// SPDX-License-Identifier: GPL-2.0 /* * Kernel support for the ptrace() and syscall tracing interfaces. * * Copyright (C) 2000 Hewlett-Packard Co, Linuxcare Inc. * Copyright (C) 2000 Matthew Wilcox * Copyright (C) 2000 David Huggins-Daines * Copyright (C) 2008-2016 Helge Deller */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* PSW bits we allow the debugger to modify */ #define USER_PSW_BITS (PSW_N | PSW_B | PSW_V | PSW_CB) #define CREATE_TRACE_POINTS #include /* * These are our native regset flavors. */ enum parisc_regset { REGSET_GENERAL, REGSET_FP }; /* * Called by kernel/ptrace.c when detaching.. * * Make sure single step bits etc are not set. */ void ptrace_disable(struct task_struct *task) { clear_tsk_thread_flag(task, TIF_SINGLESTEP); clear_tsk_thread_flag(task, TIF_BLOCKSTEP); /* make sure the trap bits are not set */ pa_psw(task)->r = 0; pa_psw(task)->t = 0; pa_psw(task)->h = 0; pa_psw(task)->l = 0; } /* * The following functions are called by ptrace_resume() when * enabling or disabling single/block tracing. */ void user_disable_single_step(struct task_struct *task) { ptrace_disable(task); } void user_enable_single_step(struct task_struct *task) { clear_tsk_thread_flag(task, TIF_BLOCKSTEP); set_tsk_thread_flag(task, TIF_SINGLESTEP); if (pa_psw(task)->n) { /* Nullified, just crank over the queue. */ task_regs(task)->iaoq[0] = task_regs(task)->iaoq[1]; task_regs(task)->iasq[0] = task_regs(task)->iasq[1]; task_regs(task)->iaoq[1] = task_regs(task)->iaoq[0] + 4; pa_psw(task)->n = 0; pa_psw(task)->x = 0; pa_psw(task)->y = 0; pa_psw(task)->z = 0; pa_psw(task)->b = 0; ptrace_disable(task); /* Don't wake up the task, but let the parent know something happened. */ force_sig_fault_to_task(SIGTRAP, TRAP_TRACE, (void __user *) (task_regs(task)->iaoq[0] & ~3), task); /* notify_parent(task, SIGCHLD); */ return; } /* Enable recovery counter traps. The recovery counter * itself will be set to zero on a task switch. If the * task is suspended on a syscall then the syscall return * path will overwrite the recovery counter with a suitable * value such that it traps once back in user space. We * disable interrupts in the tasks PSW here also, to avoid * interrupts while the recovery counter is decrementing. */ pa_psw(task)->r = 1; pa_psw(task)->t = 0; pa_psw(task)->h = 0; pa_psw(task)->l = 0; } void user_enable_block_step(struct task_struct *task) { clear_tsk_thread_flag(task, TIF_SINGLESTEP); set_tsk_thread_flag(task, TIF_BLOCKSTEP); /* Enable taken branch trap. */ pa_psw(task)->r = 0; pa_psw(task)->t = 1; pa_psw(task)->h = 0; pa_psw(task)->l = 0; } long arch_ptrace(struct task_struct *child, long request, unsigned long addr, unsigned long data) { unsigned long __user *datap = (unsigned long __user *)data; unsigned long tmp; long ret = -EIO; unsigned long user_regs_struct_size = sizeof(struct user_regs_struct); #ifdef CONFIG_64BIT if (is_compat_task()) user_regs_struct_size /= 2; #endif switch (request) { /* Read the word at location addr in the USER area. For ptraced processes, the kernel saves all regs on a syscall. */ case PTRACE_PEEKUSR: if ((addr & (sizeof(unsigned long)-1)) || addr >= sizeof(struct pt_regs)) break; tmp = *(unsigned long *) ((char *) task_regs(child) + addr); ret = put_user(tmp, datap); break; /* Write the word at location addr in the USER area. This