// SPDX-License-Identifier: GPL-2.0-or-later /* * x86 SMP booting functions * * (c) 1995 Alan Cox, Building #3 * (c) 1998, 1999, 2000, 2009 Ingo Molnar * Copyright 2001 Andi Kleen, SuSE Labs. * * Much of the core SMP work is based on previous work by Thomas Radke, to * whom a great many thanks are extended. * * Thanks to Intel for making available several different Pentium, * Pentium Pro and Pentium-II/Xeon MP machines. * Original development of Linux SMP code supported by Caldera. * * Fixes * Felix Koop : NR_CPUS used properly * Jose Renau : Handle single CPU case. * Alan Cox : By repeated request 8) - Total BogoMIPS report. * Greg Wright : Fix for kernel stacks panic. * Erich Boleyn : MP v1.4 and additional changes. * Matthias Sattler : Changes for 2.1 kernel map. * Michel Lespinasse : Changes for 2.1 kernel map. * Michael Chastain : Change trampoline.S to gnu as. * Alan Cox : Dumb bug: 'B' step PPro's are fine * Ingo Molnar : Added APIC timers, based on code * from Jose Renau * Ingo Molnar : various cleanups and rewrites * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug. * Maciej W. Rozycki : Bits for genuine 82489DX APICs * Andi Kleen : Changed for SMP boot into long mode. * Martin J. Bligh : Added support for multi-quad systems * Dave Jones : Report invalid combinations of Athlon CPUs. * Rusty Russell : Hacked into shape for new "hotplug" boot process. * Andi Kleen : Converted to new state machine. * Ashok Raj : CPU hotplug support * Glauber Costa : i386 and x86_64 integration */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_ACPI_CPPC_LIB #include #endif /* representing HT siblings of each logical CPU */ DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map); EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); /* representing HT and core siblings of each logical CPU */ DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map); EXPORT_PER_CPU_SYMBOL(cpu_core_map); /* representing HT, core, and die siblings of each logical CPU */ DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map); EXPORT_PER_CPU_SYMBOL(cpu_die_map); DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map); /* Per CPU bogomips and other parameters */ DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info); EXPORT_PER_CPU_SYMBOL(cpu_info); struct mwait_cpu_dead { unsigned int control; unsigned int status; }; /* * Cache line aligned data for mwait_play_dead(). Separate on purpose so * that it's unlikely to be touched by other CPUs. */ static DEFINE_PER_CPU_ALIGNED(struct mwait_cpu_dead, mwait_cpu_dead); /* Logical package management. We might want to allocate that dynamically */ unsigned int __max_logical_packages __read_mostly; EXPORT_SYMBOL(__max_logical_packages); static unsigned int logical_packages __read_mostly; static unsigned int logical_die __read_mostly; /* Maximum number of SMT threads on any online core */ int __read_mostly __max_smt_threads = 1; /* Flag to indicate if a complete sched domain rebuild is required */ bool x86_topology_update; int arch_update_cpu_topology(void) { int retval = x86_topology_update; x86_topology_update = false; return retval; } static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip) { unsigned long flags; spin_lock_irqsave(&rtc_lock, flags); CMOS_WRITE(0xa, 0xf); spin_unlock_irqrestore(&rtc_lock, flags); *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) = start_eip >> 4; *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = start_eip & 0xf; } static inline void smpboot_restore_warm_reset_vector(void) { unsigned long flags; /* * Paranoid: Set warm reset code and vector here back * to default values. */ spin_lock_irqsave(&rtc_lock, flags); CMOS_WRITE(0, 0xf); spin_unlock_irqrestore(&rtc_lock, flags); *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0; } static void init_freq_invariance(bool secondary, bool cppc_ready); /* * Report back to the Boot Processor during boot time or to the caller processor * during CPU online. */ static void smp_callin(void) { int cpuid; /* * If waken up by an INIT in an 82489DX configuration * cpu_callout_mask guarantees we don't get here before * an INIT_deassert IPI reaches our local APIC, so it is * now safe to touch our local APIC. */ cpuid = smp_processor_id(); /* * the boot CPU has finished the init stage and is spinning * on callin_map until we finish. We are free to set up this * CPU, first the APIC. (this is probably redundant on most * boards) */ apic_ap_setup(); /* * Save our processor parameters. Note: this information * is needed for clock calibration. */ smp_store_cpu_info(cpuid); /* * The topology information must be up to date before * calibrate_delay() and notify_cpu_starting(). */ set_cpu_sibling_map(raw_smp_processor_id()); init_freq_invariance(true, false); /* * Get our bogomips. * Update loops_per_jiffy in cpu_data. Previous call to * smp_store_cpu_info() stored a value that is close but not as * accurate as the value just calculated. */ calibrate_delay(); cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy; pr_debug("Stack at about %p\n", &cpuid); wmb(); notify_cpu_starting(cpuid); /* * Allow the master to continue. */ cpumask_set_cpu(cpuid, cpu_callin_mask); } static int cpu0_logical_apicid; static int enable_start_cpu0; /* * Activate a secondary processor. */ static void notrace start_secondary(void *unused) { /* * Don't put *anything* except direct CPU state initialization * before cpu_init(), SMP booting is too fragile that we want to * limit the things done here to the most necessary things. */ cr4_init(); #ifdef CONFIG_X86_32 /* switch away from the initial page table */ load_cr3(swapper_pg_dir); __flush_tlb_all(); #endif cpu_init_secondary(); rcu_cpu_starting(raw_smp_processor_id()); x86_cpuinit.early_percpu_clock_init(); smp_callin(); enable_start_cpu0 = 0; /* otherwise gcc will move up smp_processor_id before the cpu_init */ barrier(); /* * Check TSC synchronization with the boot CPU: */ check_tsc_sync_target(); speculative_store_bypass_ht_init(); /* * Lock vector_lock, set CPU online and bring the vector * allocator online. Online must be set with vector_lock held * to prevent a concurrent irq setup/teardown from seeing a * half valid vector space. */ lock_vector_lock(); set_cpu_online(smp_processor_id(), true); lapic_online(); unlock_vector_lock(); cpu_set_state_online(smp_processor_id()); x86_platform.nmi_init(); /* enable