// SPDX-License-Identifier: GPL-2.0-only /* Copyright(c) 2020 Intel Corporation. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "cxlmem.h" #include "pci.h" #include "cxl.h" /** * DOC: cxl pci * * This implements the PCI exclusive functionality for a CXL device as it is * defined by the Compute Express Link specification. CXL devices may surface * certain functionality even if it isn't CXL enabled. * * The driver has several responsibilities, mainly: * - Create the memX device and register on the CXL bus. * - Enumerate device's register interface and map them. * - Probe the device attributes to establish sysfs interface. * - Provide an IOCTL interface to userspace to communicate with the device for * things like firmware update. */ #define cxl_doorbell_busy(cxlm) \ (readl((cxlm)->regs.mbox + CXLDEV_MBOX_CTRL_OFFSET) & \ CXLDEV_MBOX_CTRL_DOORBELL) /* CXL 2.0 - 8.2.8.4 */ #define CXL_MAILBOX_TIMEOUT_MS (2 * HZ) enum opcode { CXL_MBOX_OP_INVALID = 0x0000, CXL_MBOX_OP_RAW = CXL_MBOX_OP_INVALID, CXL_MBOX_OP_GET_FW_INFO = 0x0200, CXL_MBOX_OP_ACTIVATE_FW = 0x0202, CXL_MBOX_OP_GET_SUPPORTED_LOGS = 0x0400, CXL_MBOX_OP_GET_LOG = 0x0401, CXL_MBOX_OP_IDENTIFY = 0x4000, CXL_MBOX_OP_GET_PARTITION_INFO = 0x4100, CXL_MBOX_OP_SET_PARTITION_INFO = 0x4101, CXL_MBOX_OP_GET_LSA = 0x4102, CXL_MBOX_OP_SET_LSA = 0x4103, CXL_MBOX_OP_GET_HEALTH_INFO = 0x4200, CXL_MBOX_OP_GET_ALERT_CONFIG = 0x4201, CXL_MBOX_OP_SET_ALERT_CONFIG = 0x4202, CXL_MBOX_OP_GET_SHUTDOWN_STATE = 0x4203, CXL_MBOX_OP_SET_SHUTDOWN_STATE = 0x4204, CXL_MBOX_OP_GET_POISON = 0x4300, CXL_MBOX_OP_INJECT_POISON = 0x4301, CXL_MBOX_OP_CLEAR_POISON = 0x4302, CXL_MBOX_OP_GET_SCAN_MEDIA_CAPS = 0x4303, CXL_MBOX_OP_SCAN_MEDIA = 0x4304, CXL_MBOX_OP_GET_SCAN_MEDIA = 0x4305, CXL_MBOX_OP_MAX = 0x10000 }; /* * CXL 2.0 - Memory capacity multiplier * See Section 8.2.9.5 * * Volatile, Persistent, and Partition capacities are specified to be in * multiples of 256MB - define a multiplier to convert to/from bytes. */ #define CXL_CAPACITY_MULTIPLIER SZ_256M /** * struct mbox_cmd - A command to be submitted to hardware. * @opcode: (input) The command set and command submitted to hardware. * @payload_in: (input) Pointer to the input payload. * @payload_out: (output) Pointer to the output payload. Must be allocated by * the caller. * @size_in: (input) Number of bytes to load from @payload_in. * @size_out: (input) Max number of bytes loaded into @payload_out. * (output) Number of bytes generated by the device. For fixed size * outputs commands this is always expected to be deterministic. For * variable sized output commands, it tells the exact number of bytes * written. * @return_code: (output) Error code returned from hardware. * * This is the primary mechanism used to send commands to the hardware. * All the fields except @payload_* correspond exactly to the fields described in * Command Register section of the CXL 2.0 8.2.8.4.5. @payload_in and * @payload_out are written to, and read from the Command Payload Registers * defined in CXL 2.0 8.2.8.4.8. */ struct mbox_cmd { u16 opcode; void *payload_in; void *payload_out; size_t size_in; size_t size_out; u16 return_code; #define CXL_MBOX_SUCCESS 0 }; static DECLARE_RWSEM(cxl_memdev_rwsem); static struct dentry *cxl_debugfs; static bool cxl_raw_allow_all; enum { CEL_UUID, VENDOR_DEBUG_UUID, }; /* See CXL 2.0 Table 170. Get Log Input Payload */ static const uuid_t log_uuid[] = { [CEL_UUID] = UUID_INIT(0xda9c0b5, 0xbf41, 0x4b78, 0x8f, 0x79, 0x96, 0xb1, 0x62, 0x3b, 0x3f, 0x17), [VENDOR_DEBUG_UUID] = UUID_INIT(0xe1819d9, 0x11a9, 0x400c, 0x81, 0x1f, 0xd6, 0x07, 0x19, 0x40, 0x3d, 0x86), }; /** * struct cxl_mem_command - Driver representation of a memory device command * @info: Command information as it exists for the UAPI * @opcode: The actual bits used for the mailbox protocol * @flags: Set of flags effecting driver behavior. * * * %CXL_CMD_FLAG_FORCE_ENABLE: In cases of error, commands with this flag * will be enabled by the driver regardless of what hardware may have * advertised. * * The cxl_mem_command is the driver's internal representation of commands that * are supported by the driver. Some of these commands may not be supported by * the hardware. The driver will use @info to validate the fields passed in by * the user then submit the @opcode to the hardware. * * See struct cxl_command_info. */ struct cxl_mem_command { struct cxl_command_info info; enum opcode opcode; u32 flags; #define CXL_CMD_FLAG_NONE 0 #define CXL_CMD_FLAG_FORCE_ENABLE BIT(0) }; #define CXL_CMD(_id, sin, sout, _flags) \ [CXL_MEM_COMMAND_ID_##_id] = { \ .info = { \ .id = CXL_MEM_COMMAND_ID_##_id, \ .size_in = sin, \ .size_out = sout, \ }, \ .opcode = CXL_MBOX_OP_##_id, \ .flags = _flags, \ } /* * This table defines the supported mailbox commands for the driver. This table * is made up of a UAPI structure. Non-negative values as parameters in the * table will be validated against the user's input. For example, if size_in is * 0, and the user passed in 1, it is an error. */ static struct cxl_mem_command mem_commands[CXL_MEM_COMMAND_ID_MAX] = { CXL_CMD(IDENTIFY, 0, 0x43, CXL_CMD_FLAG_FORCE_ENABLE), #ifdef CONFIG_CXL_MEM_RAW_COMMANDS CXL_CMD(RAW, ~0, ~0, 0), #endif CXL_CMD(GET_SUPPORTED_LOGS, 0, ~0, CXL_CMD_FLAG_FORCE_ENABLE), CXL_CMD(GET_FW_INFO, 0, 0x50, 0), CXL_CMD(GET_PARTITION_INFO, 0, 0x20, 0), CXL_CMD(GET_LSA, 0x8, ~0, 0), CXL_CMD(GET_HEALTH_INFO, 0, 0x12, 0), CXL_CMD(GET_LOG, 0x18, ~0, CXL_CMD_FLAG_FORCE_ENABLE), CXL_CMD(SET_PARTITION_INFO, 0x0a, 0, 0), CXL_CMD(SET_LSA, ~0, 0, 0), CXL_CMD(GET_ALERT_CONFIG, 0, 0x10, 0), CXL_CMD(SET_ALERT_CONFIG, 0xc, 0, 0), CXL_CMD(GET_SHUTDOWN_STATE, 0, 0x1, 0), CXL_CMD(SET_SHUTDOWN_STATE, 0x1, 0, 0), CXL_CMD(GET_POISON, 0x10, ~0, 0), CXL_CMD(INJECT_POISON, 0x8, 0, 0), CXL_CMD(CLEAR_POISON, 0x48, 0, 0), CXL_CMD(GET_SCAN_MEDIA_CAPS, 0x10, 0x4, 0), CXL_CMD(SCAN_MEDIA, 0x11, 0, 0), CXL_CMD(GET_SCAN_MEDIA, 0, ~0, 0), }; /* * Commands that RAW doesn't permit. The rationale for each: * * CXL_MBOX_OP_ACTIVATE_FW: Firmware activation requires adjustment / * coordination of transaction timeout values at the root bridge level. * * CXL_MBOX_OP_SET_PARTITION_INFO: The device memory map may change live * and needs to be coordinated with HDM updates. * * CXL_MBOX_OP_SET_LSA: The label storage area may be cached by the * driver and any writes from userspace invalidates those contents. * * CXL_MBOX_OP_SET_SHUTDOWN_STATE: Set shutdown state assumes no writes * to the device after it is marked clean, userspace can not make that * assertion. * * CXL_MBOX_OP_[GET_]SCAN_MEDIA: The kernel provides a native error list that * is kept up to date with patrol notifications and error management. */ static u16 cxl_disabled_raw_commands[] = { CXL_MBOX_OP_ACTIVATE_FW, CXL_MBOX_OP_SET_PARTITION_INFO, CXL_MBOX_OP_SET_LSA, CXL_MBOX_OP_SET_SHUTDOWN_STATE, CXL_MBOX_OP_SCAN_MEDIA, CXL_MBOX_OP_GET_SCAN_MEDIA, }; /* * Command sets that RAW doesn't permit. All opcodes in this set are * disabled because they pass plain text security payloads over the * user/kernel boundary. This functionality is intended to be wrapped * behind the keys ABI which allows for encrypted payloads in the UAPI */ static u8 security_command_sets[] = { 0x44, /* Sanitize */ 0x45, /* Persistent Memory Data-at-rest Security */ 0x46, /* Security Passthrough */ }; #define cxl_for_each_cmd(cmd) \ for ((cmd) = &mem_commands[0]; \ ((cmd) - mem_commands) < ARRAY_SIZE(mem_commands); (cmd)++) #define cxl_cmd_count ARRAY_SIZE(mem_commands) static int cxl_mem_wait_for_doorbell(struct cxl_mem *cxlm) { const unsigned long start = jiffies; unsigned long end = start; while (cxl_doorbell_busy(cxlm)) { end = jiffies; if (time_after(end, start + CXL_MAILBOX_TIMEOUT_MS)) { /* Check again in case preempted before timeout test */ if (!cxl_doorbell_busy(cxlm)) break; return -ETIMEDOUT; } cpu_relax(); } dev_dbg(&cxlm->pdev->dev, "Doorbell wait took %dms", jiffies_to_msecs(end) - jiffies_to_msecs(start)); return 0; } static bool cxl_is_security_command(u16 opcode) { int i; for (i = 0; i < ARRAY_SIZE(security_command_sets); i++) if (security_command_sets[i] == (opcode >> 8)) return true; return false; } static void cxl_mem_mbox_timeout(struct cxl_mem *cxlm, struct mbox_cmd *mbox_cmd) { struct device *dev = &cxlm->pdev->dev; dev_dbg(dev, "Mailbox command (opcode: %#x size: %zub) timed out\n", mbox_cmd->opcode, mbox_cmd->size_in); } /** * __cxl_mem_mbox_send_cmd() - Execute a mailbox command * @cxlm: The CXL memory device to communicate with. * @mbox_cmd: Command to send to the memory device. * * Context: Any context. Expects mbox_mutex to be held. * Return: -ETIMEDOUT if timeout occurred waiting for completion. 0 on success. * Caller should check the return code in @mbox_cmd to make sure it * succeeded. * * This is a generic form of the CXL mailbox send command thus only using the * registers defined by the mailbox capability ID - CXL 2.0 8.2.8.4. Memory * devices, and perhaps other types of CXL devices may have further information * available upon error conditions. Driver facilities wishing to send mailbox * commands should use the wrapper command. * * The CXL spec allows for up to two mailboxes. The intention is for the primary * mailbox to be OS controlled and the secondary mailbox to be used by system * firmware. This allows the OS and firmware to communicate with the device and * not need to coordinate with each other. The driver only uses the primary * mailbox. */ static int __cxl_mem_mbox_send_cmd(struct cxl_mem *cxlm, struct mbox_cmd *mbox_cmd) { void __iomem *payload = cxlm->regs.mbox + CXLDEV_MBOX_PAYLOAD_OFFSET; u64 cmd_reg, status_reg; size_t out_len; int rc; lockdep_assert_held(&cxlm->mbox_mutex); /* * Here are the steps from 8.2.8.4 of the CXL 2.0 spec. * 1. Caller reads MB Control Register to verify doorbell is clear * 2. Caller writes Command Register * 3. Caller writes Command Payload Registers if input payload is non-empty * 4. Caller writes MB Control Register to set doorbell * 5. Caller either polls for doorbell to be clear or waits for interrupt if configured * 6. Caller reads MB Status Register to fetch Return code * 7. If command successful, Caller reads Command Register to get Payload Length * 8. If output payload is non-empty, host reads Command Payload Registers * * Hardware is free to do whatever it wants before the doorbell is rung, * and isn't allowed to change anything after it clears the doorbell. As * such, steps 2 and 3 can happen in any order, and steps 6, 7, 8 can * also happen in any order (though some orders might not make sense). */ /* #1 */ if (cxl_doorbell_busy(cxlm)) { dev_err_ratelimited(&cxlm->pdev->dev, "Mailbox re-busy after acquiring\n"); return -EBUSY; } cmd_reg = FIELD_PREP(CXLDEV_MBOX_CMD_COMMAND_OPCODE_MASK, mbox_cmd->opcode); if (mbox_cmd->size_in) { if (WARN_ON(!mbox_cmd->payload_in)) return -EINVAL; cmd_reg |= FIELD_PREP(CXLDEV_MBOX_CMD_PAYLOAD_LENGTH_MASK, mbox_cmd->size_in); memcpy_toio(payload, mbox_cmd->payload_in, mbox_cmd->size_in); } /* #2, #3 */ writeq(cmd_reg, cxlm->regs.mbox + CXLDEV_MBOX_CMD_OFFSET); /* #4 */ dev_dbg(&cxlm->pdev->dev, "Sending command\n"); writel(CXLDEV_MBOX_CTRL_DOORBELL, cxlm->regs.mbox + CXLDEV_MBOX_CTRL_OFFSET); /* #5 */ rc = cxl_mem_wait_for_doorbell(cxlm); if (rc == -ETIMEDOUT) { cxl_mem_mbox_timeout(cxlm, mbox_cmd); return rc; } /* #6 */ status_reg = readq(cxlm->regs.mbox + CXLDEV_MBOX_STATUS_OFFSET); mbox_cmd->return_code = FIELD_GET(CXLDEV_MBOX_STATUS_RET_CODE_MASK, status_reg); if (mbox_cmd->return_code != 0) { dev_dbg(&cxlm->pdev->dev, "Mailbox operation had an error\n"); return 0; } /* #7 */ cmd_reg = readq(cxlm->regs.mbox + CXLDEV_MBOX_CMD_OFFSET); out_len = FIELD_GET(CXLDEV_MBOX_CMD_PAYLOAD_LENGTH_MASK, cmd_reg); /* #8 */ if (out_len && mbox_cmd->payload_out) { /* * Sanitize the copy. If hardware misbehaves, out_len per the * spec can actually be greater than the max allowed size (21 * bits available but spec defined 1M max). The caller also may * have requested less data than the hardware supplied even * within spec. */ size_t n = min3(mbox_cmd->size_out, cxlm->payload_size, out_len); memcpy_fromio(mbox_cmd->payload_out, payload, n); mbox_cmd->size_out = n; } else { mbox_cmd->size_out = 0; } return 0; } /** * cxl_mem_mbox_get() - Acquire exclusive access to the mailbox. * @cxlm: The memory device to gain access to. * * Context: Any context. Takes the mbox_mutex. * Return: 0 if exclusive access was acquired. */ static int cxl_mem_mbox_get(struct cxl_mem *cxlm) { struct device *dev = &cxlm->pdev->dev; u64 md_status; int rc; mutex_lock_io(&cxlm->mbox_mutex); /* * XXX: There is some amount of ambiguity in the 2.0 version of the spec * around the mailbox interface ready (8.2.8.5.1.1). The purpose of the * bit is to allow firmware running on the device to notify the driver * that it's ready to receive commands. It is unclear if the bit needs * to be read for each transaction mailbox, ie. the firmware can switch * it on and off as needed. Second, there is no defined timeout for * mailbox ready, like there is for the doorbell interface. * * Assumptions: * 1. The firmware might toggle the Mailbox Interface Ready bit, check * it for every command. * * 2. If the doorbell is clear, the firmware should have first set the * Mailbox Interface Ready bit. Therefore, waiting for the doorbell * to be ready is sufficient. */ rc = cxl_mem_wait_for_doorbell(cxlm); if (rc) { dev_warn(dev, "Mailbox interface not ready\n"); goto out; } md_status = readq(cxlm->regs.memdev + CXLMDEV_STATUS_OFFSET); if (!(md_status & CXLMDEV_MBOX_IF_READY && CXLMDEV_READY(md_status))) { dev_err(dev, "mbox: reported doorbell ready, but not mbox ready\n"); rc = -EBUSY; goto out; } /* * Hardware shouldn't allow a ready status but also have failure bits * set. Spit out an error, this should be a bug report */ rc = -EFAULT; if (md_status & CXLMDEV_DEV_FATAL) { dev_err(dev, "mbox: reported ready, but fatal\n"); goto out; } if (md_status & CXLMDEV_FW_HALT) { dev_err(dev, "mbox: reported ready, but halted\n"); goto out; } if (CXLMDEV_RESET_NEEDED(md_status)) { dev_err(dev, "mbox: reported ready, but reset needed\n"); goto out; } /* with lock held */ return 0; out: mutex_unlock(&cxlm->mbox_mutex); return rc; } /** * cxl_mem_mbox_put() - Release exclusive access to the mailbox. * @cxlm: The CXL memory device to communicate with. * * Context: Any context. Expects mbox_mutex to be held. */ static void cxl_mem_mbox_put(struct cxl_mem *cxlm) { mutex_unlock(&cxlm->mbox_mutex); } /** * handle_mailbox_cmd_from_user() - Dispatch a mailbox command for userspace. * @cxlm: The CXL memory device to communicate with. * @cmd: The validated command. * @in_payload: Pointer to userspace's input payload. * @out_payload: Pointer to userspace's output payload. * @size_out: (Input) Max