// SPDX-License-Identifier: GPL-2.0 /* * Copyright IBM Corp. 2012 * * Author(s): * Jan Glauber */ #include #include #include #include #include #include #include #include static struct kmem_cache *dma_region_table_cache; static struct kmem_cache *dma_page_table_cache; static int s390_iommu_strict; static int zpci_refresh_global(struct zpci_dev *zdev) { return zpci_refresh_trans((u64) zdev->fh << 32, zdev->start_dma, zdev->iommu_pages * PAGE_SIZE); } unsigned long *dma_alloc_cpu_table(void) { unsigned long *table, *entry; table = kmem_cache_alloc(dma_region_table_cache, GFP_ATOMIC); if (!table) return NULL; for (entry = table; entry < table + ZPCI_TABLE_ENTRIES; entry++) *entry = ZPCI_TABLE_INVALID; return table; } static void dma_free_cpu_table(void *table) { kmem_cache_free(dma_region_table_cache, table); } static unsigned long *dma_alloc_page_table(void) { unsigned long *table, *entry; table = kmem_cache_alloc(dma_page_table_cache, GFP_ATOMIC); if (!table) return NULL; for (entry = table; entry < table + ZPCI_PT_ENTRIES; entry++) *entry = ZPCI_PTE_INVALID; return table; } static void dma_free_page_table(void *table) { kmem_cache_free(dma_page_table_cache, table); } static unsigned long *dma_get_seg_table_origin(unsigned long *entry) { unsigned long *sto; if (reg_entry_isvalid(*entry)) sto = get_rt_sto(*entry); else { sto = dma_alloc_cpu_table(); if (!sto) return NULL; set_rt_sto(entry, sto); validate_rt_entry(entry); entry_clr_protected(entry); } return sto; } static unsigned long *dma_get_page_table_origin(unsigned long *entry) { unsigned long *pto; if (reg_entry_isvalid(*entry)) pto = get_st_pto(*entry); else { pto = dma_alloc_page_table(); if (!pto) return NULL; set_st_pto(entry, pto); validate_st_entry(entry); entry_clr_protected(entry); } return pto; } unsigned long *dma_walk_cpu_trans(unsigned long *rto, dma_addr_t dma_addr) { unsigned long *sto, *pto; unsigned int rtx, sx, px; rtx = calc_rtx(dma_addr); sto = dma_get_seg_table_origin(&rto[rtx]); if (!sto) return NULL; sx = calc_sx(dma_addr); pto = dma_get_page_table_origin(&sto[sx]); if (!pto) return NULL; px = calc_px(dma_addr); return &pto[px]; } void dma_update_cpu_trans(unsigned long *entry, void *page_addr, int flags) { if (flags & ZPCI_PTE_INVALID) { invalidate_pt_entry(entry); } else { set_pt_pfaa(entry, page_addr); validate_pt_entry(entry); } if (flags & ZPCI_TABLE_PROTECTED) entry_set_protected(entry); else entry_clr_protected(entry); } static int __dma_update_trans(struct zpci_dev *zdev, unsigned long pa, dma_addr_t dma_addr, size_t size, int flags) { unsigned int nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; u8 *page_addr = (u8 *) (pa & PAGE_MASK); unsigned long irq_flags; unsigned long *entry; int i, rc = 0; if (!nr_pages) return -EINVAL; spin_lock_irqsave(&zdev->dma_table_lock, irq_flags); if (!zdev->dma_table) { rc = -EINVAL; goto out_unlock; } for (i = 0; i < nr_pages; i++) { entry = dma_walk_cpu_trans(zdev->dma_table, dma_addr); if (!entry) { rc = -ENOMEM; goto undo_cpu_trans; } dma_update_cpu_trans(entry, page_addr, flags); page_addr += PAGE_SIZE; dma_addr += PAGE_SIZE; } undo_cpu_trans: if (rc && ((flags & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID)) { flags = ZPCI_PTE_INVALID; while (i-- > 0) { page_addr -= PAGE_SIZE; dma_addr -= PAGE_SIZE; entry = dma_walk_cpu_trans(zdev->dma_table, dma_addr); if (!entry) break; dma_update_cpu_trans(entry, page_addr, flags); } } out_unlock: spin_unlock_irqrestore(&zdev->dma_table_lock, irq_flags); return rc; } static int __dma_purge_tlb(struct zpci_dev *zdev, dma_addr_t dma_addr, size_t size, int flags) { unsigned long irqflags; int ret; /* * With zdev->tlb_refresh == 0, rpcit is not required to establish new * translations when previously invalid translation-table entries are * validated. With lazy unmap, rpcit is skipped for previously valid * entries, but a global rpcit is then required before any address can * be re-used, i.e. after each iommu bitmap wrap-around. */ if ((flags & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID) { if (!zdev->tlb_refresh) return 0; } else { if (!s390_iommu_strict) return 0; } ret = zpci_refresh_trans((u64) zdev->fh << 32, dma_addr, PAGE_ALIGN(size)); if (ret == -ENOMEM && !s390_iommu_strict) { /* enable the hypervisor to free some resources */ if (zpci_refresh_global(zdev)) goto out; spin_lock_irqsave(&zdev->iommu_bitmap_lock, irqflags); bitmap_andnot(zdev->iommu_bitmap, zdev->iommu_bitmap, zdev->lazy_bitmap, zdev->iommu_pages); bitmap_zero(zdev->lazy_bitmap, zdev->iommu_pages); spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, irqflags); ret = 0; } out: return ret; } static int dma_update_trans(struct zpci_dev *zdev, unsigned long pa, dma_addr_t dma_addr, size_t size, int flags) { int rc; rc = __dma_update_trans(zdev, pa, dma_addr, size, flags); if (rc) return rc; rc = __dma_purge_tlb(zdev, dma_addr, size, flags); if (rc && ((flags & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID)) __dma_update_trans(zdev, pa, dma_addr, size, ZPCI_PTE_INVALID); return rc; } void dma_free_seg_table(unsigned long entry) { unsigned long *sto = get_rt_sto(entry); int sx; for (sx = 0; sx < ZPCI_TABLE_ENTRIES; sx++) if (reg_entry_isvalid(sto[sx])) dma_free_page_table(get_st_pto(sto[sx])); dma_free_cpu_table(sto); } void dma_cleanup_tables(unsigned long *table) { int rtx; if (!table) return; for (rtx = 0; rtx < ZPCI_TABLE_ENTRIES; rtx++) if (reg_entry_isvalid(table[rtx])) dma_free_seg_table(table[rtx]); dma_free_cpu_table(table); } static unsigned long __dma_alloc_iommu(struct device *dev, unsigned long start, int size) { struct zpci_dev *zdev = to_zpci(to_pci_dev(dev)); return iommu_area_alloc(zdev->iommu_bitmap, zdev->iommu_pages, start, size, zdev->start_dma >> PAGE_SHIFT, dma_get_seg_boundary_nr_pages(dev, PAGE_SHIFT), 0); } static dma_addr_t dma_alloc_address(struct device *dev, int size) { struct zpci_dev *zdev = to_zpci(to_pci_dev(dev)); unsigned long offset, flags; spin_lock_irqsave(&zdev->iommu_bitmap_lock, flags); offset = __dma_alloc_iommu(dev, zdev->next_bit, size); if (offset == -1) { if (!s390_iommu_strict) { /* global flush before DMA addresses are reused */ if (zpci_refresh_global(zdev)) goto out_error; bitmap_andnot(zdev->iommu_bitmap, zdev->iommu_bitmap, zdev->lazy_bitmap, zdev->iommu_pages); bitmap_zero(zdev->lazy_bitmap, zdev->iommu_pages); } /* wrap-around */ offset = __dma_alloc_iommu(dev, 0, size); if (offset == -1) goto out_error; } zdev->next_bit = offset + size; spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags); return