will need to change when the kernel no longer saves all regs on a syscall. FIXME. There is a problem at the moment in that r3-r18 are only saved if the process is ptraced on syscall entry, and even then those values are overwritten by actual register values on syscall exit. */ case PTRACE_POKEUSR: /* Some register values written here may be ignored in * entry.S:syscall_restore_rfi; e.g. iaoq is written with * r31/r31+4, and not with the values in pt_regs. */ if (addr == PT_PSW) { /* Allow writing to Nullify, Divide-step-correction, * and carry/borrow bits. * BEWARE, if you set N, and then single step, it won't * stop on the nullified instruction. */ data &= USER_PSW_BITS; task_regs(child)->gr[0] &= ~USER_PSW_BITS; task_regs(child)->gr[0] |= data; ret = 0; break; } if ((addr & (sizeof(unsigned long)-1)) || addr >= sizeof(struct pt_regs)) break; if (addr == PT_IAOQ0 || addr == PT_IAOQ1) { data |= 3; /* ensure userspace privilege */ } if ((addr >= PT_GR1 && addr <= PT_GR31) || addr == PT_IAOQ0 || addr == PT_IAOQ1 || (addr >= PT_FR0 && addr <= PT_FR31 + 4) || addr == PT_SAR) { *(unsigned long *) ((char *) task_regs(child) + addr) = data; ret = 0; } break; case PTRACE_GETREGS: /* Get all gp regs from the child. */ return copy_regset_to_user(child, task_user_regset_view(current), REGSET_GENERAL, 0, user_regs_struct_size, datap); case PTRACE_SETREGS: /* Set all gp regs in the child. */ return copy_regset_from_user(child, task_user_regset_view(current), REGSET_GENERAL, 0, user_regs_struct_size, datap); case PTRACE_GETFPREGS: /* Get the child FPU state. */ return copy_regset_to_user(child, task_user_regset_view(current), REGSET_FP, 0, sizeof(struct user_fp_struct), datap); case PTRACE_SETFPREGS: /* Set the child FPU state. */ return copy_regset_from_user(child, task_user_regset_view(current), REGSET_FP, 0, sizeof(struct user_fp_struct), datap); default: ret = ptrace_request(child, request, addr, data); break; } return ret; } #ifdef CONFIG_COMPAT /* This function is needed to translate 32 bit pt_regs offsets in to * 64 bit pt_regs offsets. For example, a 32 bit gdb under a 64 bit kernel * will request offset 12 if it wants gr3, but the lower 32 bits of * the 64 bit kernels view of gr3 will be at offset 28 (3*8 + 4). * This code relies on a 32 bit pt_regs being comprised of 32 bit values * except for the fp registers which (a) are 64 bits, and (b) follow * the gr registers at the start of pt_regs. The 32 bit pt_regs should * be half the size of the 64 bit pt_regs, plus 32*4 to allow for fr[] * being 64 bit in both cases. */ static compat_ulong_t translate_usr_offset(compat_ulong_t offset) { compat_ulong_t pos; if (offset < 32*4) /* gr[0..31] */ pos = offset * 2 + 4; else if (offset < 32*4+32*8) /* fr[0] ... fr[31] */ pos = (offset - 32*4) + PT_FR0; else if (offset < sizeof(struct pt_regs)/2 + 32*4) /* sr[0] ... ipsw */ pos = (offset - 32*4 - 32*8) * 2 + PT_SR0 + 4; else pos = sizeof(struct pt_regs); return pos; } long compat_arch_ptrace(struct task_struct *child, compat_long_t request, compat_ulong_t addr, compat_ulong_t data) { compat_uint_t tmp; long ret = -EIO; switch (request) { case PTRACE_PEEKUSR: if (addr & (sizeof(compat_uint_t)-1)) break; addr = translate_usr_offset(addr); if (addr >= sizeof(struct pt_regs)) break; tmp = *(compat_uint_t *) ((char *) task_regs(child) + addr); ret = put_user(tmp, (compat_uint_t *) (unsigned long) data); break; /* Write the word at location addr in the USER area. This will need to change when the kernel no longer saves all regs on a syscall. FIXME. There is a problem at the moment in that r3-r18 are only saved if the process is ptraced on syscall entry, and even then those values are overwritten by actual register values on syscall exit. */ case PTRACE_POKEUSR: /* Some register values written here may be ignored in * entry.S:syscall_restore_rfi; e.g. iaoq is written with * r31/r31+4, and not with the values in pt_regs. */ if (addr == PT_PSW) { /* Since PT_PSW==0, it is valid for 32 bit processes * under 64 bit kernels as well. */ ret = arch_ptrace(child, request, addr, data); } else { if (addr & (sizeof(compat_uint_t)-1)) break; addr = translate_usr_offset(addr); if (addr >= sizeof(struct pt_regs)) break; if (addr == PT_IAOQ0+4 || addr == PT_IAOQ1+4) { data |= 3; /* ensure userspace privilege */ } if (addr >= PT_FR0 && addr <= PT_FR31 + 4) { /* Special case, fp regs are 64 bits anyway */ *(__u32 *) ((char *) task_regs(child) + addr) = data; ret = 0; } else if ((addr >= PT_GR1+4 && addr <= PT_GR31+4) || addr == PT_IAOQ0+4 || addr == PT_IAOQ1+4 || addr == PT_SAR+4) { /* Zero the top 32 bits */ *(__u32 *) ((char *) task_regs(child) + addr - 4) = 0; *(__u32 *) ((char *) task_regs(child) + addr) = data; ret = 0; } } break; case PTRACE_GETREGS: case PTRACE_SETREGS: case PTRACE_GETFPREGS: case PTRACE_SETFPREGS: return arch_ptrace(child, request, addr, data); default: ret = compat_ptrace_request(child, request, addr, data); break; } return ret; } #endif long do_syscall_trace_enter(struct pt_regs *regs) { if (test_thread_flag(TIF_SYSCALL_TRACE)) { int rc = tracehook_report_syscall_entry(regs); /* * As tracesys_next does not set %r28 to -ENOSYS * when %r20 is set to -1, initialize it here. */ regs->gr[28] = -ENOSYS; if (rc) { /* * A nonzero return code from * tracehook_report_syscall_entry() tells us * to prevent the syscall execution. Skip * the syscall call and the syscall restart handling. * * Note that the tracer may also just change * regs->gr[20] to an invalid syscall number, * that is handled by tracesys_next. */ regs->gr[20] = -1UL; return -1; } } /* Do the secure computing check after ptrace. */ if (secure_computing() == -1) return -1; #ifdef CONFIG_HAVE_SYSCALL_TRACEPOINTS if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT))) trace_sys_enter(regs, regs->gr[20]); #endif #ifdef CONFIG_64BIT if (!is_compat_task()) audit_syscall_entry(regs->gr[20], regs->gr[26], regs->gr[25], regs->gr[24], regs->gr[23]); else #endif audit_syscall_entry(regs->gr[20] & 0xffffffff, regs->gr[26] & 0xffffffff, regs->gr[25] & 0xffffffff, regs->gr[24] & 0xffffffff, regs->gr[23] & 0xffffffff); /* * Sign extend the syscall number to 64bit since it may have been * modified by a compat ptrace call */ return (int) ((u32) regs->gr[20]); } void do_syscall_trace_exit(struct pt_regs *regs) { int stepping = test_thread_flag(TIF_SINGLESTEP) || test_thread_flag(TIF_BLOCKSTEP); audit_syscall_exit(regs); #ifdef CONFIG_HAVE_SYSCALL_TRACEPOINTS if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT))) trace_sys_exit(regs, regs->gr[20]); #endif if (stepping || test_thread_flag(TIF_SYSCALL_TRACE)) tracehook_report_syscall_exit(regs, stepping); } /* * regset