/* SPDX-License-Identifier: GPL-2.0 */ /* * In-kernel FPU support functions * * * Consider these guidelines before using in-kernel FPU functions: * * 1. Use kernel_fpu_begin() and kernel_fpu_end() to enclose all in-kernel * use of floating-point or vector registers and instructions. * * 2. For kernel_fpu_begin(), specify the vector register range you want to * use with the KERNEL_VXR_* constants. Consider these usage guidelines: * * a) If your function typically runs in process-context, use the lower * half of the vector registers, for example, specify KERNEL_VXR_LOW. * b) If your function typically runs in soft-irq or hard-irq context, * prefer using the upper half of the vector registers, for example, * specify KERNEL_VXR_HIGH. * * If you adhere to these guidelines, an interrupted process context * does not require to save and restore vector registers because of * disjoint register ranges. * * Also note that the __kernel_fpu_begin()/__kernel_fpu_end() functions * includes logic to save and restore up to 16 vector registers at once. * * 3. You can nest kernel_fpu_begin()/kernel_fpu_end() by using different * struct kernel_fpu states. Vector registers that are in use by outer * levels are saved and restored. You can minimize the save and restore * effort by choosing disjoint vector register ranges. * * 5. To use vector floating-point instructions, specify the KERNEL_FPC * flag to save and restore floating-point controls in addition to any * vector register range. * * 6. To use floating-point registers and instructions only, specify the * KERNEL_FPR flag. This flag triggers a save and restore of vector * registers V0 to V15 and floating-point controls. * * Copyright IBM Corp. 2015 * Author(s): Hendrik Brueckner */ #ifndef _ASM_S390_FPU_API_H #define _ASM_S390_FPU_API_H #include void save_fpu_regs(void); void load_fpu_regs(void); void __load_fpu_regs(void); static inline int test_fp_ctl(u32 fpc) { u32 orig_fpc; int rc; asm volatile( " efpc %1\n" " sfpc %2\n" "0: sfpc %1\n" " la %0,0\n" "1:\n" EX_TABLE(0b,1b) : "=d" (rc), "=&d" (orig_fpc) : "d" (fpc), "0" (-EINVAL)); return rc; } #define KERNEL_FPC 1 #define KERNEL_VXR_V0V7 2 #define KERNEL_VXR_V8V15 4 #define KERNEL_VXR_V16V23 8 #define KERNEL_VXR_V24V31 16 #define KERNEL_VXR_LOW (KERNEL_VXR_V0V7|KERNEL_VXR_V8V15) #define KERNEL_VXR_MID (KERNEL_VXR_V8V15|KERNEL_VXR_V16V23) #define KERNEL_VXR_HIGH (KERNEL_VXR_V16V23|KERNEL_VXR_V24V31) #define KERNEL_VXR (KERNEL_VXR_LOW|KERNEL_VXR_HIGH) #define KERNEL_FPR (KERNEL_FPC|KERNEL_VXR_LOW) struct kernel_fpu; /* * Note the functions below must be called with preemption disabled. * Do not enable preemption before calling __kernel_fpu_end() to prevent * an corruption of an existing kernel FPU state. * * Prefer using the kernel_fpu_begin()/kernel_fpu_end() pair of functions. */ void __kernel_fpu_begin(struct kernel_fpu *state, u32 flags); void __kernel_fpu_end(struct kernel_fpu *state, u32 flags); static inline void kernel_fpu_begin(struct kernel_fpu *state, u32 flags) { preempt_disable(); state->mask = S390_lowcore.fpu_flags; if (!test_cpu_flag(CIF_FPU)) /* Save user space FPU state and register contents */ save_fpu_regs(); else if (state->mask & flags) /* Save FPU/vector register in-use by the kernel */ __kernel_fpu_begin(state, flags); S390_lowcore.fpu_flags |= flags; } static inline void kernel_fpu_end(struct kernel_fpu *state, u32 flags) { S390_lowcore.fpu_flags = state->mask; if (state->mask & flags) /* Restore FPU/vector register in-use by the kernel */ __kernel_fpu_end(state, flags); preempt_enable(); } #endif /* _ASM_S390_FPU_API_H */