zdev->start_dma + offset * PAGE_SIZE; out_error: spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags); return DMA_MAPPING_ERROR; } static void dma_free_address(struct device *dev, dma_addr_t dma_addr, int size) { struct zpci_dev *zdev = to_zpci(to_pci_dev(dev)); unsigned long flags, offset; offset = (dma_addr - zdev->start_dma) >> PAGE_SHIFT; spin_lock_irqsave(&zdev->iommu_bitmap_lock, flags); if (!zdev->iommu_bitmap) goto out; if (s390_iommu_strict) bitmap_clear(zdev->iommu_bitmap, offset, size); else bitmap_set(zdev->lazy_bitmap, offset, size); out: spin_unlock_irqrestore(&zdev->iommu_bitmap_lock, flags); } static inline void zpci_err_dma(unsigned long rc, unsigned long addr) { struct { unsigned long rc; unsigned long addr; } __packed data = {rc, addr}; zpci_err_hex(&data, sizeof(data)); } static dma_addr_t s390_dma_map_pages(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction direction, unsigned long attrs) { struct zpci_dev *zdev = to_zpci(to_pci_dev(dev)); unsigned long pa = page_to_phys(page) + offset; int flags = ZPCI_PTE_VALID; unsigned long nr_pages; dma_addr_t dma_addr; int ret; /* This rounds up number of pages based on size and offset */ nr_pages = iommu_num_pages(pa, size, PAGE_SIZE); dma_addr = dma_alloc_address(dev, nr_pages); if (dma_addr == DMA_MAPPING_ERROR) { ret = -ENOSPC; goto out_err; } /* Use rounded up size */ size = nr_pages * PAGE_SIZE; if (direction == DMA_NONE || direction == DMA_TO_DEVICE) flags |= ZPCI_TABLE_PROTECTED; ret = dma_update_trans(zdev, pa, dma_addr, size, flags); if (ret) goto out_free; atomic64_add(nr_pages, &zdev->mapped_pages); return dma_addr + (offset & ~PAGE_MASK); out_free: dma_free_address(dev, dma_addr, nr_pages); out_err: zpci_err("map error:\n"); zpci_err_dma(ret, pa); return DMA_MAPPING_ERROR; } static void s390_dma_unmap_pages(struct device *dev, dma_addr_t dma_addr, size_t size, enum dma_data_direction direction, unsigned long attrs) { struct zpci_dev *zdev = to_zpci(to_pci_dev(dev)); int npages, ret; npages = iommu_num_pages(dma_addr, size, PAGE_SIZE); dma_addr = dma_addr & PAGE_MASK; ret = dma_update_trans(zdev, 0, dma_addr, npages * PAGE_SIZE, ZPCI_PTE_INVALID); if (ret) { zpci_err("unmap error:\n"); zpci_err_dma(ret, dma_addr); return; } atomic64_add(npages, &zdev->unmapped_pages); dma_free_address(dev, dma_addr, npages); } static void *s390_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag, unsigned long attrs) { struct zpci_dev *zdev = to_zpci(to_pci_dev(dev)); struct page *page; unsigned long pa; dma_addr_t map; size = PAGE_ALIGN(size); page = alloc_pages(flag | __GFP_ZERO, get_order(size)); if (!page) return NULL; pa = page_to_phys(page); map = s390_dma_map_pages(dev, page, 0, size, DMA_BIDIRECTIONAL, 0); if (dma_mapping_error(dev, map)) { free_pages(pa, get_order(size)); return NULL; } atomic64_add(size / PAGE_SIZE, &zdev->allocated_pages); if (dma_handle) *dma_handle = map; return (void *) pa; } static void s390_dma_free(struct device *dev, size_t size, void *pa, dma_addr_t dma_handle, unsigned long attrs) { struct zpci_dev *zdev = to_zpci(to_pci_dev(dev)); size = PAGE_ALIGN(size); atomic64_sub(size / PAGE_SIZE, &zdev->allocated_pages); s390_dma_unmap_pages(dev, dma_handle, size, DMA_BIDIRECTIONAL, 0); free_pages((unsigned