functions. */ static int fpr_get(struct task_struct *target, const struct user_regset *regset, struct membuf to) { struct pt_regs *regs = task_regs(target); return membuf_write(&to, regs->fr, ELF_NFPREG * sizeof(__u64)); } static int fpr_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { struct pt_regs *regs = task_regs(target); const __u64 *k = kbuf; const __u64 __user *u = ubuf; __u64 reg; pos /= sizeof(reg); count /= sizeof(reg); if (kbuf) for (; count > 0 && pos < ELF_NFPREG; --count) regs->fr[pos++] = *k++; else for (; count > 0 && pos < ELF_NFPREG; --count) { if (__get_user(reg, u++)) return -EFAULT; regs->fr[pos++] = reg; } kbuf = k; ubuf = u; pos *= sizeof(reg); count *= sizeof(reg); return user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, ELF_NFPREG * sizeof(reg), -1); } #define RI(reg) (offsetof(struct user_regs_struct,reg) / sizeof(long)) static unsigned long get_reg(struct pt_regs *regs, int num) { switch (num) { case RI(gr[0]) ... RI(gr[31]): return regs->gr[num - RI(gr[0])]; case RI(sr[0]) ... RI(sr[7]): return regs->sr[num - RI(sr[0])]; case RI(iasq[0]): return regs->iasq[0]; case RI(iasq[1]): return regs->iasq[1]; case RI(iaoq[0]): return regs->iaoq[0]; case RI(iaoq[1]): return regs->iaoq[1]; case RI(sar): return regs->sar; case RI(iir): return regs->iir; case RI(isr): return regs->isr; case RI(ior): return regs->ior; case RI(ipsw): return regs->ipsw; case RI(cr27): return regs->cr27; case RI(cr0): return mfctl(0); case RI(cr24): return mfctl(24); case RI(cr25): return mfctl(25); case RI(cr26): return mfctl(26); case RI(cr28): return mfctl(28); case RI(cr29): return mfctl(29); case RI(cr30): return mfctl(30); case RI(cr31): return mfctl(31); case RI(cr8): return mfctl(8); case RI(cr9): return mfctl(9); case RI(cr12): return mfctl(12); case RI(cr13): return mfctl(13); case RI(cr10): return mfctl(10); case RI(cr15): return mfctl(15); default: return 0; } } static void set_reg(struct pt_regs *regs, int num, unsigned long val) { switch (num) { case RI(gr[0]): /* * PSW is in gr[0]. * Allow writing to Nullify, Divide-step-correction, * and carry/borrow bits. * BEWARE, if you set N, and then single step, it won't * stop on the nullified instruction. */ val &= USER_PSW_BITS; regs->gr[0] &= ~USER_PSW_BITS; regs->gr[0] |= val; return; case RI(gr[1]) ... RI(gr[31]): regs->gr[num - RI(gr[0])] = val; return; case RI(iaoq[0]): case RI(iaoq[1]): /* set 2 lowest bits to ensure userspace privilege: */ regs->iaoq[num - RI(iaoq[0])] = val | 3; return; case RI(sar): regs->sar = val; return; default: return; #if 0 /* do not allow to change any of the following registers (yet) */ case RI(sr[0]) ... RI(sr[7]): return regs->sr[num - RI(sr[0])]; case RI(iasq[0]): return regs->iasq[0]; case RI(iasq[1]): return regs->iasq[1]; case RI(iir): return regs->iir; case RI(isr): return regs->isr; case RI(ior): return regs->ior; case RI(ipsw): return regs->ipsw; case RI(cr27): return regs->cr27; case cr0, cr24, cr25, cr26, cr27, cr28, cr29, cr30, cr31; case cr8, cr9, cr12, cr13, cr10, cr15; #endif } } static int gpr_get(struct task_struct *target, const struct user_regset *regset, struct membuf to) { struct pt_regs *regs = task_regs(target); unsigned int pos; for (pos = 0; pos < ELF_NGREG; pos++) membuf_store(&to, get_reg(regs, pos)); return 0; } static int