local interrupts */ local_irq_enable(); x86_cpuinit.setup_percpu_clockev(); wmb(); cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); } /** * topology_is_primary_thread - Check whether CPU is the primary SMT thread * @cpu: CPU to check */ bool topology_is_primary_thread(unsigned int cpu) { return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu)); } /** * topology_smt_supported - Check whether SMT is supported by the CPUs */ bool topology_smt_supported(void) { return smp_num_siblings > 1; } /** * topology_phys_to_logical_pkg - Map a physical package id to a logical * * Returns logical package id or -1 if not found */ int topology_phys_to_logical_pkg(unsigned int phys_pkg) { int cpu; for_each_possible_cpu(cpu) { struct cpuinfo_x86 *c = &cpu_data(cpu); if (c->initialized && c->phys_proc_id == phys_pkg) return c->logical_proc_id; } return -1; } EXPORT_SYMBOL(topology_phys_to_logical_pkg); /** * topology_phys_to_logical_die - Map a physical die id to logical * * Returns logical die id or -1 if not found */ int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu) { int cpu; int proc_id = cpu_data(cur_cpu).phys_proc_id; for_each_possible_cpu(cpu) { struct cpuinfo_x86 *c = &cpu_data(cpu); if (c->initialized && c->cpu_die_id == die_id && c->phys_proc_id == proc_id) return c->logical_die_id; } return -1; } EXPORT_SYMBOL(topology_phys_to_logical_die); /** * topology_update_package_map - Update the physical to logical package map * @pkg: The physical package id as retrieved via CPUID * @cpu: The cpu for which this is updated */ int topology_update_package_map(unsigned int pkg, unsigned int cpu) { int new; /* Already available somewhere? */ new = topology_phys_to_logical_pkg(pkg); if (new >= 0) goto found; new = logical_packages++; if (new != pkg) { pr_info("CPU %u Converting physical %u to logical package %u\n", cpu, pkg, new); } found: cpu_data(cpu).logical_proc_id = new; return 0; } /** * topology_update_die_map - Update the physical to logical die map * @die: The die id as retrieved via CPUID * @cpu: The cpu for which this is updated */ int topology_update_die_map(unsigned int die, unsigned int cpu) { int new; /* Already available somewhere? */ new = topology_phys_to_logical_die(die, cpu); if (new >= 0) goto found; new = logical_die++; if (new != die) { pr_info("CPU %u Converting physical %u to logical die %u\n", cpu, die, new); } found: cpu_data(cpu).logical_die_id = new; return 0; } void __init smp_store_boot_cpu_info(void) { int id = 0; /* CPU 0 */ struct cpuinfo_x86 *c = &cpu_data(id); *c = boot_cpu_data; c->cpu_index = id; topology_update_package_map(c->phys_proc_id, id); topology_update_die_map(c->cpu_die_id, id); c->initialized = true; } /* * The bootstrap kernel entry code has set these up. Save them for * a given CPU */ void smp_store_cpu_info(int id) { struct cpuinfo_x86 *c = &cpu_data(id); /* Copy boot_cpu_data only on the first bringup */ if (!c->initialized) *c = boot_cpu_data; c->cpu_index = id; /* * During boot time, CPU0 has this setup already. Save the info when * bringing up AP or offlined CPU0. */ identify_secondary_cpu(c); c->initialized = true; } static bool topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) { int cpu1 = c->cpu_index, cpu2 = o->cpu_index; return (cpu_to_node(cpu1) == cpu_to_node(cpu2)); } static bool topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name) { int cpu1 = c->cpu_index, cpu2 = o->cpu_index; return !WARN_ONCE(!topology_same_node(c, o), "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! " "[node: %d != %d]. Ignoring dependency.\n", cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2)); } #define link_mask(mfunc, c1, c2) \ do { \ cpumask_set_cpu((c1), mfunc(c2)); \ cpumask_set_cpu((c2), mfunc(c1)); \ } while (0) static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) { if (boot_cpu_has(X86_FEATURE_TOPOEXT)) { int cpu1 = c->cpu_index, cpu2 = o->cpu_index; if (c->phys_proc_id == o->phys_proc_id && c->cpu_die_id == o->cpu_die_id && per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) { if (c->cpu_core_id == o->cpu_core_id) return topology_sane(c, o, "smt"); if ((c->cu_id != 0xff) && (o->cu_id != 0xff) && (c->cu_id == o->cu_id)) return topology_sane(c, o, "smt"); } } else if (c->phys_proc_id == o->phys_proc_id && c->cpu_die_id == o->cpu_die_id && c->cpu_core_id == o->cpu_core_id) { return topology_sane(c, o, "smt"); } return false; } static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) { if (c->phys_proc_id == o->phys_proc_id && c->cpu_die_id == o->cpu_die_id) return true; return false; } /* * Unlike the other levels, we do not enforce keeping a * multicore group inside a NUMA node. If this happens, we will * discard the MC level of the topology later. */ static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) { if (c->phys_proc_id == o->phys_proc_id) return true; return false; } /* * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs. * * Any Intel CPU that has multiple nodes per package and does not * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology. * * When in SNC mode, these CPUs enumerate an LLC that is shared * by multiple NUMA nodes. The LLC is shared for off-package data * access but private to the NUMA node (half of the package) for * on-package access. CPUID (the source of the information about * the LLC) can only enumerate the cache as shared or unshared, * but not this particular configuration. */ static const struct x86_cpu_id intel_cod_cpu[] = { X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0), /* COD */ X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0), /* COD */ X86_MATCH_INTEL_FAM6_MODEL(ANY, 1), /* SNC */ {} }; static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o) { const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu); int cpu1 = c->cpu_index, cpu2 = o->cpu_index; bool intel_snc = id && id->driver_data; /* Do not match if we do not have a valid APICID for cpu: */ if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID) return false; /* Do not match if LLC id does not match: */ if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2)) return false; /* * Allow the SNC topology without warning. Return of false * means 'c' does not share the LLC of 'o'. This will be * reflected to userspace. */ if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc) return false; return topology_sane(c, o, "llc"); } #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC) static inline int x86_sched_itmt_flags(void) { return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0; } #ifdef CONFIG_SCHED_MC static int x86_core_flags(void) { return cpu_core_flags() | x86_sched_itmt_flags(); } #endif #ifdef CONFIG_SCHED_SMT static int x86_smt_flags(void) { return cpu_smt_flags() | x86_sched_itmt_flags(); } #endif #endif static struct sched_domain_topology_level x86_numa_in_package_topology[] = { #ifdef CONFIG_SCHED_SMT { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) }, #endif #ifdef CONFIG_SCHED_MC { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) }, #endif { NULL, }, }; static struct sched_domain_topology_level x86_topology[] = { #ifdef CONFIG_SCHED_SMT { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) }, #endif #ifdef CONFIG_SCHED_MC { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) }, #endif { cpu_cpu_mask, SD_INIT_NAME(DIE) }, { NULL, }, }; /* * Set if a package/die has multiple NUMA nodes inside. * AMD Magny-Cours, Intel Cluster-on-Die, and Intel * Sub-NUMA Clustering have this. */ static bool x86_has_numa_in_package; void set_cpu_sibling_map(int cpu) { bool has_smt = smp_num_siblings > 1; bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1; struct cpuinfo_x86 *c = &cpu_data(cpu); struct cpuinfo_x86 *o; int i, threads; cpumask_set_cpu(cpu, cpu_sibling_setup_mask); if (!has_mp) { cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu)); cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu)); cpumask_set_cpu(cpu, topology_core_cpumask(cpu)); cpumask_set_cpu(cpu, topology_die_cpumask(cpu)); c->booted_cores = 1; return; } for_each_cpu(i, cpu_sibling_setup_mask) { o = &cpu_data(i); if (match_pkg(c, o) && !topology_same_node(c, o)) x86_has_numa_in_package = true; if ((i == cpu) || (has_smt && match_smt(c, o))) link_mask(topology_sibling_cpumask, cpu, i); if ((i == cpu) || (has_mp && match_llc(c, o))) link_mask(cpu_llc_shared_mask, cpu, i); if ((i == cpu) || (has_mp && match_die(c, o))) link_mask(topology_die_cpumask, cpu, i); } threads = cpumask_weight(topology_sibling_cpumask(cpu)); if (threads > __max_smt_threads) __max_smt_threads = threads; for_each_cpu(i, topology_sibling_cpumask(cpu)) cpu_data(i).smt_active = threads > 1; /* * This needs a separate iteration over the cpus because we rely on all * topology_sibling_cpumask links to be set-up. */ for_each_cpu(i, cpu_sibling_setup_mask) { o = &cpu_data(i); if ((i == cpu) || (has_mp && match_pkg(c, o))) { link_mask(topology_core_cpumask, cpu, i); /* * Does this new cpu bringup a new core? */ if (threads == 1) { /* * for each core in package, increment * the booted_cores for this new cpu */ if (cpumask_first( topology_sibling_cpumask(i)) == i) c->booted_cores++; /* * increment the core count for all * the other cpus in this package */ if (i != cpu) cpu_data(i).booted_cores++; } else if (i != cpu && !c->booted_cores) c->booted_cores = cpu_data(i).booted_cores; } } } /* maps the cpu to the sched domain representing multi-core */ const struct cpumask *cpu_coregroup_mask(int cpu) { return cpu_llc_shared_mask(cpu); } static void impress_friends(void) { int cpu; unsigned long bogosum = 0; /* * Allow the user to impress friends. */ pr_debug("Before bogomips\n"); for_each_possible_cpu(cpu) if (cpumask_test_cpu(cpu, cpu_callout_mask)) bogosum += cpu_data(cpu).loops_per_jiffy; pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n", num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100); pr_debug("Before bogocount - setting activated=1\n"); } void __inquire_remote_apic(int apicid) { unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 }; const char * const names[] = { "ID", "VERSION", "SPIV" }; int timeout; u32 status; pr_info("Inquiring remote APIC 0x%x...\n", apicid); for (i = 0; i < ARRAY_SIZE(regs); i++) { pr_info("... APIC 0x%x %s: ", apicid, names[i]); /* * Wait for idle. */ status = safe_apic_wait_icr_idle(); if (status) pr_cont("a previous APIC delivery may have failed\n"); apic_icr_write(APIC_DM_REMRD | regs[i], apicid); timeout = 0; do { udelay(100); status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK; } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000); switch (status) { case APIC_ICR_RR_VALID: status = apic_read(APIC_RRR); pr_cont("%08x\n", status); break; default: pr_cont("failed\n"); } } } /* * The Multiprocessor Specification 1.4 (1997) example code suggests * that there should be a 10ms delay between the BSP asserting INIT * and de-asserting INIT, when starting a remote processor. * But that slows boot and resume on modern processors, which include * many cores and don't require that delay. * * Cmdline "init_cpu_udelay=" is available to over-ride this delay. * Modern processor families are quirked to remove the delay entirely. */ #define UDELAY_10MS_DEFAULT 10000 static unsigned int init_udelay = UINT_MAX; static int __init cpu_init_udelay(char *str) { get_option(&str, &init_udelay); return 0; } early_param("cpu_init_udelay", cpu_init_udelay); static void __init smp_quirk_init_udelay(void) { /* if cmdline changed it from default, leave it alone */ if (init_udelay != UINT_MAX) return; /* if modern processor, use no delay */ if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) || ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) || ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) { init_udelay = 0; return; } /* else, use legacy delay */ init_udelay = UDELAY_10MS_DEFAULT; } /* * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this * won't ... remember to clear down the APIC, etc later. */ int wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip) { u32 dm = apic->dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL; unsigned long send_status, accept_status = 0; int maxlvt; /* Target chip */ /* Boot on the stack */ /* Kick the second */ apic_icr_write(APIC_DM_NMI | dm, apicid); pr_debug("Waiting for send to finish...\n"); send_status = safe_apic_wait_icr_idle(); /* * Give the other CPU some time to accept the IPI. */ udelay(200); if (APIC_INTEGRATED(boot_cpu_apic_version)) { maxlvt = lapic_get_maxlvt(); if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ apic_write(APIC_ESR, 0); accept_status = (apic_read(APIC_ESR) & 0xEF); } pr_debug("NMI sent\n"); if (send_status) pr_err("APIC never delivered???