// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2021 Intel Corporation. */ #include #include "cpuid.h" #include "kvm_cache_regs.h" #include "nested.h" #include "sgx.h" #include "vmx.h" #include "x86.h" bool __read_mostly enable_sgx = 1; module_param_named(sgx, enable_sgx, bool, 0444); /* Initial value of guest's virtual SGX_LEPUBKEYHASHn MSRs */ static u64 sgx_pubkey_hash[4] __ro_after_init; /* * ENCLS's memory operands use a fixed segment (DS) and a fixed * address size based on the mode. Related prefixes are ignored. */ static int sgx_get_encls_gva(struct kvm_vcpu *vcpu, unsigned long offset, int size, int alignment, gva_t *gva) { struct kvm_segment s; bool fault; /* Skip vmcs.GUEST_DS retrieval for 64-bit mode to avoid VMREADs. */ *gva = offset; if (!is_long_mode(vcpu)) { vmx_get_segment(vcpu, &s, VCPU_SREG_DS); *gva += s.base; } if (!IS_ALIGNED(*gva, alignment)) { fault = true; } else if (likely(is_long_mode(vcpu))) { fault = is_noncanonical_address(*gva, vcpu); } else { *gva &= 0xffffffff; fault = (s.unusable) || (s.type != 2 && s.type != 3) || (*gva > s.limit) || ((s.base != 0 || s.limit != 0xffffffff) && (((u64)*gva + size - 1) > s.limit + 1)); } if (fault) kvm_inject_gp(vcpu, 0); return fault ? -EINVAL : 0; } static void sgx_handle_emulation_failure(struct kvm_vcpu *vcpu, u64 addr, unsigned int size) { vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; vcpu->run->internal.ndata = 2; vcpu->run->internal.data[0] = addr; vcpu->run->internal.data[1] = size; } static int sgx_read_hva(struct kvm_vcpu *vcpu, unsigned long hva, void *data, unsigned int size) { if (__copy_from_user(data, (void __user *)hva, size)) { sgx_handle_emulation_failure(vcpu, hva, size); return -EFAULT; } return 0; } static int sgx_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t gva, bool write, gpa_t *gpa) { struct x86_exception ex; if (write) *gpa = kvm_mmu_gva_to_gpa_write(vcpu, gva, &ex); else *gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, &ex); if (*gpa == UNMAPPED_GVA) { kvm_inject_emulated_page_fault(vcpu, &ex); return -EFAULT; } return 0; } static int sgx_gpa_to_hva(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned long *hva) { *hva = kvm_vcpu_gfn_to_hva(vcpu, PFN_DOWN(gpa)); if (kvm_is_error_hva(*hva)) { sgx_handle_emulation_failure(vcpu, gpa, 1); return -EFAULT; } *hva |= gpa & ~PAGE_MASK; return 0; } static int sgx_inject_fault(struct kvm_vcpu *vcpu, gva_t gva, int trapnr) { struct x86_exception ex; /* * A non-EPCM #PF indicates a bad userspace HVA. This *should* check * for PFEC.SGX and not assume any #PF on SGX2 originated in the EPC, * but the error code isn't (yet) plumbed through the ENCLS helpers. */ if (trapnr == PF_VECTOR && !boot_cpu_has(X86_FEATURE_SGX2)) { vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; vcpu->run->internal.ndata = 0; return 0; } /* * If the guest thinks it's running on SGX2 hardware, inject an SGX * #PF if the fault matches an EPCM fault signature (#GP on SGX1, * #PF on SGX2). The assumption is that EPCM faults are much more * likely than a bad userspace address. */ if ((trapnr == PF_VECTOR || !boot_cpu_has(X86_FEATURE_SGX2)) && guest_cpuid_has(vcpu, X86_FEATURE_SGX2)) { memset(&ex, 0, sizeof(ex)); ex.vector = PF_VECTOR; ex.error_code = PFERR_PRESENT_MASK | PFERR_WRITE_MASK | PFERR_SGX_MASK; ex.address = gva; ex.error_code_valid = true; ex.nested_page_fault = false; kvm_inject_page_fault(vcpu, &ex); } else { kvm_inject_gp(vcpu, 0); } return 1; } static int __handle_encls_ecreate(struct kvm_vcpu *vcpu, struct