gpr_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { struct pt_regs *regs = task_regs(target); const unsigned long *k = kbuf; const unsigned long __user *u = ubuf; unsigned long reg; pos /= sizeof(reg); count /= sizeof(reg); if (kbuf) for (; count > 0 && pos < ELF_NGREG; --count) set_reg(regs, pos++, *k++); else for (; count > 0 && pos < ELF_NGREG; --count) { if (__get_user(reg, u++)) return -EFAULT; set_reg(regs, pos++, reg); } kbuf = k; ubuf = u; pos *= sizeof(reg); count *= sizeof(reg); return user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, ELF_NGREG * sizeof(reg), -1); } static const struct user_regset native_regsets[] = { [REGSET_GENERAL] = { .core_note_type = NT_PRSTATUS, .n = ELF_NGREG, .size = sizeof(long), .align = sizeof(long), .regset_get = gpr_get, .set = gpr_set }, [REGSET_FP] = { .core_note_type = NT_PRFPREG, .n = ELF_NFPREG, .size = sizeof(__u64), .align = sizeof(__u64), .regset_get = fpr_get, .set = fpr_set } }; static const struct user_regset_view user_parisc_native_view = { .name = "parisc", .e_machine = ELF_ARCH, .ei_osabi = ELFOSABI_LINUX, .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets) }; #ifdef CONFIG_64BIT static int gpr32_get(struct task_struct *target, const struct user_regset *regset, struct membuf to) { struct pt_regs *regs = task_regs(target); unsigned int pos; for (pos = 0; pos < ELF_NGREG; pos++) membuf_store(&to, (compat_ulong_t)get_reg(regs, pos)); return 0; } static int gpr32_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { struct pt_regs *regs = task_regs(target); const compat_ulong_t *k = kbuf; const compat_ulong_t __user *u = ubuf; compat_ulong_t reg; pos /= sizeof(reg); count /= sizeof(reg); if (kbuf) for (; count > 0 && pos < ELF_NGREG; --count) set_reg(regs, pos++, *k++); else for (; count > 0 && pos < ELF_NGREG; --count) { if (__get_user(reg, u++)) return -EFAULT; set_reg(regs, pos++, reg); } kbuf = k; ubuf = u; pos *= sizeof(reg); count *= sizeof(reg); return user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, ELF_NGREG * sizeof(reg), -1); } /* * These are the regset flavors matching the 32bit native set. */ static const struct user_regset compat_regsets[] = { [REGSET_GENERAL] = { .core_note_type = NT_PRSTATUS, .n = ELF_NGREG, .size = sizeof(compat_long_t), .align = sizeof(compat_long_t), .regset_get = gpr32_get, .set = gpr32_set }, [REGSET_FP] = { .core_note_type = NT_PRFPREG, .n = ELF_NFPREG, .size = sizeof(__u64), .align = sizeof(__u64), .regset_get = fpr_get, .set = fpr_set } }; static const struct user_regset_view user_parisc_compat_view = { .name = "parisc", .e_machine = EM_PARISC, .ei_osabi = ELFOSABI_LINUX, .regsets = compat_regsets, .n = ARRAY_SIZE(compat_regsets) }; #endif /* CONFIG_64BIT */ const struct user_regset_view *task_user_regset_view(struct task_struct *task) { BUILD_BUG_ON(sizeof(struct user_regs_struct)/sizeof(long) != ELF_NGREG); BUILD_BUG_ON(sizeof(struct user_fp_struct)/sizeof(__u64) != ELF_NFPREG); #ifdef CONFIG_64BIT if (is_compat_task()) return &user_parisc_compat_view; #endif return &user_parisc_native_view; } /* HAVE_REGS_AND_STACK_ACCESS_API feature */ struct pt_regs_offset { const char *name; int offset; }; #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)} #define REG_OFFSET_INDEX(r,i) {.name = #r#i, .offset = offsetof(struct pt_regs, r[i])} #define