/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_POWERPC_NOHASH_64_PGTABLE_H #define _ASM_POWERPC_NOHASH_64_PGTABLE_H /* * This file contains the functions and defines necessary to modify and use * the ppc64 non-hashed page table. */ #include #include #include #include /* * Size of EA range mapped by our pagetables. */ #define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \ PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT) #define PGTABLE_RANGE (ASM_CONST(1) << PGTABLE_EADDR_SIZE) #define PMD_CACHE_INDEX PMD_INDEX_SIZE #define PUD_CACHE_INDEX PUD_INDEX_SIZE /* * Define the address range of the kernel non-linear virtual area */ #define KERN_VIRT_START ASM_CONST(0x8000000000000000) #define KERN_VIRT_SIZE ASM_CONST(0x0000100000000000) /* * The vmalloc space starts at the beginning of that region, and * occupies a quarter of it on Book3E * (we keep a quarter for the virtual memmap) */ #define VMALLOC_START KERN_VIRT_START #define VMALLOC_SIZE (KERN_VIRT_SIZE >> 2) #define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE) /* * The second half of the kernel virtual space is used for IO mappings, * it's itself carved into the PIO region (ISA and PHB IO space) and * the ioremap space * * ISA_IO_BASE = KERN_IO_START, 64K reserved area * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE */ #define KERN_IO_START (KERN_VIRT_START + (KERN_VIRT_SIZE >> 1)) #define FULL_IO_SIZE 0x80000000ul #define ISA_IO_BASE (KERN_IO_START) #define ISA_IO_END (KERN_IO_START + 0x10000ul) #define PHB_IO_BASE (ISA_IO_END) #define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE) #define IOREMAP_BASE (PHB_IO_END) #define IOREMAP_START (ioremap_bot) #define IOREMAP_END (KERN_VIRT_START + KERN_VIRT_SIZE - FIXADDR_SIZE) #define FIXADDR_SIZE SZ_32M /* * Region IDs */ #define REGION_SHIFT 60UL #define REGION_MASK (0xfUL << REGION_SHIFT) #define REGION_ID(ea) (((unsigned long)(ea)) >> REGION_SHIFT) #define VMALLOC_REGION_ID (REGION_ID(VMALLOC_START)) #define KERNEL_REGION_ID (REGION_ID(PAGE_OFFSET)) #define USER_REGION_ID (0UL) /* * Defines the address of the vmemap area, in its own region on * after the vmalloc space on Book3E */ #define VMEMMAP_BASE VMALLOC_END #define VMEMMAP_END KERN_IO_START #define vmemmap ((struct page *)VMEMMAP_BASE) /* * Include the PTE bits definitions */ #include #define _PAGE_SAO 0 #define PTE_RPN_MASK (~((1UL << PTE_RPN_SHIFT) - 1)) /* * _PAGE_CHG_MASK masks of bits that are to be preserved across * pgprot changes. */ #define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPECIAL) #define H_PAGE_4K_PFN 0 #ifndef __ASSEMBLY__ /* pte_clear moved to later in this file */ static inline pte_t pte_mkwrite(pte_t pte) { return __pte(pte_val(pte) | _PAGE_RW); } static inline pte_t pte_mkdirty(pte_t pte) { return __pte(pte_val(pte) | _PAGE_DIRTY); } static inline pte_t pte_mkyoung(pte_t pte) { return __pte(pte_val(pte) | _PAGE_ACCESSED); } static inline pte_t pte_wrprotect(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_RW); } #define PMD_BAD_BITS (PTE_TABLE_SIZE-1) #define PUD_BAD_BITS (PMD_TABLE_SIZE-1) static inline void pmd_set(pmd_t *pmdp, unsigned long val) { *pmdp = __pmd(val); } static inline void pmd_clear(pmd_t *pmdp) { *pmdp = __pmd(0); } static inline pte_t pmd_pte(pmd_t pmd) { return __pte(pmd_val(pmd)); } #define pmd_none(pmd) (!pmd_val(pmd)) #define pmd_bad(pmd) (!is_kernel_addr(pmd_val(pmd)) \ || (pmd_val(pmd) & PMD_BAD_BITS)) #define pmd_present(pmd) (!pmd_none(pmd)) #define pmd_page_vaddr(pmd) (pmd_val(pmd) & ~PMD_MASKED_BITS) extern struct page *pmd_page(pmd_t pmd); static inline void pud_set(pud_t *pudp, unsigned long val) { *pudp = __pud(val); } static inline void pud_clear(pud_t *pudp) { *pudp = __pud(0); } #define pud_none(pud) (!pud_val(pud)) #define pud_bad(pud) (!is_kernel_addr(pud_val(pud)) \ || (pud_val(pud) & PUD_BAD_BITS)) #define pud_present(pud) (pud_val(pud) != 0) static inline pmd_t *pud_pgtable(pud_t pud) { return (pmd_t *)(pud_val(pud) & ~PUD_MASKED_BITS); } extern struct page *pud_page(pud_t pud); static inline pte_t pud_pte(pud_t pud) { return __pte(pud_val(pud)); } static inline pud_t pte_pud(pte_t pte) { return __pud(pte_val(pte)); } #define pud_write(pud) pte_write(pud_pte(pud)) #define p4d_write(pgd) pte_write(p4d_pte(p4d)) static inline void p4d_set(p4d_t *p4dp, unsigned long val) { *p4dp = __p4d(val); } /* Atomic PTE updates */ static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr, pte_t *ptep, unsigned long clr, unsigned long set, int huge) { unsigned long old = pte_val(*ptep); *ptep = __pte((old & ~clr) | set); /* huge pages use the old page table lock */ if (!huge) assert_pte_locked(mm, addr); return old; } static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } static inline int __ptep_test_and_clear_young(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { unsigned long old; if (!pte_young(*ptep)) return 0; old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0); return (old & _PAGE_ACCESSED) != 0; } #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG #define ptep_test_and_clear_young(__vma, __addr, __ptep) \ ({ \ int __r; \ __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \ __r; \ }) #define __HAVE_ARCH_PTEP_SET_WRPROTECT static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { if ((pte_val(*ptep) & _PAGE_RW) == 0) return; pte_update(mm, addr, ptep, _PAGE_RW, 0, 0); } #define __HAVE_ARCH_HUGE_PTEP_SET_WRPROTECT static inline void huge_ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { if ((pte_val(*ptep) & _PAGE_RW) == 0) return; pte_update(mm, addr, ptep, _PAGE_RW, 0, 1); } #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH #define ptep_clear_flush_young(__vma, __address, __ptep) \ ({ \ int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \ __ptep); \ __young; \ }) #define __HAVE_ARCH_PTEP_GET_AND_CLEAR static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0); return __pte(old); } static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t * ptep) { pte_update(mm, addr, ptep, ~0UL, 0, 0); } /* Set the dirty and/or accessed bits atomically in a linux PTE */ static inline void __ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep, pte_t entry, unsigned long address, int psize) { unsigned long bits = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC); unsigned long old = pte_val(*ptep); *ptep = __pte(old | bits); flush_tlb_page(vma, address); } #define __HAVE_ARCH_PTE_SAME #define pte_same(A,B) ((pte_val(A) ^ pte_val(B)) == 0) #define pte_ERROR(e) \ pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) #define pmd_ERROR(e) \ pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) #define pgd_ERROR(e) \ pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) /* Encode and de-code a swap entry */ #define MAX_SWAPFILES_CHECK() do { \ BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \ } while (0) #define SWP_TYPE_BITS 5 #define __swp_type(x) (((x).val >> _PAGE_BIT_SWAP_TYPE) \ & ((1UL << SWP_TYPE_BITS) - 1)) #define __swp_offset(x) ((x).val >> PTE_RPN_SHIFT) #define __swp_entry(type, offset) ((swp_entry_t) { \ ((type) << _PAGE_BIT_SWAP_TYPE) \ | ((offset) << PTE_RPN_SHIFT) }) #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) }) #define __swp_entry_to_pte(x) __pte((x).val) int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot); void unmap_kernel_page(unsigned long va); extern int __meminit vmemmap_create_mapping(unsigned long start, unsigned long page_size, unsigned long phys); extern void vmemmap_remove_mapping(unsigned long start, unsigned long page_size); #endif /* __ASSEMBLY__ */ #endif /* _ASM_POWERPC_NOHASH_64_PGTABLE_H */