payload size to copy out. * (Output) Payload size hardware generated. * @retval: Hardware generated return code from the operation. * * Return: * * %0 - Mailbox transaction succeeded. This implies the mailbox * protocol completed successfully not that the operation itself * was successful. * * %-ENOMEM - Couldn't allocate a bounce buffer. * * %-EFAULT - Something happened with copy_to/from_user. * * %-EINTR - Mailbox acquisition interrupted. * * %-EXXX - Transaction level failures. * * Creates the appropriate mailbox command and dispatches it on behalf of a * userspace request. The input and output payloads are copied between * userspace. * * See cxl_send_cmd(). */ static int handle_mailbox_cmd_from_user(struct cxl_mem *cxlm, const struct cxl_mem_command *cmd, u64 in_payload, u64 out_payload, s32 *size_out, u32 *retval) { struct device *dev = &cxlm->pdev->dev; struct mbox_cmd mbox_cmd = { .opcode = cmd->opcode, .size_in = cmd->info.size_in, .size_out = cmd->info.size_out, }; int rc; if (cmd->info.size_out) { mbox_cmd.payload_out = kvzalloc(cmd->info.size_out, GFP_KERNEL); if (!mbox_cmd.payload_out) return -ENOMEM; } if (cmd->info.size_in) { mbox_cmd.payload_in = vmemdup_user(u64_to_user_ptr(in_payload), cmd->info.size_in); if (IS_ERR(mbox_cmd.payload_in)) { kvfree(mbox_cmd.payload_out); return PTR_ERR(mbox_cmd.payload_in); } } rc = cxl_mem_mbox_get(cxlm); if (rc) goto out; dev_dbg(dev, "Submitting %s command for user\n" "\topcode: %x\n" "\tsize: %ub\n", cxl_command_names[cmd->info.id].name, mbox_cmd.opcode, cmd->info.size_in); dev_WARN_ONCE(dev, cmd->info.id == CXL_MEM_COMMAND_ID_RAW, "raw command path used\n"); rc = __cxl_mem_mbox_send_cmd(cxlm, &mbox_cmd); cxl_mem_mbox_put(cxlm); if (rc) goto out; /* * @size_out contains the max size that's allowed to be written back out * to userspace. While the payload may have written more output than * this it will have to be ignored. */ if (mbox_cmd.size_out) { dev_WARN_ONCE(dev, mbox_cmd.size_out > *size_out, "Invalid return size\n"); if (copy_to_user(u64_to_user_ptr(out_payload), mbox_cmd.payload_out, mbox_cmd.size_out)) { rc = -EFAULT; goto out; } } *size_out = mbox_cmd.size_out; *retval = mbox_cmd.return_code; out: kvfree(mbox_cmd.payload_in); kvfree(mbox_cmd.payload_out); return rc; } static bool cxl_mem_raw_command_allowed(u16 opcode) { int i; if (!IS_ENABLED(CONFIG_CXL_MEM_RAW_COMMANDS)) return false; if (security_locked_down(LOCKDOWN_PCI_ACCESS)) return false; if (cxl_raw_allow_all) return true; if (cxl_is_security_command(opcode)) return false; for (i = 0; i < ARRAY_SIZE(cxl_disabled_raw_commands); i++) if (cxl_disabled_raw_commands[i] == opcode) return false; return true; } /** * cxl_validate_cmd_from_user() - Check fields for CXL_MEM_SEND_COMMAND. * @cxlm: &struct cxl_mem device whose mailbox will be used. * @send_cmd: &struct cxl_send_command copied in from userspace. * @out_cmd: Sanitized and populated &struct cxl_mem_command. * * Return: * * %0 - @out_cmd is ready to send. * * %-ENOTTY - Invalid command specified. * * %-EINVAL - Reserved fields or invalid values were used. * * %-ENOMEM - Input or output buffer wasn't sized properly. * * %-EPERM - Attempted to use a protected command. * * The result of this command is a fully validated command in @out_cmd that is * safe to send to the hardware. * * See handle_mailbox_cmd_from_user() */ static int cxl_validate_cmd_from_user(struct cxl_mem *cxlm, const struct cxl_send_command *send_cmd, struct cxl_mem_command *out_cmd) { const struct cxl_command_info *info; struct cxl_mem_command *c; if (send_cmd->id == 0 || send_cmd->id >= CXL_MEM_COMMAND_ID_MAX) return -ENOTTY; /* * The user can never specify an input payload larger than