sgx_pageinfo *pageinfo, unsigned long secs_hva, gva_t secs_gva) { struct sgx_secs *contents = (struct sgx_secs *)pageinfo->contents; struct kvm_cpuid_entry2 *sgx_12_0, *sgx_12_1; u64 attributes, xfrm, size; u32 miscselect; u8 max_size_log2; int trapnr, ret; sgx_12_0 = kvm_find_cpuid_entry(vcpu, 0x12, 0); sgx_12_1 = kvm_find_cpuid_entry(vcpu, 0x12, 1); if (!sgx_12_0 || !sgx_12_1) { vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; vcpu->run->internal.ndata = 0; return 0; } miscselect = contents->miscselect; attributes = contents->attributes; xfrm = contents->xfrm; size = contents->size; /* Enforce restriction of access to the PROVISIONKEY. */ if (!vcpu->kvm->arch.sgx_provisioning_allowed && (attributes & SGX_ATTR_PROVISIONKEY)) { if (sgx_12_1->eax & SGX_ATTR_PROVISIONKEY) pr_warn_once("KVM: SGX PROVISIONKEY advertised but not allowed\n"); kvm_inject_gp(vcpu, 0); return 1; } /* Enforce CPUID restrictions on MISCSELECT, ATTRIBUTES and XFRM. */ if ((u32)miscselect & ~sgx_12_0->ebx || (u32)attributes & ~sgx_12_1->eax || (u32)(attributes >> 32) & ~sgx_12_1->ebx || (u32)xfrm & ~sgx_12_1->ecx || (u32)(xfrm >> 32) & ~sgx_12_1->edx) { kvm_inject_gp(vcpu, 0); return 1; } /* Enforce CPUID restriction on max enclave size. */ max_size_log2 = (attributes & SGX_ATTR_MODE64BIT) ? sgx_12_0->edx >> 8 : sgx_12_0->edx; if (size >= BIT_ULL(max_size_log2)) { kvm_inject_gp(vcpu, 0); return 1; } /* * sgx_virt_ecreate() returns: * 1) 0: ECREATE was successful * 2) -EFAULT: ECREATE was run but faulted, and trapnr was set to the * exception number. * 3) -EINVAL: access_ok() on @secs_hva failed. This should never * happen as KVM checks host addresses at memslot creation. * sgx_virt_ecreate() has already warned in this case. */ ret = sgx_virt_ecreate(pageinfo, (void __user *)secs_hva, &trapnr); if (!ret) return kvm_skip_emulated_instruction(vcpu); if (ret == -EFAULT) return sgx_inject_fault(vcpu, secs_gva, trapnr); return ret; } static int handle_encls_ecreate(struct kvm_vcpu *vcpu) { gva_t pageinfo_gva, secs_gva; gva_t metadata_gva, contents_gva; gpa_t metadata_gpa, contents_gpa, secs_gpa; unsigned long metadata_hva, contents_hva, secs_hva; struct sgx_pageinfo pageinfo; struct sgx_secs *contents; struct x86_exception ex; int r; if (sgx_get_encls_gva(vcpu, kvm_rbx_read(vcpu), 32, 32, &pageinfo_gva) || sgx_get_encls_gva(vcpu, kvm_rcx_read(vcpu), 4096, 4096, &secs_gva)) return 1; /* * Copy the PAGEINFO to local memory, its pointers need to be * translated, i.e. we need to do a deep copy/translate. */ r = kvm_read_guest_virt(vcpu, pageinfo_gva, &pageinfo, sizeof(pageinfo), &ex); if (r == X86EMUL_PROPAGATE_FAULT) { kvm_inject_emulated_page_fault(vcpu, &ex); return 1; } else if (r != X86EMUL_CONTINUE) { sgx_handle_emulation_failure(vcpu, pageinfo_gva, sizeof(pageinfo)); return 0; } if (sgx_get_encls_gva(vcpu, pageinfo.metadata, 64, 64, &metadata_gva) || sgx_get_encls_gva(vcpu, pageinfo.contents, 4096, 4096, &contents_gva)) return 1; /* * Translate the SECINFO, SOURCE and SECS pointers from GVA to GPA. * Resume the guest on failure to inject a #PF. */ if (sgx_gva_to_gpa(vcpu, metadata_gva, false, &metadata_gpa) || sgx_gva_to_gpa(vcpu, contents_gva, false, &contents_gpa) || sgx_gva_to_gpa(vcpu, secs_gva, true, &secs_gpa)) return 1; /* * ...and then to HVA. The order of accesses isn't architectural, i.e. * KVM doesn't have to fully process one address at a time. Exit to * userspace if a GPA is invalid. */ if (sgx_gpa_to_hva(vcpu, metadata_gpa, &metadata_hva) || sgx_gpa_to_hva(vcpu, contents_gpa, &contents_hva) || sgx_gpa_to_hva(vcpu, secs_gpa, &secs_hva)) return 