mod : modpath->bc[index]; return (curr->hw_path == id); } struct parse_tree_data { int index; struct hardware_path * modpath; struct device * dev; }; static int check_parent(struct device * dev, void * data) { struct parse_tree_data * d = data; if (check_dev(dev)) { if (dev->bus == &parisc_bus_type) { if (match_parisc_device(dev, d->index, d->modpath)) d->dev = dev; } else if (dev_is_pci(dev)) { if (match_pci_device(dev, d->index, d->modpath)) d->dev = dev; } else if (dev->bus == NULL) { /* we are on a bus bridge */ struct device *new = parse_tree_node(dev, d->index, d->modpath); if (new) d->dev = new; } } return d->dev != NULL; } /** * parse_tree_node - returns a device entry in the iotree * @parent: the parent node in the tree * @index: the current BC index * @modpath: the hardware_path struct to match a device against * @return: The corresponding device if found, NULL otherwise. * * Checks all the children of @parent for a matching @id. If none * found, it returns NULL. */ static struct device * parse_tree_node(struct device *parent, int index, struct hardware_path *modpath) { struct parse_tree_data d = { .index = index, .modpath = modpath, }; struct recurse_struct recurse_data = { .obj = &d, .fn = check_parent, }; if (device_for_each_child(parent, &recurse_data, descend_children)) /* nothing */; return d.dev; } /** * hwpath_to_device - Finds the generic device corresponding to a given hardware path. * @modpath: the hardware path. * @return: The target device, NULL if not found. */ struct device *hwpath_to_device(struct hardware_path *modpath) { int i; struct device *parent = &root; for (i = 0; i < 6; i++) { if (modpath->bc[i] == -1) continue; parent = parse_tree_node(parent, i, modpath); if (!parent) return NULL; } if (dev_is_pci(parent)) /* pci devices already parse MOD */ return parent; else return parse_tree_node(parent, 6, modpath); } EXPORT_SYMBOL(hwpath_to_device); /** * device_to_hwpath - Populates the hwpath corresponding to the given device. * @param dev the target device * @param path pointer to a previously allocated hwpath struct to be filled in */ void device_to_hwpath(struct device *dev, struct hardware_path *path) { struct parisc_device *padev; if (dev->bus == &parisc_bus_type) { padev = to_parisc_device(dev); get_node_path(dev->parent, path); path->mod = padev->hw_path; } else if (dev_is_pci(dev)) { get_node_path(dev, path); } } EXPORT_SYMBOL(device_to_hwpath); #define BC_PORT_MASK 0x8 #define BC_LOWER_PORT 0x8 #define BUS_CONVERTER(dev) \ ((dev->id.hw_type == HPHW_IOA) || (dev->id.hw_type == HPHW_BCPORT)) #define IS_LOWER_PORT(dev) \ ((gsc_readl(dev->hpa.start + offsetof(struct bc_module, io_status)) \ & BC_PORT_MASK) == BC_LOWER_PORT) #define MAX_NATIVE_DEVICES 64 #define NATIVE_DEVICE_OFFSET 0x1000 #define FLEX_MASK F_EXTEND(0xfffc0000) #define IO_IO_LOW offsetof(struct bc_module, io_io_low) #define IO_IO_HIGH offsetof(struct bc_module, io_io_high) #define READ_IO_IO_LOW(dev) (unsigned long)(signed int)gsc_readl(dev->hpa.start + IO_IO_LOW) #define READ_IO_IO_HIGH(dev) (unsigned long)(signed int)gsc_readl(dev->hpa.start + IO_IO_HIGH) static void walk_native_bus(unsigned long io_io_low, unsigned long io_io_high, struct device *parent); static void __init walk_lower_bus(struct parisc_device *dev) { unsigned long io_io_low, io_io_high; if (!BUS_CONVERTER(dev) || IS_LOWER_PORT(dev)) return; if (dev->id.hw_type == HPHW_IOA) { io_io_low = (unsigned long)(signed int)(READ_IO_IO_LOW(dev) << 16); io_io_high = io_io_low + MAX_NATIVE_DEVICES * NATIVE_DEVICE_OFFSET; } else { io_io_low = (READ_IO_IO_LOW(dev) + ~FLEX_MASK) & FLEX_MASK; io_io_high = (READ_IO_IO_HIGH(dev)+ ~FLEX_MASK) & FLEX_MASK; } walk_native_bus(io_io_low, io_io_high, &dev->dev); } /** * walk_native_bus -- Probe a bus for devices * @io_io_low: Base address of this bus. * @io_io_high: Last address of this bus. * @parent: The parent bus device. * * A native bus (eg Runway or GSC) may have up to 64 devices on it, * spaced at intervals of 0x1000 bytes. PDC may not inform us of these * devices, so we have to probe for them. Unfortunately, we may find * devices which are not physically connected (such as extra serial & * keyboard ports). This problem is not yet solved. */ static void __init walk_native_bus(unsigned long io_io_low, unsigned long io_io_high, struct device *parent) { int i, devices_found = 0; unsigned long hpa = io_io_low; struct hardware_path path; get_node_path(parent, &path); do { for(i = 0; i < MAX_NATIVE_DEVICES; i++, hpa += NATIVE_DEVICE_OFFSET) { struct parisc_device *dev; /* Was the device already added by Firmware? */ dev = find_device_by_addr(hpa); if (!dev) { path.mod = i; dev = alloc_pa_dev(hpa, &path); if (!dev) continue; register_parisc_device(dev); devices_found++; } walk_lower_bus(dev); } } while(!devices_found && hpa < io_io_high); } #define CENTRAL_BUS_ADDR F_EXTEND(0xfff80000) /** * walk_central_bus - Find devices attached to the central bus * * PDC doesn't tell us about all devices in the system. This routine * finds devices connected to the central bus. */ void __init walk_central_bus(void) { walk_native_bus(CENTRAL_BUS_ADDR, CENTRAL_BUS_ADDR + (MAX_NATIVE_DEVICES * NATIVE_DEVICE_OFFSET), &root); } static __init void print_parisc_device(struct parisc_device *dev) { static int count __initdata; pr_info("%d. %s at %pap { type:%d, hv:%#x, sv:%#x, rev:%#x }", ++count, dev->name, &(dev->hpa.start), dev->id.hw_type, dev->id.hversion, dev->id.sversion, dev->id.hversion_rev); if (dev->num_addrs) { int k; pr_cont(", additional addresses: "); for (k = 0; k < dev->num_addrs; k++) pr_cont("0x%lx ", dev->addr[k]); } pr_cont("\n"); } /** * init_parisc_bus - Some preparation to be done before inventory */ void __init init_parisc_bus(void) { if (bus_register(&parisc_bus_type)) panic("Could not register PA-RISC bus type\n"); if (device_register(&root)) panic("Could not register PA-RISC root device\n"); get_device(&root); } static __init void qemu_header(void) { int num; unsigned long *p; pr_info("--- cut here ---\n"); pr_info("/* AUTO-GENERATED HEADER FILE FOR SEABIOS FIRMWARE */\n"); pr_cont("/* generated with Linux kernel */\n"); pr_cont("/* search for PARISC_QEMU_MACHINE_HEADER in Linux */\n\n"); pr_info("#define PARISC_MODEL \"%s\"\n\n", boot_cpu_data.pdc.sys_model_name); #define p ((unsigned long *)&boot_cpu_data.pdc.model) pr_info("#define PARISC_PDC_MODEL 0x%lx, 0x%lx, 0x%lx, " "0x%lx, 0x%lx, 0x%lx, 0x%lx, 0x%lx, 0x%lx\n\n", p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], p[8]); #undef p pr_info("#define PARISC_PDC_VERSION 0x%04lx\n\n", boot_cpu_data.pdc.versions); pr_info("#define PARISC_PDC_CPUID 0x%04lx\n\n", boot_cpu_data.pdc.cpuid); pr_info("#define PARISC_PDC_CAPABILITIES 0x%04lx\n\n", boot_cpu_data.pdc.capabilities); pr_info("#define PARISC_PDC_ENTRY_ORG 0x%04lx\n\n", #ifdef CONFIG_64BIT (unsigned long)(PAGE0->mem_pdc_hi) << 32 | #endif (unsigned long)PAGE0->mem_pdc); pr_info("#define PARISC_PDC_CACHE_INFO"); p = (unsigned long *) &cache_info; for (num = 0; num < sizeof(cache_info); num += sizeof(unsigned long)) { if (((num % 5) == 0)) { pr_cont(" \\\n"); pr_info("\t"); } pr_cont("%s0x%04lx", num?", ":"", *p++); } pr_cont("\n\n"); } static __init int qemu_print_hpa(struct device *lin_dev, void *data) { struct parisc_device *dev = to_parisc_device(lin_dev); unsigned long hpa = dev->hpa.start; pr_cont("\t{\t.hpa = 0x%08lx,\\\n", hpa); pr_cont("\t\t.iodc = &iodc_data_hpa_%08lx,\\\n", hpa); pr_cont("\t\t.mod_info = &mod_info_hpa_%08lx,\\\n", hpa); pr_cont("\t\t.mod_path = &mod_path_hpa_%08lx,\\\n", hpa); pr_cont("\t\t.num_addr = HPA_%08lx_num_addr,\\\n", hpa); pr_cont("\t\t.add_addr = { HPA_%08lx_add_addr } },\\\n", hpa); return 0; } static __init void qemu_footer(void) { pr_info("\n\n#define PARISC_DEVICE_LIST \\\n"); for_each_padev(qemu_print_hpa, NULL); pr_cont("\t{ 0, }\n"); pr_info("--- cut here ---\n"); } /* print iodc data of the various hpa modules for qemu inclusion */ static __init int qemu_print_iodc_data(struct device *lin_dev, void *data) { struct parisc_device *dev = to_parisc_device(lin_dev); unsigned long count; unsigned long hpa = dev->hpa.start; int status; struct pdc_iodc iodc_data; int mod_index; struct pdc_system_map_mod_info pdc_mod_info; struct pdc_module_path mod_path; status = pdc_iodc_read(&count, hpa, 0, &iodc_data, sizeof(iodc_data)); if (status != PDC_OK) { pr_info("No IODC data for hpa 0x%08lx\n", hpa); return 0; } pr_info("\n"); pr_info("#define HPA_%08lx_DESCRIPTION \"%s\"\n", hpa, parisc_hardware_description(&dev->id)); mod_index = 0; do { status = pdc_system_map_find_mods(&pdc_mod_info, &mod_path, mod_index++); } while (status == PDC_OK && pdc_mod_info.mod_addr != hpa); pr_info("static struct pdc_system_map_mod_info" " mod_info_hpa_%08lx = {\n", hpa); #define DO(member) \ pr_cont("\t." #member " = 0x%x,\n", \ (unsigned int)pdc_mod_info.member) DO(mod_addr); DO(mod_pgs); DO(add_addrs); pr_cont("};\n"); #undef DO pr_info("static struct pdc_module_path " "mod_path_hpa_%08lx = {\n", hpa); pr_cont("\t.path = { "); pr_cont(".flags = 0x%x, ", mod_path.path.flags); pr_cont(".bc = { 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x }, ", (unsigned char)mod_path.path.bc[0], (unsigned char)mod_path.path.bc[1], (unsigned char)mod_path.path.bc[2], (unsigned char)mod_path.path.bc[3], (unsigned char)mod_path.path.bc[4], (unsigned char)mod_path.path.bc[5]); pr_cont(".mod = 0x%x ", mod_path.path.mod); pr_cont(" },\n"); pr_cont("\t.layers = { 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x }\n", mod_path.layers[0], mod_path.layers[1], mod_path.layers[2], mod_path.layers[3], mod_path.layers[4], mod_path.layers[5]); pr_cont("};\n"); pr_info("static struct pdc_iodc iodc_data_hpa_%08lx = {\n", hpa); #define DO(member) \ pr_cont("\t." #member " = 0x%04lx,\n", \ (unsigned long)iodc_data.member) DO(hversion_model); DO(hversion); DO(spa); DO(type); DO(sversion_rev); DO(sversion_model); DO(sversion_opt); DO(rev); DO(dep); DO(features); DO(checksum); DO(length); #undef DO pr_cont("\t/* pad: 0x%04x, 0x%04x */\n", iodc_data.pad[0], iodc_data.pad[1]); pr_cont("};\n"); pr_info("#define HPA_%08lx_num_addr %d\n", hpa, dev->num_addrs); pr_info("#define HPA_%08lx_add_addr ", hpa); count = 0; if (dev->num_addrs == 0) pr_cont("0"); while (count < dev->num_addrs) { pr_cont("0x%08lx, ", dev->addr[count]); count++; } pr_cont("\n\n"); return 0; } static __init int print_one_device(struct device * dev, void * data) { struct parisc_device * pdev = to_parisc_device(dev); if (check_dev(dev)) print_parisc_device(pdev); return 0; } /** * print_parisc_devices - Print out a list of devices found in this system */ void __init print_parisc_devices(void) { for_each_padev(print_one_device, NULL); #define PARISC_QEMU_MACHINE_HEADER 0 if (PARISC_QEMU_MACHINE_HEADER) { qemu_header(); for_each_padev(qemu_print_iodc_data, NULL); qemu_footer(); } }