// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2016-20 Intel Corporation. */ #include #include #include #include #include #include #include #include #include #include #include #include "driver.h" #include "encl.h" #include "encls.h" struct sgx_epc_section sgx_epc_sections[SGX_MAX_EPC_SECTIONS]; static int sgx_nr_epc_sections; static struct task_struct *ksgxd_tsk; static DECLARE_WAIT_QUEUE_HEAD(ksgxd_waitq); /* * These variables are part of the state of the reclaimer, and must be accessed * with sgx_reclaimer_lock acquired. */ static LIST_HEAD(sgx_active_page_list); static DEFINE_SPINLOCK(sgx_reclaimer_lock); static atomic_long_t sgx_nr_free_pages = ATOMIC_LONG_INIT(0); /* Nodes with one or more EPC sections. */ static nodemask_t sgx_numa_mask; /* * Array with one list_head for each possible NUMA node. Each * list contains all the sgx_epc_section's which are on that * node. */ static struct sgx_numa_node *sgx_numa_nodes; static LIST_HEAD(sgx_dirty_page_list); /* * Reset post-kexec EPC pages to the uninitialized state. The pages are removed * from the input list, and made available for the page allocator. SECS pages * prepending their children in the input list are left intact. * * Return 0 when sanitization was successful or kthread was stopped, and the * number of unsanitized pages otherwise. */ static unsigned long __sgx_sanitize_pages(struct list_head *dirty_page_list) { unsigned long left_dirty = 0; struct sgx_epc_page *page; LIST_HEAD(dirty); int ret; /* dirty_page_list is thread-local, no need for a lock: */ while (!list_empty(dirty_page_list)) { if (kthread_should_stop()) return 0; page = list_first_entry(dirty_page_list, struct sgx_epc_page, list); ret = __eremove(sgx_get_epc_virt_addr(page)); if (!ret) { /* * page is now sanitized. Make it available via the SGX * page allocator: */ list_del(&page->list); sgx_free_epc_page(page); } else { /* The page is not yet clean - move to the dirty list. */ list_move_tail(&page->list, &dirty); left_dirty++; } cond_resched(); } list_splice(&dirty, dirty_page_list); return left_dirty; } static bool sgx_reclaimer_age(struct sgx_epc_page *epc_page) { struct sgx_encl_page *page = epc_page->owner; struct sgx_encl *encl = page->encl; struct sgx_encl_mm *encl_mm; bool ret = true; int idx; idx = srcu_read_lock(&encl->srcu); list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) { if (!mmget_not_zero(encl_mm->mm)) continue; mmap_read_lock(encl_mm->mm); ret = !sgx_encl_test_and_clear_young(encl_mm->mm, page); mmap_read_unlock(encl_mm->mm); mmput_async(encl_mm->mm); if (!ret) break; } srcu_read_unlock(&encl->srcu, idx); if (!ret) return false; return true; } static void sgx_reclaimer_block(struct sgx_epc_page *epc_page) { struct sgx_encl_page *page = epc_page->owner; unsigned long addr = page->desc & PAGE_MASK; struct sgx_encl *encl = page->encl; unsigned long mm_list_version; struct sgx_encl_mm *encl_mm; struct vm_area_struct *vma; int idx, ret; do { mm_list_version = encl->mm_list_version; /* Pairs with smp_rmb() in sgx_encl_mm_add(). */ smp_rmb(); idx = srcu_read_lock(&encl->srcu); list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) { if (!mmget_not_zero(encl_mm->mm)) continue; mmap_read_lock(encl_mm->mm); ret = sgx_encl_find(encl_mm->mm, addr, &vma); if (!ret && encl == vma->vm_private_data) zap_vma_ptes(vma, addr, PAGE_SIZE); mmap_read_unlock(encl_mm->mm); mmput_async(encl_mm->mm); } srcu_read_unlock(&encl->srcu, idx); } while (unlikely(encl->mm_list_version != mm_list_version)); mutex_lock(&encl->lock); ret = __eblock(sgx_get_epc_virt_addr(epc_page)); if (encls_failed(ret)) ENCLS_WARN(ret, "EBLOCK"); mutex_unlock(&encl->lock); } static int __sgx_encl_ewb(struct sgx_epc_page *epc_page, void *va_slot, struct sgx_backing *backing) { struct sgx_pageinfo pginfo; int ret; pginfo.addr = 0; pginfo.secs = 0; pginfo.contents = (unsigned long)kmap_atomic(backing->contents); pginfo.metadata = (unsigned long)kmap_atomic(backing->pcmd) + backing->pcmd_offset; ret = __ewb(&pginfo, sgx_get_epc_virt_addr(epc_page), va_slot); set_page_dirty(backing->pcmd); set_page_dirty(backing->contents); kunmap_atomic((void *)(unsigned long)(pginfo.metadata - backing->pcmd_offset)); kunmap_atomic((void *)(unsigned long)pginfo.contents); return ret; } static void sgx_ipi_cb(void *info) { } static const cpumask_t *sgx_encl_ewb_cpumask(struct sgx_encl *encl) { cpumask_t *cpumask = &encl->cpumask; struct sgx_encl_mm *encl_mm; int idx; /* * Can race with sgx_encl_mm_add(), but ETRACK has already been * executed, which means that the CPUs running in the new mm will enter * into the enclave with a fresh epoch. */ cpumask_clear(cpumask); idx = srcu_read_lock(&encl->srcu); list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) { if (!mmget_not_zero(encl_mm->mm)) continue; cpumask_or(cpumask, cpumask, mm_cpumask(encl_mm->mm)); mmput_async(encl_mm->mm); } srcu_read_unlock(&encl->srcu, idx); return cpumask; } /* * Swap page to the regular memory transformed to the blocked state by using * EBLOCK, which means that it can no longer be referenced (no new TLB entries). * * The first trial just tries to write the page assuming that some other thread * has reset the count for threads inside the enclave by using ETRACK, and * previous thread count has been zeroed out. The second trial calls ETRACK * before EWB. If that fails we kick all the HW threads out, and then do EWB, * which should be guaranteed the succeed. */ static void sgx_encl_ewb(struct sgx_epc_page *epc_page, struct sgx_backing *backing) { struct sgx_encl_page *encl_page = epc_page->owner; struct sgx_encl *encl = encl_page->encl; struct sgx_va_page *va_page; unsigned int va_offset; void *va_slot; int ret; encl_page->desc &= ~SGX_ENCL_PAGE_BEING_RECLAIMED; va_page = list_first_entry(&encl->va_pages, struct sgx_va_page, list); va_offset = sgx_alloc_va_slot(va_page); va_slot = sgx_get_epc_virt_addr(va_page->epc_page) + va_offset; if (sgx_va_page_full(va_page)) list_move_tail(&va_page->list, &encl->va_pages); ret = __sgx_encl_ewb(epc_page, va_slot, backing); if (ret == SGX_NOT_TRACKED) { ret = __etrack(sgx_get_epc_virt_addr(encl->secs.epc_page)); if (ret) { if (encls_failed(ret)) ENCLS_WARN(ret, "ETRACK"); } ret = __sgx_encl_ewb(epc_page, va_slot, backing); if (ret == SGX_NOT_TRACKED) { /* * Slow path, send IPIs to kick cpus out of the * enclave. Note, it's imperative that the cpu * mask is generated *after* ETRACK, else we'll * miss cpus that entered the enclave between * generating the mask and incrementing epoch. */ on_each_cpu_mask(sgx_encl_ewb_cpumask(encl), sgx_ipi_cb, NULL, 1); ret = __sgx_encl_ewb(epc_page, va_slot, backing); } } if (ret) { if (encls_failed(ret)) ENCLS_WARN(ret, "EWB"); sgx_free_va_slot(va_page, va_offset); } else { encl_page->desc |= va_offset; encl_page->va_page = va_page; } } static void sgx_reclaimer_write(struct sgx_epc_page *epc_page, struct sgx_backing *backing) { struct sgx_encl_page *encl_page = epc_page->owner; struct sgx_encl *encl = encl_page->encl; struct sgx_backing secs_backing; int ret; mutex_lock(&encl->lock); sgx_encl_ewb(epc_page, backing); encl_page->epc_page = NULL; encl->secs_child_cnt--; sgx_encl_put_backing(backing); if (!encl->secs_child_cnt && test_bit(SGX_ENCL_INITIALIZED, &encl->flags)) { ret = sgx_encl_alloc_backing(encl, PFN_DOWN(encl->size), &secs_backing); if (ret) goto out; sgx_encl_ewb(encl->secs.epc_page, &secs_backing); sgx_encl_free_epc_page(encl->secs.epc_page); encl->secs.epc_page = NULL; sgx_encl_put_backing(&secs_backing); } out: mutex_unlock(&encl->lock); } /* * Take a fixed number of pages from the head of the active page pool and * reclaim them to the enclave's private shmem files. Skip the pages, which have * been accessed since the last scan. Move those pages to the tail of active * page pool so that the pages get scanned in LRU like fashion. * * Batch process a chunk of pages (at the moment 16) in order to degrade amount * of IPI's and ETRACK's potentially required. sgx_encl_ewb() does degrade a bit * among the HW threads with three stage EWB pipeline (EWB, ETRACK + EWB and IPI * + EWB) but not sufficiently. Reclaiming one page at a time would also be * problematic as it would increase the lock contention too much, which would * halt forward progress. */ static void sgx_reclaim_pages(void) { struct sgx_epc_page *chunk[SGX_NR_TO_SCAN]; struct sgx_backing backing[SGX_NR_TO_SCAN]; struct sgx_epc_section *section; struct sgx_encl_page *encl_page; struct sgx_epc_page *epc_page; struct sgx_numa_node *node; pgoff_t page_index; int cnt = 0; int ret; int i; spin_lock(&sgx_reclaimer_lock); for (i = 0; i < SGX_NR_TO_SCAN; i++) { if (list_empty(&sgx_active_page_list)) break; epc_page = list_first_entry(&sgx_active_page_list, struct sgx_epc_page, list); list_del_init(&epc_page->list); encl_page = epc_page->owner; if (kref_get_unless_zero(&encl_page->encl->refcount) != 0) chunk[cnt++] = epc_page; else /* The owner is freeing the page. No need to add the * page back to the list of reclaimable pages. */ epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED; } spin_unlock(&sgx_reclaimer_lock); for (i = 0; i < cnt; i++) { epc_page = chunk[i]; encl_page = epc_page->owner; if (!sgx_reclaimer_age(epc_page)) goto skip; page_index = PFN_DOWN(encl_page->desc - encl_page->encl->base); mutex_lock(&encl_page->encl->lock); ret = sgx_encl_alloc_backing(encl_page->encl, page_index, &backing[i]); if (ret) { mutex_unlock(&encl_page->encl->lock); goto skip; } encl_page->desc |= SGX_ENCL_PAGE_BEING_RECLAIMED; mutex_unlock(&encl_page->encl->lock); continue; skip: spin_lock(&sgx_reclaimer_lock); list_add_tail(&epc_page->list, &sgx_active_page_list); spin_unlock(&sgx_reclaimer_lock); kref_put(&encl_page->encl->refcount, sgx_encl_release); chunk[i] = NULL; } for (i = 0; i < cnt; i++) { epc_page = chunk[i]; if (epc_page) sgx_reclaimer_block(epc_page); } for (i = 0; i < cnt; i++) { epc_page = chunk[i]; if (!epc_page) continue; encl_page = epc_page->owner; sgx_reclaimer_write(epc_page, &backing[i]); kref_put(&encl_page->encl->refcount, sgx_encl_release); epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED; section = &sgx_epc_sections[epc_page->section]; node = section->node; spin_lock(&node->lock); list_add_tail(&epc_page->list, &node->free_page_list); spin_unlock(&node->lock); atomic_long_inc(&sgx_nr_free_pages); } } static bool sgx_should_reclaim(unsigned long watermark) { return atomic_long_read(&sgx_nr_free_pages) < watermark && !list_empty(&sgx_active_page_list); } static int ksgxd(void *p) { set_freezable(); /* * Sanitize pages in order to recover from kexec(). The 2nd pass is * required for SECS pages, whose child pages blocked EREMOVE. */ __sgx_sanitize_pages(&sgx_dirty_page_list); WARN_ON(__sgx_sanitize_pages(&sgx_dirty_page_list)); while (!kthread_should_stop()) { if (try_to_freeze()) continue; wait_event_freezable(ksgxd_waitq, kthread_should_stop() || sgx_should_reclaim(SGX_NR_HIGH_PAGES)); if (sgx_should_reclaim(SGX_NR_HIGH_PAGES)) sgx_reclaim_pages(); cond_resched(); } return 0; } static bool __init sgx_page_reclaimer_init(void) { struct task_struct *tsk; tsk = kthread_run(ksgxd, NULL, "ksgxd"); if (IS_ERR(tsk)) return false; ksgxd_tsk = tsk; return true; } bool current_is_ksgxd(void) { return current == ksgxd_tsk; } static struct sgx_epc_page *__sgx_alloc_epc_page_from_node(int nid) { struct sgx_numa_node *node = &sgx_numa_nodes[nid]; struct sgx_epc_page *page = NULL; spin_lock(&node->lock); if (list_empty(&node->free_page_list)) { spin_unlock(&node->lock); return NULL; } page = list_first_entry(&node->free_page_list, struct sgx_epc_page, list); list_del_init(&page->list); spin_unlock(&node->lock); atomic_long_dec(&sgx_nr_free_pages); return page; } /** * __sgx_alloc_epc_page() - Allocate an EPC page * * Iterate through NUMA nodes and reserve ia free EPC page to the caller. Start * from the NUMA node, where the caller is executing. * * Return: * - an EPC page: A borrowed EPC pages were available. * - NULL: Out of EPC pages. */ struct sgx_epc_page *__sgx_alloc_epc_page(void) { struct sgx_epc_page *page; int nid_of_current = numa_node_id(); int nid = nid_of_current; if (node_isset(nid_of_current, sgx_numa_mask)) { page = __sgx_alloc_epc_page_from_node(nid_of_current); if (page) return page; } /* Fall back to the non-local NUMA nodes: */ while (true) { nid = next_node_in(nid, sgx_numa_mask); if (nid == nid_of_current) break; page = __sgx_alloc_epc_page_from_node(nid); if (page) return page; } return ERR_PTR(-ENOMEM); } /** * sgx_mark_page_reclaimable() - Mark a page as reclaimable * @page: EPC page * * Mark a page as reclaimable and add it to the active page list. Pages * are automatically removed from the active list when freed. */ void sgx_mark_page_reclaimable(struct sgx_epc_page *page) { spin_lock(&sgx_reclaimer_lock); page->flags |= SGX_EPC_PAGE_RECLAIMER_TRACKED; list_add_tail(&page->list, &sgx_active_page_list); spin_unlock(&sgx_reclaimer_lock); } /** * sgx_unmark_page_reclaimable() - Remove a page from the reclaim list * @page: EPC page * * Clear the reclaimable flag and remove the page from the active page list. * * Return: * 0 on success, * -EBUSY if the page is in the process of being reclaimed */ int sgx_unmark_page_reclaimable(struct sgx_epc_page *page) { spin_lock(&sgx_reclaimer_lock); if (page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED) { /* The