0; /* * Copy contents into kernel memory to prevent TOCTOU attack. E.g. the * guest could do ECREATE w/ SECS.SGX_ATTR_PROVISIONKEY=0, and * simultaneously set SGX_ATTR_PROVISIONKEY to bypass the check to * enforce restriction of access to the PROVISIONKEY. */ contents = (struct sgx_secs *)__get_free_page(GFP_KERNEL_ACCOUNT); if (!contents) return -ENOMEM; /* Exit to userspace if copying from a host userspace address fails. */ if (sgx_read_hva(vcpu, contents_hva, (void *)contents, PAGE_SIZE)) { free_page((unsigned long)contents); return 0; } pageinfo.metadata = metadata_hva; pageinfo.contents = (u64)contents; r = __handle_encls_ecreate(vcpu, &pageinfo, secs_hva, secs_gva); free_page((unsigned long)contents); return r; } static int handle_encls_einit(struct kvm_vcpu *vcpu) { unsigned long sig_hva, secs_hva, token_hva, rflags; struct vcpu_vmx *vmx = to_vmx(vcpu); gva_t sig_gva, secs_gva, token_gva; gpa_t sig_gpa, secs_gpa, token_gpa; int ret, trapnr; if (sgx_get_encls_gva(vcpu, kvm_rbx_read(vcpu), 1808, 4096, &sig_gva) || sgx_get_encls_gva(vcpu, kvm_rcx_read(vcpu), 4096, 4096, &secs_gva) || sgx_get_encls_gva(vcpu, kvm_rdx_read(vcpu), 304, 512, &token_gva)) return 1; /* * Translate the SIGSTRUCT, SECS and TOKEN pointers from GVA to GPA. * Resume the guest on failure to inject a #PF. */ if (sgx_gva_to_gpa(vcpu, sig_gva, false, &sig_gpa) || sgx_gva_to_gpa(vcpu, secs_gva, true, &secs_gpa) || sgx_gva_to_gpa(vcpu, token_gva, false, &token_gpa)) return 1; /* * ...and then to HVA. The order of accesses isn't architectural, i.e. * KVM doesn't have to fully process one address at a time. Exit to * userspace if a GPA is invalid. Note, all structures are aligned and * cannot split pages. */ if (sgx_gpa_to_hva(vcpu, sig_gpa, &sig_hva) || sgx_gpa_to_hva(vcpu, secs_gpa, &secs_hva) || sgx_gpa_to_hva(vcpu, token_gpa, &token_hva)) return 0; ret = sgx_virt_einit((void __user *)sig_hva, (void __user *)token_hva, (void __user *)secs_hva, vmx->msr_ia32_sgxlepubkeyhash, &trapnr); if (ret == -EFAULT) return sgx_inject_fault(vcpu, secs_gva, trapnr); /* * sgx_virt_einit() returns -EINVAL when access_ok() fails on @sig_hva, * @token_hva or @secs_hva. This should never happen as KVM checks host * addresses at memslot creation. sgx_virt_einit() has already warned * in this case, so just return. */ if (ret < 0) return ret; rflags = vmx_get_rflags(vcpu) & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_SF | X86_EFLAGS_OF); if (ret) rflags |= X86_EFLAGS_ZF; else rflags &= ~X86_EFLAGS_ZF; vmx_set_rflags(vcpu, rflags); kvm_rax_write(vcpu, ret); return kvm_skip_emulated_instruction(vcpu); } static inline bool encls_leaf_enabled_in_guest(struct kvm_vcpu *vcpu, u32 leaf) { if (!enable_sgx || !guest_cpuid_has(vcpu, X86_FEATURE_SGX)) return false; if (leaf >= ECREATE && leaf <= ETRACK) return guest_cpuid_has(vcpu, X86_FEATURE_SGX1); if (leaf >= EAUG && leaf <= EMODT) return guest_cpuid_has(vcpu, X86_FEATURE_SGX2); return false; } static inline bool sgx_enabled_in_guest_bios(struct kvm_vcpu *vcpu) { const u64 bits = FEAT_CTL_SGX_ENABLED | FEAT_CTL_LOCKED; return (to_vmx(vcpu)->msr_ia32_feature_control & bits) == bits; } int handle_encls(struct kvm_vcpu *vcpu) { u32 leaf = (u32)kvm_rax_read(vcpu); if (!encls_leaf_enabled_in_guest(vcpu, leaf)) { kvm_queue_exception(vcpu, UD_VECTOR); } else if (!sgx_enabled_in_guest_bios(vcpu)) { kvm_inject_gp(vcpu, 0); } else { if (leaf == ECREATE) return handle_encls_ecreate(vcpu); if (leaf == EINIT) return