long) pa, get_order(size)); } /* Map a segment into a contiguous dma address area */ static int __s390_dma_map_sg(struct device *dev, struct scatterlist *sg, size_t size, dma_addr_t *handle, enum dma_data_direction dir) { unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; struct zpci_dev *zdev = to_zpci(to_pci_dev(dev)); dma_addr_t dma_addr_base, dma_addr; int flags = ZPCI_PTE_VALID; struct scatterlist *s; unsigned long pa = 0; int ret; dma_addr_base = dma_alloc_address(dev, nr_pages); if (dma_addr_base == DMA_MAPPING_ERROR) return -ENOMEM; dma_addr = dma_addr_base; if (dir == DMA_NONE || dir == DMA_TO_DEVICE) flags |= ZPCI_TABLE_PROTECTED; for (s = sg; dma_addr < dma_addr_base + size; s = sg_next(s)) { pa = page_to_phys(sg_page(s)); ret = __dma_update_trans(zdev, pa, dma_addr, s->offset + s->length, flags); if (ret) goto unmap; dma_addr += s->offset + s->length; } ret = __dma_purge_tlb(zdev, dma_addr_base, size, flags); if (ret) goto unmap; *handle = dma_addr_base; atomic64_add(nr_pages, &zdev->mapped_pages); return ret; unmap: dma_update_trans(zdev, 0, dma_addr_base, dma_addr - dma_addr_base, ZPCI_PTE_INVALID); dma_free_address(dev, dma_addr_base, nr_pages); zpci_err("map error:\n"); zpci_err_dma(ret, pa); return ret; } static int s390_dma_map_sg(struct device *dev, struct scatterlist *sg, int nr_elements, enum dma_data_direction dir, unsigned long attrs) { struct scatterlist *s = sg, *start = sg, *dma = sg; unsigned int max = dma_get_max_seg_size(dev); unsigned int size = s->offset + s->length; unsigned int offset = s->offset; int count = 0, i, ret; for (i = 1; i < nr_elements; i++) { s = sg_next(s); s->dma_length = 0; if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) { ret = __s390_dma_map_sg(dev, start, size, &dma->dma_address, dir); if (ret) goto unmap; dma->dma_address += offset; dma->dma_length = size - offset; size = offset = s->offset; start = s; dma = sg_next(dma); count++; } size += s->length; } ret = __s390_dma_map_sg(dev, start, size, &dma->dma_address, dir); if (ret) goto unmap; dma->dma_address += offset; dma->dma_length = size - offset; return count + 1; unmap: for_each_sg(sg, s, count, i) s390_dma_unmap_pages(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs); return ret; } static void s390_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nr_elements, enum dma_data_direction dir, unsigned long attrs) { struct scatterlist *s; int i; for_each_sg(sg, s, nr_elements, i) { if (s->dma_length) s390_dma_unmap_pages(dev, s->dma_address, s->dma_length, dir, attrs); s->dma_address = 0; s->dma_length = 0; } } static unsigned long *bitmap_vzalloc(size_t bits, gfp_t flags) { size_t n = BITS_TO_LONGS(bits); size_t bytes; if (unlikely(check_mul_overflow(n, sizeof(unsigned long), &bytes))) return NULL; return vzalloc(bytes); } int zpci_dma_init_device(struct zpci_dev *zdev) { int rc; /* * At this point, if the device is part of an IOMMU domain, this would * be a strong hint towards a bug in the IOMMU API (common) code and/or * simultaneous access via IOMMU and DMA API. So let's issue a warning. */ WARN_ON(zdev->s390_domain); spin_lock_init(&zdev->iommu_bitmap_lock); spin_lock_init(&zdev->dma_table_lock); zdev->dma_table = dma_alloc_cpu_table(); if (!zdev->dma_table) { rc = -ENOMEM; goto out; } /* * Restrict the iommu bitmap size to the minimum of the following: * - main memory size * - 3-level pagetable address limit minus start_dma offset * - DMA address range allowed by the hardware (clp query pci fn) * * Also set zdev->end_dma to the actual end address of the usable * range, instead of the theoretical maximum as reported by hardware. */ zdev->start_dma = PAGE_ALIGN(zdev->start_dma); zdev->iommu_size = min3((u64) high_memory, ZPCI_TABLE_SIZE_RT - zdev->start_dma, zdev->end_dma - zdev->start_dma + 1); zdev->end_dma = zdev->start_dma + zdev->iommu_size - 1; zdev->iommu_pages = zdev->iommu_size >> PAGE_SHIFT; zdev->iommu_bitmap = bitmap_vzalloc(zdev->iommu_pages, GFP_KERNEL); if (!zdev->iommu_bitmap) { rc = -ENOMEM; goto free_dma_table; } if (!s390_iommu_strict) { zdev->lazy_bitmap = bitmap_vzalloc(zdev->iommu_pages, GFP_KERNEL); if (!zdev->lazy_bitmap) { rc = -ENOMEM; goto free_bitmap; } } if (zpci_register_ioat(zdev, 0, zdev->start_dma, zdev->end_dma, (u64)zdev->dma_table)) { rc = -EIO; goto free_bitmap; } return 0; free_bitmap: vfree(zdev->iommu_bitmap); zdev->iommu_bitmap = NULL; vfree(zdev->lazy_bitmap); zdev->lazy_bitmap = NULL; free_dma_table: dma_free_cpu_table(zdev->dma_table); zdev->dma_table = NULL; out: return rc; } int zpci_dma_exit_device(struct zpci_dev *zdev) { int cc = 0; /* * At this point, if the device is part of an IOMMU domain, this would * be a strong hint towards a bug in the IOMMU API (common) code and/or * simultaneous access via IOMMU and DMA API. So let's issue a warning. */ WARN_ON(zdev->s390_domain); if (zdev_enabled(zdev)) cc = zpci_unregister_ioat(zdev, 0); /* * cc == 3 indicates the function is gone already. This can happen * if the function was deconfigured/disabled suddenly and we have not * received a new handle yet. */ if (cc && cc != 3) return -EIO; dma_cleanup_tables(zdev->dma_table); zdev->dma_table = NULL; vfree(zdev->iommu_bitmap); zdev->iommu_bitmap = NULL; vfree(zdev->lazy_bitmap); zdev->lazy_bitmap = NULL; zdev->next_bit = 0; return 0; } static int __init dma_alloc_cpu_table_caches(void) { dma_region_table_cache = kmem_cache_create("PCI_DMA_region_tables", ZPCI_TABLE_SIZE, ZPCI_TABLE_ALIGN, 0, NULL); if (!dma_region_table_cache) return -ENOMEM; dma_page_table_cache = kmem_cache_create("PCI_DMA_page_tables", ZPCI_PT_SIZE, ZPCI_PT_ALIGN, 0, NULL); if (!dma_page_table_cache) { kmem_cache_destroy(dma_region_table_cache); return -ENOMEM; } return 0; } int __init zpci_dma_init(void) { return dma_alloc_cpu_table_caches(); } void zpci_dma_exit(void) { kmem_cache_destroy(dma_page_table_cache); kmem_cache_destroy(dma_region_table_cache); } const struct dma_map_ops s390_pci_dma_ops = { .alloc = s390_dma_alloc, .free = s390_dma_free, .map_sg = s390_dma_map_sg, .unmap_sg = s390_dma_unmap_sg, .map_page = s390_dma_map_pages, .unmap_page = s390_dma_unmap_pages, .mmap = dma_common_mmap, .get_sgtable = dma_common_get_sgtable, .alloc_pages = dma_common_alloc_pages, .free_pages = dma_common_free_pages, /* dma_supported is unconditionally true without a callback */ }; EXPORT_SYMBOL_GPL(s390_pci_dma_ops); static int __init s390_iommu_setup(char *str) { if (!strcmp(str, "strict")) s390_iommu_strict = 1; return 1; } __setup("s390_iommu=", s390_iommu_setup);