\n"); if (accept_status) pr_err("APIC delivery error (%lx)\n", accept_status); return (send_status | accept_status); } static int wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip) { unsigned long send_status = 0, accept_status = 0; int maxlvt, num_starts, j; maxlvt = lapic_get_maxlvt(); /* * Be paranoid about clearing APIC errors. */ if (APIC_INTEGRATED(boot_cpu_apic_version)) { if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ apic_write(APIC_ESR, 0); apic_read(APIC_ESR); } pr_debug("Asserting INIT\n"); /* * Turn INIT on target chip */ /* * Send IPI */ apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT, phys_apicid); pr_debug("Waiting for send to finish...\n"); send_status = safe_apic_wait_icr_idle(); udelay(init_udelay); pr_debug("Deasserting INIT\n"); /* Target chip */ /* Send IPI */ apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid); pr_debug("Waiting for send to finish...\n"); send_status = safe_apic_wait_icr_idle(); mb(); /* * Should we send STARTUP IPIs ? * * Determine this based on the APIC version. * If we don't have an integrated APIC, don't send the STARTUP IPIs. */ if (APIC_INTEGRATED(boot_cpu_apic_version)) num_starts = 2; else num_starts = 0; /* * Run STARTUP IPI loop. */ pr_debug("#startup loops: %d\n", num_starts); for (j = 1; j <= num_starts; j++) { pr_debug("Sending STARTUP #%d\n", j); if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ apic_write(APIC_ESR, 0); apic_read(APIC_ESR); pr_debug("After apic_write\n"); /* * STARTUP IPI */ /* Target chip */ /* Boot on the stack */ /* Kick the second */ apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12), phys_apicid); /* * Give the other CPU some time to accept the IPI. */ if (init_udelay == 0) udelay(10); else udelay(300); pr_debug("Startup point 1\n"); pr_debug("Waiting for send to finish...\n"); send_status = safe_apic_wait_icr_idle(); /* * Give the other CPU some time to accept the IPI. */ if (init_udelay == 0) udelay(10); else udelay(200); if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ apic_write(APIC_ESR, 0); accept_status = (apic_read(APIC_ESR) & 0xEF); if (send_status || accept_status) break; } pr_debug("After Startup\n"); if (send_status) pr_err("APIC never delivered???\n"); if (accept_status) pr_err("APIC delivery error (%lx)\n", accept_status); return (send_status | accept_status); } /* reduce the number of lines printed when booting a large cpu count system */ static void announce_cpu(int cpu, int apicid) { static int current_node = NUMA_NO_NODE; int node = early_cpu_to_node(cpu); static int width, node_width; if (!width) width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */ if (!node_width) node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */ if (cpu == 1) printk(KERN_INFO "x86: Booting SMP configuration:\n"); if (system_state < SYSTEM_RUNNING) { if (node != current_node) { if (current_node > (-1)) pr_cont("\n"); current_node = node; printk(KERN_INFO ".... node %*s#%d, CPUs: ", node_width - num_digits(node), " ", node); } /* Add padding for the BSP */ if (cpu == 1) pr_cont("%*s", width + 1, " "); pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu); } else pr_info("Booting Node %d Processor %d APIC 0x%x\n", node, cpu, apicid); } static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs) { int cpu; cpu = smp_processor_id(); if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0) return NMI_HANDLED; return NMI_DONE; } /* * Wake up AP by INIT, INIT, STARTUP sequence. * * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS * boot-strap code which is not a desired behavior for waking up BSP. To * void the boot-strap code, wake up CPU0 by NMI instead. * * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined * (i.e. physically hot removed and then hot added), NMI won't wake it up. * We'll change this code in the future to wake up hard offlined CPU0 if * real platform and request are available. */ static int wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid, int *cpu0_nmi_registered) { int id; int boot_error; preempt_disable(); /* * Wake up AP by INIT, INIT, STARTUP sequence. */ if (cpu) { boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip); goto out; } /* * Wake up BSP by nmi. * * Register a NMI handler to help wake up CPU0. */ boot_error = register_nmi_handler(NMI_LOCAL, wakeup_cpu0_nmi, 0, "wake_cpu0"); if (!boot_error) { enable_start_cpu0 = 1; *cpu0_nmi_registered = 1; id = apic->dest_mode_logical ? cpu0_logical_apicid : apicid; boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip); } out: preempt_enable(); return boot_error; } int common_cpu_up(unsigned int cpu, struct task_struct *idle) { int ret; /* Just in case we booted with a single CPU. */ alternatives_enable_smp(); per_cpu(current_task, cpu) = idle; cpu_init_stack_canary(cpu, idle); /* Initialize the interrupt stack(s) */ ret = irq_init_percpu_irqstack(cpu); if (ret) return ret; #ifdef CONFIG_X86_32 /* Stack for startup_32 can be just as for start_secondary onwards */ per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle); #else initial_gs = per_cpu_offset(cpu); #endif return 0; } /* * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad * (ie clustered apic addressing mode), this is a LOGICAL apic ID. * Returns zero if CPU booted OK, else error code from * ->wakeup_secondary_cpu. */ static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle, int *cpu0_nmi_registered) { /* start_ip had better be page-aligned! */ unsigned long start_ip = real_mode_header->trampoline_start; unsigned long boot_error = 0; unsigned long timeout; idle->thread.sp = (unsigned long)task_pt_regs(idle); early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu); initial_code = (unsigned long)start_secondary; initial_stack = idle->thread.sp; /* Enable the espfix hack for this CPU */ init_espfix_ap(cpu); /* So we see what's up */ announce_cpu(cpu, apicid); /* * This grunge runs the startup process for * the targeted processor. */ if (x86_platform.legacy.warm_reset) { pr_debug("Setting warm reset code and vector.