handle_encls_einit(vcpu); WARN(1, "KVM: unexpected exit on ENCLS[%u]", leaf); vcpu->run->exit_reason = KVM_EXIT_UNKNOWN; vcpu->run->hw.hardware_exit_reason = EXIT_REASON_ENCLS; return 0; } return 1; } void setup_default_sgx_lepubkeyhash(void) { /* * Use Intel's default value for Skylake hardware if Launch Control is * not supported, i.e. Intel's hash is hardcoded into silicon, or if * Launch Control is supported and enabled, i.e. mimic the reset value * and let the guest write the MSRs at will. If Launch Control is * supported but disabled, then use the current MSR values as the hash * MSRs exist but are read-only (locked and not writable). */ if (!enable_sgx || boot_cpu_has(X86_FEATURE_SGX_LC) || rdmsrl_safe(MSR_IA32_SGXLEPUBKEYHASH0, &sgx_pubkey_hash[0])) { sgx_pubkey_hash[0] = 0xa6053e051270b7acULL; sgx_pubkey_hash[1] = 0x6cfbe8ba8b3b413dULL; sgx_pubkey_hash[2] = 0xc4916d99f2b3735dULL; sgx_pubkey_hash[3] = 0xd4f8c05909f9bb3bULL; } else { /* MSR_IA32_SGXLEPUBKEYHASH0 is read above */ rdmsrl(MSR_IA32_SGXLEPUBKEYHASH1, sgx_pubkey_hash[1]); rdmsrl(MSR_IA32_SGXLEPUBKEYHASH2, sgx_pubkey_hash[2]); rdmsrl(MSR_IA32_SGXLEPUBKEYHASH3, sgx_pubkey_hash[3]); } } void vcpu_setup_sgx_lepubkeyhash(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); memcpy(vmx->msr_ia32_sgxlepubkeyhash, sgx_pubkey_hash, sizeof(sgx_pubkey_hash)); } /* * ECREATE must be intercepted to enforce MISCSELECT, ATTRIBUTES and XFRM * restrictions if the guest's allowed-1 settings diverge from hardware. */ static bool sgx_intercept_encls_ecreate(struct kvm_vcpu *vcpu) { struct kvm_cpuid_entry2 *guest_cpuid; u32 eax, ebx, ecx, edx; if (!vcpu->kvm->arch.sgx_provisioning_allowed) return true; guest_cpuid = kvm_find_cpuid_entry(vcpu, 0x12, 0); if (!guest_cpuid) return true; cpuid_count(0x12, 0, &eax, &ebx, &ecx, &edx); if (guest_cpuid->ebx != ebx || guest_cpuid->edx != edx) return true; guest_cpuid = kvm_find_cpuid_entry(vcpu, 0x12, 1); if (!guest_cpuid) return true; cpuid_count(0x12, 1, &eax, &ebx, &ecx, &edx); if (guest_cpuid->eax != eax || guest_cpuid->ebx != ebx || guest_cpuid->ecx != ecx || guest_cpuid->edx != edx) return true; return false; } void vmx_write_encls_bitmap(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) { /* * There is no software enable bit for SGX that is virtualized by * hardware, e.g. there's no CR4.SGXE, so when SGX is disabled in the * guest (either by the host or by the guest's BIOS) but enabled in the * host, trap all ENCLS leafs and inject #UD/#GP as needed to emulate * the expected system behavior for ENCLS. */ u64 bitmap = -1ull; /* Nothing to do if hardware doesn't support SGX */ if (!cpu_has_vmx_encls_vmexit()) return; if (guest_cpuid_has(vcpu, X86_FEATURE_SGX) && sgx_enabled_in_guest_bios(vcpu)) { if (guest_cpuid_has(vcpu, X86_FEATURE_SGX1)) { bitmap &= ~GENMASK_ULL(ETRACK, ECREATE); if (sgx_intercept_encls_ecreate(vcpu)) bitmap |= (1 << ECREATE); } if (guest_cpuid_has(vcpu, X86_FEATURE_SGX2)) bitmap &= ~GENMASK_ULL(EMODT, EAUG); /* * Trap and execute EINIT if launch control is enabled in the * host using the guest's values for launch control MSRs, even * if the guest's values are fixed to hardware default values. * The MSRs are not loaded/saved on VM-Enter/VM-Exit as writing * the MSRs is extraordinarily expensive. */ if (boot_cpu_has(X86_FEATURE_SGX_LC)) bitmap |= (1 << EINIT); if (!vmcs12 && is_guest_mode(vcpu)) vmcs12 = get_vmcs12(vcpu); if (vmcs12 && nested_cpu_has_encls_exit(vmcs12)) bitmap |= vmcs12->encls_exiting_bitmap; } vmcs_write64(ENCLS_EXITING_BITMAP, bitmap); }