REG_OFFSET_END {.name = NULL, .offset = 0} static const struct pt_regs_offset regoffset_table[] = { REG_OFFSET_INDEX(gr,0), REG_OFFSET_INDEX(gr,1), REG_OFFSET_INDEX(gr,2), REG_OFFSET_INDEX(gr,3), REG_OFFSET_INDEX(gr,4), REG_OFFSET_INDEX(gr,5), REG_OFFSET_INDEX(gr,6), REG_OFFSET_INDEX(gr,7), REG_OFFSET_INDEX(gr,8), REG_OFFSET_INDEX(gr,9), REG_OFFSET_INDEX(gr,10), REG_OFFSET_INDEX(gr,11), REG_OFFSET_INDEX(gr,12), REG_OFFSET_INDEX(gr,13), REG_OFFSET_INDEX(gr,14), REG_OFFSET_INDEX(gr,15), REG_OFFSET_INDEX(gr,16), REG_OFFSET_INDEX(gr,17), REG_OFFSET_INDEX(gr,18), REG_OFFSET_INDEX(gr,19), REG_OFFSET_INDEX(gr,20), REG_OFFSET_INDEX(gr,21), REG_OFFSET_INDEX(gr,22), REG_OFFSET_INDEX(gr,23), REG_OFFSET_INDEX(gr,24), REG_OFFSET_INDEX(gr,25), REG_OFFSET_INDEX(gr,26), REG_OFFSET_INDEX(gr,27), REG_OFFSET_INDEX(gr,28), REG_OFFSET_INDEX(gr,29), REG_OFFSET_INDEX(gr,30), REG_OFFSET_INDEX(gr,31), REG_OFFSET_INDEX(sr,0), REG_OFFSET_INDEX(sr,1), REG_OFFSET_INDEX(sr,2), REG_OFFSET_INDEX(sr,3), REG_OFFSET_INDEX(sr,4), REG_OFFSET_INDEX(sr,5), REG_OFFSET_INDEX(sr,6), REG_OFFSET_INDEX(sr,7), REG_OFFSET_INDEX(iasq,0), REG_OFFSET_INDEX(iasq,1), REG_OFFSET_INDEX(iaoq,0), REG_OFFSET_INDEX(iaoq,1), REG_OFFSET_NAME(cr27), REG_OFFSET_NAME(ksp), REG_OFFSET_NAME(kpc), REG_OFFSET_NAME(sar), REG_OFFSET_NAME(iir), REG_OFFSET_NAME(isr), REG_OFFSET_NAME(ior), REG_OFFSET_NAME(ipsw), REG_OFFSET_END, }; /** * regs_query_register_offset() - query register offset from its name * @name: the name of a register * * regs_query_register_offset() returns the offset of a register in struct * pt_regs from its name. If the name is invalid, this returns -EINVAL; */ int regs_query_register_offset(const char *name) { const struct pt_regs_offset *roff; for (roff = regoffset_table; roff->name != NULL; roff++) if (!strcmp(roff->name, name)) return roff->offset; return -EINVAL; } /** * regs_query_register_name() - query register name from its offset * @offset: the offset of a register in struct pt_regs. * * regs_query_register_name() returns the name of a register from its * offset in struct pt_regs. If the @offset is invalid, this returns NULL; */ const char *regs_query_register_name(unsigned int offset) { const struct pt_regs_offset *roff; for (roff = regoffset_table; roff->name != NULL; roff++) if (roff->offset == offset) return roff->name; return NULL; } /** * regs_within_kernel_stack() - check the address in the stack * @regs: pt_regs which contains kernel stack pointer. * @addr: address which is checked. * * regs_within_kernel_stack() checks @addr is within the kernel stack page(s). * If @addr is within the kernel stack, it returns true. If not, returns false. */ int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr) { return ((addr & ~(THREAD_SIZE - 1)) == (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))); } /** * regs_get_kernel_stack_nth() - get Nth entry of the stack * @regs: pt_regs which contains kernel stack pointer. * @n: stack entry number. * * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which * is specified by @regs. If the @n th entry is NOT in the kernel stack, * this returns 0. */ unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n) { unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs); addr -= n; if (!regs_within_kernel_stack(regs, (unsigned long)addr)) return 0; return *addr; }