\n"); smpboot_setup_warm_reset_vector(start_ip); /* * Be paranoid about clearing APIC errors. */ if (APIC_INTEGRATED(boot_cpu_apic_version)) { apic_write(APIC_ESR, 0); apic_read(APIC_ESR); } } /* * AP might wait on cpu_callout_mask in cpu_init() with * cpu_initialized_mask set if previous attempt to online * it timed-out. Clear cpu_initialized_mask so that after * INIT/SIPI it could start with a clean state. */ cpumask_clear_cpu(cpu, cpu_initialized_mask); smp_mb(); /* * Wake up a CPU in difference cases: * - Use the method in the APIC driver if it's defined * Otherwise, * - Use an INIT boot APIC message for APs or NMI for BSP. */ if (apic->wakeup_secondary_cpu) boot_error = apic->wakeup_secondary_cpu(apicid, start_ip); else boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid, cpu0_nmi_registered); if (!boot_error) { /* * Wait 10s total for first sign of life from AP */ boot_error = -1; timeout = jiffies + 10*HZ; while (time_before(jiffies, timeout)) { if (cpumask_test_cpu(cpu, cpu_initialized_mask)) { /* * Tell AP to proceed with initialization */ cpumask_set_cpu(cpu, cpu_callout_mask); boot_error = 0; break; } schedule(); } } if (!boot_error) { /* * Wait till AP completes initial initialization */ while (!cpumask_test_cpu(cpu, cpu_callin_mask)) { /* * Allow other tasks to run while we wait for the * AP to come online. This also gives a chance * for the MTRR work(triggered by the AP coming online) * to be completed in the stop machine context. */ schedule(); } } if (x86_platform.legacy.warm_reset) { /* * Cleanup possible dangling ends... */ smpboot_restore_warm_reset_vector(); } return boot_error; } int native_cpu_up(unsigned int cpu, struct task_struct *tidle) { int apicid = apic->cpu_present_to_apicid(cpu); int cpu0_nmi_registered = 0; unsigned long flags; int err, ret = 0; lockdep_assert_irqs_enabled(); pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu); if (apicid == BAD_APICID || !physid_isset(apicid, phys_cpu_present_map) || !apic->apic_id_valid(apicid)) { pr_err("%s: bad cpu %d\n", __func__, cpu); return -EINVAL; } /* * Already booted CPU? */ if (cpumask_test_cpu(cpu, cpu_callin_mask)) { pr_debug("do_boot_cpu %d Already started\n", cpu); return -ENOSYS; } /* * Save current MTRR state in case it was changed since early boot * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync: */ mtrr_save_state(); /* x86 CPUs take themselves offline, so delayed offline is OK. */ err = cpu_check_up_prepare(cpu); if (err && err != -EBUSY) return err; /* the FPU context is blank, nobody can own it */ per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL; err = common_cpu_up(cpu, tidle); if (err) return err; err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered); if (err) { pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu); ret = -EIO; goto unreg_nmi; } /* * Check TSC synchronization with the AP (keep irqs disabled * while doing so): */ local_irq_save(flags); check_tsc_sync_source(cpu); local_irq_restore(flags); while (!cpu_online(cpu)) { cpu_relax(); touch_nmi_watchdog(); } unreg_nmi: /* * Clean up the nmi handler. Do this after the callin and callout sync * to avoid impact of possible long unregister time. */ if (cpu0_nmi_registered) unregister_nmi_handler(NMI_LOCAL, "wake_cpu0"); return ret; } /** * arch_disable_smp_support() - disables SMP support for x86 at runtime */ void arch_disable_smp_support(void) { disable_ioapic_support(); } /* * Fall back to non SMP mode after errors. * * RED-PEN audit/test this more. I bet there is more state messed up here. */ static __init void disable_smp(void) { pr_info("SMP disabled\n"); disable_ioapic_support(); init_cpu_present(cpumask_of(0)); init_cpu_possible(cpumask_of(0)); if (smp_found_config) physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map); else physid_set_mask_of_physid(0, &phys_cpu_present_map); cpumask_set_cpu(0, topology_sibling_cpumask(0)); cpumask_set_cpu(0, topology_core_cpumask(0)); cpumask_set_cpu(0, topology_die_cpumask(0)); } /* * Various sanity checks. */ static void __init smp_sanity_check(void) { preempt_disable(); #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32) if (def_to_bigsmp && nr_cpu_ids > 8) { unsigned int cpu; unsigned nr; pr_warn("More than 8 CPUs detected - skipping them\n" "Use CONFIG_X86_BIGSMP\n"); nr = 0; for_each_present_cpu(cpu) { if (nr >= 8) set_cpu_present(cpu, false); nr++; } nr = 0; for_each_possible_cpu(cpu) { if (nr >= 8) set_cpu_possible(cpu, false); nr++; } nr_cpu_ids = 8; } #endif if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) { pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n", hard_smp_processor_id()); physid_set(hard_smp_processor_id(), phys_cpu_present_map); } /* * Should not be necessary because the MP table should list the boot * CPU too, but we do it for the sake of robustness anyway. */ if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) { pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n", boot_cpu_physical_apicid); physid_set(hard_smp_processor_id(), phys_cpu_present_map); } preempt_enable(); } static void __init smp_cpu_index_default(void) { int i; struct cpuinfo_x86 *c; for_each_possible_cpu(i) { c = &cpu_data(i); /* mark all to hotplug */ c->cpu_index = nr_cpu_ids; } } static void __init smp_get_logical_apicid(void) { if (x2apic_mode) cpu0_logical_apicid = apic_read(APIC_LDR); else cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR)); } /* * Prepare for SMP bootup. * @max_cpus: configured maximum number of CPUs, It is a legacy parameter * for common interface support. */ void __init native_smp_prepare_cpus(unsigned int max_cpus) { unsigned int i; smp_cpu_index_default(); /* * Setup boot CPU information */ smp_store_boot_cpu_info(); /* Final full version of the data */ cpumask_copy(cpu_callin_mask, cpumask_of(0)); mb(); for_each_possible_cpu(i) { zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL); zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL); zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL); zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL); } /* * Set 'default' x86 topology, this matches default_topology() in that * it has NUMA nodes as a topology level. See also * native_smp_cpus_done(). * * Must be done before set_cpus_sibling_map() is ran. */ set_sched_topology(x86_topology); set_cpu_sibling_map(0); init_freq_invariance(false, false); smp_sanity_check(); switch (apic_intr_mode) { case APIC_PIC: case APIC_VIRTUAL_WIRE_NO_CONFIG: disable_smp(); return; case APIC_SYMMETRIC_IO_NO_ROUTING: disable_smp(); /* Setup local timer */ x86_init.timers.setup_percpu_clockev(); return; case APIC_VIRTUAL_WIRE: case APIC_SYMMETRIC_IO: break; } /* Setup local timer */ x86_init.timers.setup_percpu_clockev(); smp_get_logical_apicid(); pr_info("CPU0: "); print_cpu_info(&cpu_data(0)); uv_system_init(); set_mtrr_aps_delayed_init(); smp_quirk_init_udelay(); speculative_store_bypass_ht_init(); } void arch_thaw_secondary_cpus_begin(void) { set_mtrr_aps_delayed_init(); } void arch_thaw_secondary_cpus_end(void) { mtrr_aps_init(); } /* * Early setup to make printk work. */ void __init native_smp_prepare_boot_cpu(void) { int me = smp_processor_id(); switch_to_new_gdt(me); /* already set me in cpu_online_mask in boot_cpu_init() */ cpumask_set_cpu(me, cpu_callout_mask); cpu_set_state_online(me); native_pv_lock_init(); } void __init calculate_max_logical_packages(void) { int ncpus; /* * Today neither Intel nor AMD support heterogeneous systems so * extrapolate the boot cpu's data to all packages. */ ncpus = cpu_data(0).booted_cores * topology_max_smt_threads(); __max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus); pr_info("Max logical packages: %u\n", __max_logical_packages); } void __init native_smp_cpus_done(unsigned int max_cpus) { pr_debug("Boot done\n"); calculate_max_logical_packages(); if (x86_has_numa_in_package) set_sched_topology(x86_numa_in_package_topology); nmi_selftest(); impress_friends(); mtrr_aps_init(); } static int __initdata setup_possible_cpus = -1; static int __init _setup_possible_cpus(char *str) { get_option(&str, &setup_possible_cpus); return 0; } early_param("possible_cpus", _setup_possible_cpus); /* * cpu_possible_mask should be static, it cannot change as cpu's * are onlined, or offlined. The reason is per-cpu data-structures * are allocated by some modules at init time, and don't expect to * do this dynamically on cpu arrival/departure. * cpu_present_mask on the other hand can change dynamically. * In case when cpu_hotplug is not compiled, then we resort to current * behaviour, which is cpu_possible == cpu_present. * - Ashok Raj * * Three ways to find out the number of additional hotplug CPUs: * - If the BIOS specified disabled CPUs in ACPI/mptables use that. * - The user can overwrite it with possible_cpus=NUM * - Otherwise don't reserve additional CPUs. * We do this because additional CPUs waste a lot of memory. * -AK */ __init void prefill_possible_map(void) { int i, possible; /* No boot processor was found in mptable or ACPI MADT */ if (!num_processors) { if (boot_cpu_has(X86_FEATURE_APIC)) { int apicid = boot_cpu_physical_apicid; int cpu = hard_smp_processor_id(); pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu); /* Make sure boot cpu is enumerated */ if (apic->cpu_present_to_apicid(0) == BAD_APICID && apic->apic_id_valid(apicid)) generic_processor_info(apicid, boot_cpu_apic_version); } if (!num_processors) num_processors = 1; } i = setup_max_cpus ?: 1; if (setup_possible_cpus == -1) { possible = num_processors; #ifdef CONFIG_HOTPLUG_CPU if (setup_max_cpus) possible += disabled_cpus; #else if (possible > i) possible = i; #endif } else possible = setup_possible_cpus; total_cpus = max_t(int, possible, num_processors + disabled_cpus); /* nr_cpu_ids could be reduced via nr_cpus= */ if (possible > nr_cpu_ids) { pr_warn("%d Processors exceeds NR_CPUS limit of %u\n", possible, nr_cpu_ids); possible = nr_cpu_ids; } #ifdef CONFIG_HOTPLUG_CPU if (!setup_max_cpus) #endif if (possible > i) { pr_warn("%d Processors exceeds max_cpus limit of %u\n", possible, setup_max_cpus); possible = i; } nr_cpu_ids = possible; pr_info("Allowing %d CPUs, %d hotplug CPUs\n", possible, max_t(int, possible - num_processors, 0)); reset_cpu_possible_mask(); for (i = 0; i < possible; i++) set_cpu_possible(i, true); } #ifdef CONFIG_HOTPLUG_CPU /* Recompute SMT state for all CPUs on offline */ static void recompute_smt_state(void) { int max_threads, cpu; max_threads = 0; for_each_online_cpu (cpu) { int threads = cpumask_weight(topology_sibling_cpumask(cpu)); if (threads > max_threads) max_threads = threads; } __max_smt_threads = max_threads; } static void remove_siblinginfo(int cpu) { int sibling; struct cpuinfo_x86 *c = &cpu_data(cpu); for_each_cpu(sibling, topology_core_cpumask(cpu)) { cpumask_clear_cpu(cpu, topology_core_cpumask(sibling)); /*/ * last thread sibling in this cpu core going down */ if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1) cpu_data(sibling).booted_cores--; } for_each_cpu(sibling, topology_die_cpumask(cpu)) cpumask_clear_cpu(cpu, topology_die_cpumask(sibling)); for_each_cpu(sibling, topology_sibling_cpumask(cpu)) { cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling)); if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1) cpu_data(sibling).smt_active = false; } for_each_cpu(sibling, cpu_llc_shared_mask(cpu)) cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling)); cpumask_clear(cpu_llc_shared_mask(cpu)); cpumask_clear(topology_sibling_cpumask(cpu)); cpumask_clear(topology_core_cpumask(cpu)); cpumask_clear(topology_die_cpumask(cpu)); c->cpu_core_id = 0; c->booted_cores = 0; cpumask_clear_cpu(cpu, cpu_sibling_setup_mask); recompute_smt_state(); } static void remove_cpu_from_maps(int cpu) { set_cpu_online(cpu, false); cpumask_clear_cpu(cpu, cpu_callout_mask); cpumask_clear_cpu(cpu, cpu_callin_mask); /* was set by cpu_init() */ cpumask_clear_cpu(cpu, cpu_initialized_mask); numa_remove_cpu(cpu); } void cpu_disable_common(void) { int cpu = smp_processor_id(); remove_siblinginfo(cpu); /* It's now safe to remove this processor from the online map */ lock_vector_lock(); remove_cpu_from_maps(cpu); unlock_vector_lock(); fixup_irqs(); lapic_offline(); } int native_cpu_disable(void) { int ret; ret = lapic_can_unplug_cpu(); if (ret) return ret; cpu_disable_common(); /* * Disable the local APIC. Otherwise IPI broadcasts will reach * it. It still responds normally to INIT, NMI, SMI, and SIPI * messages. * * Disabling the APIC must happen after cpu_disable_common() * which invokes fixup_irqs(). * * Disabling the APIC preserves already set bits in IRR, but * an interrupt arriving after disabling the local APIC does not * set the corresponding IRR bit. * * fixup_irqs() scans IRR for set bits so it can raise a not * yet handled interrupt on the new destination CPU via an IPI * but obviously it can't do so for IRR bits which are not set. * IOW, interrupts arriving after disabling the local APIC will * be lost. */ apic_soft_disable(); return 0; } int common_cpu_die(unsigned int cpu) { int ret = 0; /* We don't do anything here: idle task is faking death itself. */ /* They ack this in play_dead() by setting CPU_DEAD */ if (cpu_wait_death(cpu, 5)) { if (system_state == SYSTEM_RUNNING) pr_info("CPU %u is now offline\n", cpu); } else { pr_err("CPU %u didn't die...