page is being reclaimed. */ if (list_empty(&page->list)) { spin_unlock(&sgx_reclaimer_lock); return -EBUSY; } list_del(&page->list); page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED; } spin_unlock(&sgx_reclaimer_lock); return 0; } /** * sgx_alloc_epc_page() - Allocate an EPC page * @owner: the owner of the EPC page * @reclaim: reclaim pages if necessary * * Iterate through EPC sections and borrow a free EPC page to the caller. When a * page is no longer needed it must be released with sgx_free_epc_page(). If * @reclaim is set to true, directly reclaim pages when we are out of pages. No * mm's can be locked when @reclaim is set to true. * * Finally, wake up ksgxd when the number of pages goes below the watermark * before returning back to the caller. * * Return: * an EPC page, * -errno on error */ struct sgx_epc_page *sgx_alloc_epc_page(void *owner, bool reclaim) { struct sgx_epc_page *page; for ( ; ; ) { page = __sgx_alloc_epc_page(); if (!IS_ERR(page)) { page->owner = owner; break; } if (list_empty(&sgx_active_page_list)) return ERR_PTR(-ENOMEM); if (!reclaim) { page = ERR_PTR(-EBUSY); break; } if (signal_pending(current)) { page = ERR_PTR(-ERESTARTSYS); break; } sgx_reclaim_pages(); cond_resched(); } if (sgx_should_reclaim(SGX_NR_LOW_PAGES)) wake_up(&ksgxd_waitq); return page; } /** * sgx_free_epc_page() - Free an EPC page * @page: an EPC page * * Put the EPC page back to the list of free pages. It's the caller's * responsibility to make sure that the page is in uninitialized state. In other * words, do EREMOVE, EWB or whatever operation is necessary before calling * this function. */ void sgx_free_epc_page(struct sgx_epc_page *page) { struct sgx_epc_section *section = &sgx_epc_sections[page->section]; struct sgx_numa_node *node = section->node; spin_lock(&node->lock); list_add_tail(&page->list, &node->free_page_list); spin_unlock(&node->lock); atomic_long_inc(&sgx_nr_free_pages); } static bool __init sgx_setup_epc_section(u64 phys_addr, u64 size, unsigned long index, struct sgx_epc_section *section) { unsigned long nr_pages = size >> PAGE_SHIFT; unsigned long i; section->virt_addr = memremap(phys_addr, size, MEMREMAP_WB); if (!section->virt_addr) return false; section->pages = vmalloc(nr_pages * sizeof(struct sgx_epc_page)); if (!section->pages) { memunmap(section->virt_addr); return false; } section->phys_addr = phys_addr; for (i = 0; i < nr_pages; i++) { section->pages[i].section = index; section->pages[i].flags = 0; section->pages[i].owner = NULL; list_add_tail(§ion->pages[i].list, &sgx_dirty_page_list); } return true; } /** * A section metric is concatenated in a way that @low bits 12-31 define the * bits 12-31 of the metric and @high bits 0-19 define the bits 32-51 of the * metric. */ static inline u64 __init sgx_calc_section_metric(u64 low, u64 high) { return (low & GENMASK_ULL(31, 12)) + ((high & GENMASK_ULL(19, 0)) << 32); } static bool __init sgx_page_cache_init(void) { u32 eax, ebx, ecx, edx, type; u64 pa, size; int nid; int i; sgx_numa_nodes = kmalloc_array(num_possible_nodes(), sizeof(*sgx_numa_nodes), GFP_KERNEL); if (!sgx_numa_nodes) return false; for (i = 0; i < ARRAY_SIZE(sgx_epc_sections); i++) { cpuid_count(SGX_CPUID, i + SGX_CPUID_EPC, &eax, &ebx, &ecx, &edx); type = eax & SGX_CPUID_EPC_MASK; if (type == SGX_CPUID_EPC_INVALID) break; if (type != SGX_CPUID_EPC_SECTION) { pr_err_once("Unknown EPC section type: %u\n", type); break; } pa = sgx_calc_section_metric(eax, ebx); size = sgx_calc_section_metric(ecx, edx); pr_info("EPC section 0x%llx-0x%llx\n", pa, pa + size - 1); if (!sgx_setup_epc_section(pa, size, i, &sgx_epc_sections[i])) { pr_err("No free memory for an EPC section\n"); break; } nid = numa_map_to_online_node(phys_to_target_node(pa)); if (nid == NUMA_NO_NODE) { /* The physical address is already printed above. */ pr_warn(FW_BUG "Unable to map EPC section to online node. Fallback to the NUMA node 0.\n"); nid = 0; } if (!node_isset(nid, sgx_numa_mask)) { spin_lock_init(&sgx_numa_nodes[nid].lock); INIT_LIST_HEAD(&sgx_numa_nodes[nid].free_page_list); node_set(nid, sgx_numa_mask); } sgx_epc_sections[i].node = &sgx_numa_nodes[nid]; sgx_nr_epc_sections++; } if (!sgx_nr_epc_sections) { pr_err("There are zero EPC sections.\n"); return false; } return true; } /* * Update the SGX_LEPUBKEYHASH MSRs to the values specified by caller. * Bare-metal driver requires to update them to hash of enclave's signer * before EINIT. KVM needs to update them to guest's virtual MSR values * before doing EINIT from guest. */ void sgx_update_lepubkeyhash(u64 *lepubkeyhash) { int i; WARN_ON_ONCE(preemptible()); for (i = 0; i < 4; i++) wrmsrl(MSR_IA32_SGXLEPUBKEYHASH0 + i, lepubkeyhash[i]); } const struct file_operations sgx_provision_fops = { .owner = THIS_MODULE, }; static struct miscdevice sgx_dev_provision = { .minor = MISC_DYNAMIC_MINOR, .name = "sgx_provision", .nodename = "sgx_provision", .fops = &sgx_provision_fops, }; /** * sgx_set_attribute() - Update allowed attributes given file descriptor * @allowed_attributes: Pointer to allowed enclave attributes * @attribute_fd: File descriptor for specific attribute * * Append enclave attribute indicated by file descriptor to allowed * attributes. Currently only SGX_ATTR_PROVISIONKEY indicated by * /dev/sgx_provision is supported. * * Return: * -0: SGX_ATTR_PROVISIONKEY is appended to allowed_attributes * -EINVAL: Invalid, or not supported file descriptor */ int sgx_set_attribute(unsigned long *allowed_attributes, unsigned int attribute_fd) { struct file *file; file = fget(attribute_fd); if (!file) return -EINVAL; if (file->f_op != &sgx_provision_fops) { fput(file); return -EINVAL; } *allowed_attributes |= SGX_ATTR_PROVISIONKEY; fput(file); return 0; } EXPORT_SYMBOL_GPL(sgx_set_attribute); static int __init sgx_init(void) { int ret; int i; if (!cpu_feature_enabled(X86_FEATURE_SGX)) return -ENODEV; if (!sgx_page_cache_init()) return -ENOMEM; if (!sgx_page_reclaimer_init()) { ret = -ENOMEM; goto err_page_cache; } ret = misc_register(&sgx_dev_provision); if (ret) goto err_kthread; /* * Always try to initialize the native *and* KVM drivers. * The KVM driver is less picky than the native one and * can function if the native one is not supported on the * current system or fails to initialize. * * Error out only if both fail to initialize. */ ret = sgx_drv_init(); if (sgx_vepc_init() && ret) goto err_provision; return 0; err_provision: misc_deregister(&sgx_dev_provision); err_kthread: kthread_stop(ksgxd_tsk); err_page_cache: for (i = 0; i < sgx_nr_epc_sections; i++) { vfree(sgx_epc_sections[i].pages); memunmap(sgx_epc_sections[i].virt_addr); } return ret; } device_initcall(sgx_init);