\n", cpu); ret = -1; } return ret; } void native_cpu_die(unsigned int cpu) { common_cpu_die(cpu); } void play_dead_common(void) { idle_task_exit(); /* Ack it */ (void)cpu_report_death(); /* * With physical CPU hotplug, we should halt the cpu */ local_irq_disable(); } /** * cond_wakeup_cpu0 - Wake up CPU0 if needed. * * If NMI wants to wake up CPU0, start CPU0. */ void cond_wakeup_cpu0(void) { if (smp_processor_id() == 0 && enable_start_cpu0) start_cpu0(); } EXPORT_SYMBOL_GPL(cond_wakeup_cpu0); /* * We need to flush the caches before going to sleep, lest we have * dirty data in our caches when we come back up. */ static inline void mwait_play_dead(void) { struct mwait_cpu_dead *md = this_cpu_ptr(&mwait_cpu_dead); unsigned int eax, ebx, ecx, edx; unsigned int highest_cstate = 0; unsigned int highest_subcstate = 0; int i; if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD || boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) return; if (!this_cpu_has(X86_FEATURE_MWAIT)) return; if (!this_cpu_has(X86_FEATURE_CLFLUSH)) return; if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF) return; eax = CPUID_MWAIT_LEAF; ecx = 0; native_cpuid(&eax, &ebx, &ecx, &edx); /* * eax will be 0 if EDX enumeration is not valid. * Initialized below to cstate, sub_cstate value when EDX is valid. */ if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) { eax = 0; } else { edx >>= MWAIT_SUBSTATE_SIZE; for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) { if (edx & MWAIT_SUBSTATE_MASK) { highest_cstate = i; highest_subcstate = edx & MWAIT_SUBSTATE_MASK; } } eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) | (highest_subcstate - 1); } wbinvd(); while (1) { /* * The CLFLUSH is a workaround for erratum AAI65 for * the Xeon 7400 series. It's not clear it is actually * needed, but it should be harmless in either case. * The WBINVD is insufficient due to the spurious-wakeup * case where we return around the loop. */ mb(); clflush(md); mb(); __monitor(md, 0, 0); mb(); __mwait(eax, 0); cond_wakeup_cpu0(); } } void hlt_play_dead(void) { if (__this_cpu_read(cpu_info.x86) >= 4) wbinvd(); while (1) { native_halt(); cond_wakeup_cpu0(); } } void native_play_dead(void) { play_dead_common(); tboot_shutdown(TB_SHUTDOWN_WFS); mwait_play_dead(); /* Only returns on failure */ if (cpuidle_play_dead()) hlt_play_dead(); } #else /* ... !CONFIG_HOTPLUG_CPU */ int native_cpu_disable(void) { return -ENOSYS; } void native_cpu_die(unsigned int cpu) { /* We said "no" in __cpu_disable */ BUG(); } void native_play_dead(void) { BUG(); } #endif #ifdef CONFIG_X86_64 /* * APERF/MPERF frequency ratio computation. * * The scheduler wants to do frequency invariant accounting and needs a <1 * ratio to account for the 'current' frequency, corresponding to * freq_curr / freq_max. * * Since the frequency freq_curr on x86 is controlled by micro-controller and * our P-state setting is little more than a request/hint, we need to observe * the effective frequency 'BusyMHz', i.e. the average frequency over a time * interval after discarding idle time. This is given by: * * BusyMHz = delta_APERF / delta_MPERF * freq_base * * where freq_base is the max non-turbo P-state. * * The freq_max term has to be set to a somewhat arbitrary value, because we * can't know which turbo states will be available at a given point in time: * it all depends on the thermal headroom of the entire package. We set it to * the turbo level with 4 cores active. * * Benchmarks show that's a good compromise between the 1C turbo ratio * (freq_curr/freq_max would rarely reach 1) and something close to freq_base, * which would ignore the entire turbo range (a conspicuous part, making * freq_curr/freq_max always maxed out). * * An exception to the heuristic above is the Atom uarch, where we choose the * highest turbo level for freq_max since Atom's are generally oriented towards * power efficiency. * * Setting freq_max to anything less than the 1C turbo ratio makes the ratio * freq_curr / freq_max to eventually grow >1, in which case we clip it to 1. */ DEFINE_STATIC_KEY_FALSE(arch_scale_freq_key); static DEFINE_PER_CPU(u64, arch_prev_aperf); static DEFINE_PER_CPU(u64, arch_prev_mperf); static u64 arch_turbo_freq_ratio = SCHED_CAPACITY_SCALE; static u64 arch_max_freq_ratio = SCHED_CAPACITY_SCALE; void arch_set_max_freq_ratio(bool turbo_disabled) { arch_max_freq_ratio = turbo_disabled ? SCHED_CAPACITY_SCALE : arch_turbo_freq_ratio; } EXPORT_SYMBOL_GPL(arch_set_max_freq_ratio); static bool turbo_disabled(void) { u64 misc_en; int err; err = rdmsrl_safe(MSR_IA32_MISC_ENABLE, &misc_en); if (err) return false; return (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE); } static bool slv_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq) { int err; err = rdmsrl_safe(MSR_ATOM_CORE_RATIOS, base_freq); if (err) return false; err = rdmsrl_safe(MSR_ATOM_CORE_TURBO_RATIOS, turbo_freq); if (err) return false; *base_freq = (*base_freq >> 16) & 0x3F; /* max P state */ *turbo_freq = *turbo_freq & 0x3F; /* 1C turbo */ return true; } #define X86_MATCH(model) \ X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, \ INTEL_FAM6_##model, X86_FEATURE_APERFMPERF, NULL) static const struct x86_cpu_id has_knl_turbo_ratio_limits[] = { X86_MATCH(XEON_PHI_KNL), X86_MATCH(XEON_PHI_KNM), {} }; static const struct x86_cpu_id has_skx_turbo_ratio_limits[] = { X86_MATCH(SKYLAKE_X), {} }; static const struct x86_cpu_id has_glm_turbo_ratio_limits[] = { X86_MATCH(ATOM_GOLDMONT), X86_MATCH(ATOM_GOLDMONT_D), X86_MATCH(ATOM_GOLDMONT_PLUS), {} }; static bool knl_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int num_delta_fratio) { int fratio, delta_fratio, found; int err, i; u64 msr; err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq); if (err) return false; *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */ err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr); if (err) return false; fratio = (msr >> 8) & 0xFF; i = 16; found = 0; do { if (found >= num_delta_fratio) { *turbo_freq = fratio; return true; } delta_fratio = (msr >> (i + 5)) & 0x7; if (delta_fratio) { found += 1; fratio -= delta_fratio; } i += 8; } while (i < 64); return true; } static bool skx_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int size) { u64 ratios, counts; u32 group_size; int err, i; err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq); if (err) return false; *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */ err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &ratios); if (err) return false; err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT1, &counts); if (err) return false; for (i = 0; i < 64; i += 8) { group_size = (counts >> i) & 0xFF; if (group_size >= size) { *turbo_freq = (ratios >> i) & 0xFF; return true; } } return false; } static bool core_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq) { u64 msr; int err; err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq); if (err) return false; err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr); if (err) return false; *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */ *turbo_freq = (msr >> 24) & 0xFF; /* 4C turbo */ /* The CPU may have less than 4 cores */ if (!*turbo_freq) *turbo_freq = msr & 0xFF; /* 1C turbo */ return true; } static bool intel_set_max_freq_ratio(void) { u64 base_freq, turbo_freq; u64 turbo_ratio; if (slv_set_max_freq_ratio(&base_freq, &turbo_freq)) goto out; if (x86_match_cpu(has_glm_turbo_ratio_limits) && skx_set_max_freq_ratio(&base_freq, &turbo_freq, 1)) goto out; if (x86_match_cpu(has_knl_turbo_ratio_limits) && knl_set_max_freq_ratio(&base_freq, &turbo_freq, 1)) goto out; if (x86_match_cpu(has_skx_turbo_ratio_limits) && skx_set_max_freq_ratio(&base_freq, &turbo_freq, 4)) goto out; if (core_set_max_freq_ratio(&base_freq, &turbo_freq)) goto out; return false; out: /* * Some hypervisors advertise X86_FEATURE_APERFMPERF * but then fill all MSR's with zeroes. * Some CPUs have turbo boost but don't declare any turbo ratio * in MSR_TURBO_RATIO_LIMIT. */ if (!base_freq || !turbo_freq) { pr_debug("Couldn't determine cpu base or turbo frequency, necessary for scale-invariant accounting.\n"); return false; } turbo_ratio = div_u64(turbo_freq * SCHED_CAPACITY_SCALE, base_freq); if (!turbo_ratio) { pr_debug("Non-zero turbo and base frequencies led to a 0 ratio.\n"); return false; } arch_turbo_freq_ratio = turbo_ratio; arch_set_max_freq_ratio(turbo_disabled()); return true; } #ifdef CONFIG_ACPI_CPPC_LIB static bool amd_set_max_freq_ratio(void) { struct cppc_perf_caps perf_caps; u64 highest_perf, nominal_perf; u64 perf_ratio; int rc; rc = cppc_get_perf_caps(0, &perf_caps); if (rc) { pr_debug("Could not retrieve perf counters (%d)\n", rc); return false; } highest_perf = amd_get_highest_perf(); nominal_perf = perf_caps.nominal_perf; if (!highest_perf || !nominal_perf) { pr_debug("Could not retrieve highest or nominal performance\n"); return false; } perf_ratio = div_u64(highest_perf * SCHED_CAPACITY_SCALE, nominal_perf); /* midpoint between max_boost and max_P */ perf_ratio = (perf_ratio + SCHED_CAPACITY_SCALE) >> 1; if (!perf_ratio) { pr_debug("Non-zero highest/nominal perf values led to a 0 ratio\n"); return false; } arch_turbo_freq_ratio = perf_ratio; arch_set_max_freq_ratio(false); return true; } #else static bool amd_set_max_freq_ratio(void) { return false; } #endif static void init_counter_refs(void) { u64 aperf, mperf; rdmsrl(MSR_IA32_APERF, aperf); rdmsrl(MSR_IA32_MPERF, mperf); this_cpu_write(arch_prev_aperf, aperf); this_cpu_write(arch_prev_mperf, mperf); } #ifdef CONFIG_PM_SLEEP static struct syscore_ops freq_invariance_syscore_ops = { .resume = init_counter_refs, }; static void register_freq_invariance_syscore_ops(void) { /* Bail out if registered already. */ if (freq_invariance_syscore_ops.node.prev) return; register_syscore_ops(&freq_invariance_syscore_ops); } #else static inline void register_freq_invariance_syscore_ops(void) {} #endif static void init_freq_invariance(bool secondary, bool cppc_ready) { bool ret = false; if (!boot_cpu_has(X86_FEATURE_APERFMPERF)) return; if (secondary) { if (static_branch_likely(&arch_scale_freq_key)) { init_counter_refs(); } return; } if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) ret = intel_set_max_freq_ratio(); else if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) { if (!cppc_ready) { return; } ret = amd_set_max_freq_ratio(); } if (ret) { init_counter_refs(); static_branch_enable(&arch_scale_freq_key); register_freq_invariance_syscore_ops(); pr_info("Estimated ratio of average max frequency by base frequency (times 1024): %llu\n", arch_max_freq_ratio); } else { pr_debug("Couldn't determine max cpu frequency, necessary for scale-invariant accounting.\n"); } } #ifdef CONFIG_ACPI_CPPC_LIB static DEFINE_MUTEX(freq_invariance_lock); void init_freq_invariance_cppc(void) { static bool secondary; mutex_lock(&freq_invariance_lock); init_freq_invariance(secondary, true); secondary = true; mutex_unlock(&freq_invariance_lock); } #endif static void disable_freq_invariance_workfn(struct work_struct *work) { static_branch_disable(&arch_scale_freq_key); } static DECLARE_WORK(disable_freq_invariance_work, disable_freq_invariance_workfn); DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE; void arch_scale_freq_tick(void) { u64 freq_scale = SCHED_CAPACITY_SCALE; u64 aperf, mperf; u64 acnt, mcnt; if (!arch_scale_freq_invariant()) return; rdmsrl(MSR_IA32_APERF, aperf); rdmsrl(MSR_IA32_MPERF, mperf); acnt = aperf - this_cpu_read(arch_prev_aperf); mcnt = mperf - this_cpu_read(arch_prev_mperf); this_cpu_write(arch_prev_aperf, aperf); this_cpu_write(arch_prev_mperf, mperf); if (check_shl_overflow(acnt, 2*SCHED_CAPACITY_SHIFT, &acnt)) goto error; if (check_mul_overflow(mcnt, arch_max_freq_ratio, &mcnt) || !mcnt) goto error; freq_scale = div64_u64(acnt, mcnt); if (!freq_scale) goto error; if (freq_scale > SCHED_CAPACITY_SCALE) freq_scale = SCHED_CAPACITY_SCALE; this_cpu_write(arch_freq_scale, freq_scale); return; error: pr_warn("Scheduler frequency invariance went wobbly, disabling!\n"); schedule_work(&disable_freq_invariance_work); } #else static inline void init_freq_invariance(bool secondary, bool cppc_ready) { } #endif /* CONFIG_X86_64 */