what hardware * supports, but output can be arbitrarily large (simply write out as * much data as the hardware provides). */ if (send_cmd->in.size > cxlm->payload_size) return -EINVAL; /* * Checks are bypassed for raw commands but a WARN/taint will occur * later in the callchain */ if (send_cmd->id == CXL_MEM_COMMAND_ID_RAW) { const struct cxl_mem_command temp = { .info = { .id = CXL_MEM_COMMAND_ID_RAW, .flags = 0, .size_in = send_cmd->in.size, .size_out = send_cmd->out.size, }, .opcode = send_cmd->raw.opcode }; if (send_cmd->raw.rsvd) return -EINVAL; /* * Unlike supported commands, the output size of RAW commands * gets passed along without further checking, so it must be * validated here. */ if (send_cmd->out.size > cxlm->payload_size) return -EINVAL; if (!cxl_mem_raw_command_allowed(send_cmd->raw.opcode)) return -EPERM; memcpy(out_cmd, &temp, sizeof(temp)); return 0; } if (send_cmd->flags & ~CXL_MEM_COMMAND_FLAG_MASK) return -EINVAL; if (send_cmd->rsvd) return -EINVAL; if (send_cmd->in.rsvd || send_cmd->out.rsvd) return -EINVAL; /* Convert user's command into the internal representation */ c = &mem_commands[send_cmd->id]; info = &c->info; /* Check that the command is enabled for hardware */ if (!test_bit(info->id, cxlm->enabled_cmds)) return -ENOTTY; /* Check the input buffer is the expected size */ if (info->size_in >= 0 && info->size_in != send_cmd->in.size) return -ENOMEM; /* Check the output buffer is at least large enough */ if (info->size_out >= 0 && send_cmd->out.size < info->size_out) return -ENOMEM; memcpy(out_cmd, c, sizeof(*c)); out_cmd->info.size_in = send_cmd->in.size; /* * XXX: out_cmd->info.size_out will be controlled by the driver, and the * specified number of bytes @send_cmd->out.size will be copied back out * to userspace. */ return 0; } static int cxl_query_cmd(struct cxl_memdev *cxlmd, struct cxl_mem_query_commands __user *q) { struct device *dev = &cxlmd->dev; struct cxl_mem_command *cmd; u32 n_commands; int j = 0; dev_dbg(dev, "Query IOCTL\n"); if (get_user(n_commands, &q->n_commands)) return -EFAULT; /* returns the total number if 0 elements are requested. */ if (n_commands == 0) return put_user(cxl_cmd_count, &q->n_commands); /* * otherwise, return max(n_commands, total commands) cxl_command_info * structures. */ cxl_for_each_cmd(cmd) { const struct cxl_command_info *info = &cmd->info; if (copy_to_user(&q->commands[j++], info, sizeof(*info))) return -EFAULT; if (j == n_commands) break; } return 0; } static int cxl_send_cmd(struct cxl_memdev *cxlmd, struct cxl_send_command __user *s) { struct cxl_mem *cxlm = cxlmd->cxlm; struct device *dev = &cxlmd->dev; struct cxl_send_command send; struct cxl_mem_command c; int rc; dev_dbg(dev, "Send IOCTL\n"); if (copy_from_user(&send, s, sizeof(send))) return -EFAULT; rc = cxl_validate_cmd_from_user(cxlmd->cxlm, &send, &c); if (rc) return rc; /* Prepare to handle a full payload for variable sized output */ if (c.info.size_out < 0) c.info.size_out = cxlm->payload_size; rc = handle_mailbox_cmd_from_user(cxlm, &c, send.in.payload, send.out.payload, &send.out.size, &send.retval); if (rc) return rc; if (copy_to_user(s, &send, sizeof(send))) return -EFAULT; return 0; } static long __cxl_memdev_ioctl(struct cxl_memdev *cxlmd, unsigned int cmd, unsigned long arg) { switch (cmd) { case CXL_MEM_QUERY_COMMANDS: return cxl_query_cmd(cxlmd, (void __user *)arg); case CXL_MEM_SEND_COMMAND: return cxl_send_cmd(cxlmd, (void __user *)arg); default: return -ENOTTY; } } static long cxl_memdev_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct cxl_memdev *cxlmd = file->private_data; int rc = -ENXIO; down_read(&cxl_memdev_rwsem); if (cxlmd->cxlm) rc = __cxl_memdev_ioctl(cxlmd, cmd, arg); up_read(&cxl_memdev_rwsem); return rc; } static int cxl_memdev_open(struct inode *inode, struct file *file) { struct cxl_memdev *cxlmd = container_of(inode->i_cdev, typeof(*cxlmd), cdev); get_device(&cxlmd->dev); file->private_data = cxlmd; return 0; } static int cxl_memdev_release_file(struct inode *inode, struct file *file) { struct cxl_memdev *cxlmd = container_of(inode->i_cdev, typeof(*cxlmd), cdev); put_device(&cxlmd->dev); return 0; } static void cxl_memdev_shutdown(struct device *dev) { struct cxl_memdev *cxlmd = to_cxl_memdev(dev); down_write(&cxl_memdev_rwsem); cxlmd->cxlm = NULL; up_write(&cxl_memdev_rwsem); } static const struct cdevm_file_operations cxl_memdev_fops = { .fops = { .owner = THIS_MODULE, .unlocked_ioctl = cxl_memdev_ioctl, .open = cxl_memdev_open, .release = cxl_memdev_release_file, .compat_ioctl = compat_ptr_ioctl, .llseek = noop_llseek, }, .shutdown = cxl_memdev_shutdown, }; static inline struct cxl_mem_command *cxl_mem_find_command(u16 opcode) { struct cxl_mem_command *c; cxl_for_each_cmd(c) if (c->opcode == opcode) return c; return NULL; } /** * cxl_mem_mbox_send_cmd() - Send a mailbox command to a memory device. * @cxlm: The CXL memory device to communicate with. * @opcode: Opcode for the mailbox command. * @in: The input payload for the mailbox command. * @in_size: The length of the input payload * @out: Caller allocated buffer for the output. * @out_size: Expected size of output. * * Context: Any context. Will acquire and release mbox_mutex. * Return: * * %>=0 - Number of bytes returned in @out. * * %-E2BIG - Payload is too large for hardware. * * %-EBUSY - Couldn't acquire exclusive mailbox access. * * %-EFAULT - Hardware error occurred. * * %-ENXIO - Command completed, but device reported an error. * * %-EIO - Unexpected output size. * * Mailbox commands may execute successfully yet the device itself reported an * error. While this distinction can be useful for commands from userspace, the * kernel will only be able to use results when both are successful. * * See __cxl_mem_mbox_send_cmd() */ static int cxl_mem_mbox_send_cmd(struct cxl_mem *cxlm, u16 opcode, void *in, size_t in_size, void *out, size_t out_size) { const struct cxl_mem_command *cmd = cxl_mem_find_command(opcode); struct mbox_cmd mbox_cmd = { .opcode = opcode, .payload_in = in, .size_in = in_size, .size_out = out_size, .payload_out = out, }; int rc; if (out_size > cxlm->payload_size) return -E2BIG; rc = cxl_mem_mbox_get(cxlm); if (rc) return rc; rc = __cxl_mem_mbox_send_cmd(cxlm, &mbox_cmd); cxl_mem_mbox_put(cxlm); if (rc) return rc; /* TODO: Map return code to proper kernel style errno */ if (mbox_cmd.return_code != CXL_MBOX_SUCCESS) return -ENXIO; /* * Variable sized commands can't be validated and so it's up to the * caller to do that if they wish. */ if (cmd->info.size_out >= 0 && mbox_cmd.size_out != out_size) return -EIO; return 0; } static int cxl_mem_setup_mailbox(struct cxl_mem *cxlm) { const int cap = readl(cxlm->regs.mbox + CXLDEV_MBOX_CAPS_OFFSET); cxlm->payload_size = 1 << FIELD_GET(CXLDEV_MBOX_CAP_PAYLOAD_SIZE_MASK, cap); /* * CXL 2.0 8.2.8.4.3 Mailbox Capabilities Register * * If the size is too small, mandatory commands will not work and so * there's no point in going forward. If the size is too large, there's * no harm is soft limiting it. */ cxlm->payload_size = min_t(size_t, cxlm->payload_size, SZ_1M); if (cxlm->payload_size < 256) { dev_err(&cxlm->pdev->dev, "Mailbox is too small (%zub)", cxlm->payload_size); return -ENXIO; } dev_dbg(&cxlm->pdev->dev, "Mailbox payload sized %zu", cxlm->payload_size); return 0; } static struct cxl_mem *cxl_mem_create(struct pci_dev *pdev) { struct device *dev = &pdev->dev; struct cxl_mem *cxlm; cxlm = devm_kzalloc(dev, sizeof(*cxlm), GFP_KERNEL); if (!cxlm) { dev_err(dev, "No memory available\n"); return ERR_PTR(-ENOMEM); } mutex_init(&cxlm->mbox_mutex); cxlm->pdev = pdev; cxlm->enabled_cmds = devm_kmalloc_array(dev, BITS_TO_LONGS(cxl_cmd_count), sizeof(unsigned long), GFP_KERNEL | __GFP_ZERO); if (!cxlm->enabled_cmds) { dev_err(dev, "No memory available for bitmap\n"); return ERR_PTR(-ENOMEM); } return cxlm; } static void __iomem *cxl_mem_map_regblock(struct cxl_mem *cxlm, u8 bar, u64 offset) { struct pci_dev *pdev = cxlm->pdev; struct device *dev = &pdev->dev; void __iomem *addr; /* Basic sanity check that BAR is big enough */ if (pci_resource_len(pdev, bar) < offset) { dev_err(dev, "BAR%d: %pr: too small (offset: %#llx)\n", bar, &pdev->resource[bar], (unsigned long long)offset); return NULL; } addr = pci_iomap(pdev, bar, 0); if (!addr) { dev_err(dev, "failed to map registers\n"); return addr; } dev_dbg(dev, "Mapped CXL Memory Device resource bar %u @ %#llx\n", bar, offset); return addr; } static void cxl_mem_unmap_regblock(struct cxl_mem *cxlm, void __iomem *base) { pci_iounmap(cxlm->pdev, base); } static int cxl_mem_dvsec(struct pci_dev *pdev, int dvsec) { int pos; pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_DVSEC); if (!pos) return 0; while (pos) { u16 vendor, id; pci_read_config_word(pdev, pos + PCI_DVSEC_HEADER1, &vendor); pci_read_config_word(pdev, pos + PCI_DVSEC_HEADER2, &id); if (vendor == PCI_DVSEC_VENDOR_ID_CXL && dvsec == id) return pos; pos = pci_find_next_ext_capability(pdev, pos, PCI_EXT_CAP_ID_DVSEC); } return 0; } static int cxl_probe_regs(struct cxl_mem *cxlm, void __iomem *base, struct cxl_register_map *map) { struct pci_dev *pdev = cxlm->pdev; struct device *dev = &pdev->dev; struct cxl_component_reg_map *comp_map; struct cxl_device_reg_map *dev_map; switch (map->reg_type) { case CXL_REGLOC_RBI_COMPONENT: comp_map = &map->component_map; cxl_probe_component_regs(dev, base, comp_map); if (!comp_map->hdm_decoder.valid) { dev_err(dev, "HDM decoder registers not found\n"); return -ENXIO; } dev_dbg(dev, "Set up component registers\n"); break; case CXL_REGLOC_RBI_MEMDEV: dev_map = &map->device_map; cxl_probe_device_regs(dev, base, dev_map); if (!dev_map->status.valid || !dev_map->mbox.valid || !dev_map->memdev.valid) { dev_err(dev, "registers not found: %s%s%s\n", !dev_map->status.valid ? "status " : "", !dev_map->mbox.valid ? "mbox " : "", !dev_map->memdev.valid ? "memdev " : ""); return -ENXIO; } dev_dbg(dev, "Probing device registers...\n"); break; default: break; } return 0; } static int cxl_map_regs(struct cxl_mem *cxlm, struct cxl_register_map *map) { struct pci_dev *pdev = cxlm->pdev; struct device *dev = &pdev->dev; switch (map->reg_type) { case CXL_REGLOC_RBI_COMPONENT: cxl_map_component_regs(pdev, &cxlm->regs.component, map); dev_dbg(dev, "Mapping component registers...\n"); break; case CXL_REGLOC_RBI_MEMDEV: cxl_map_device_regs(pdev, &cxlm->regs.device_regs, map); dev_dbg(dev, "Probing device registers...\n"); break; default: break; } return 0; } static void cxl_decode_register_block(u32 reg_lo, u32 reg_hi, u8 *bar, u64 *offset, u8 *reg_type) { *offset = ((u64)reg_hi << 32) | (reg_lo & CXL_REGLOC_ADDR_MASK); *bar = FIELD_GET(CXL_REGLOC_BIR_MASK, reg_lo); *reg_type = FIELD_GET(CXL_REGLOC_RBI_MASK, reg_lo); } /** * cxl_mem_setup_regs() - Setup necessary MMIO. * @cxlm: The CXL memory device to communicate with. * * Return: 0 if all necessary registers mapped. * * A memory device is required by spec to implement a certain set of MMIO * regions. The purpose of this function is to enumerate and map those * registers. */ static int cxl_mem_setup_regs(struct cxl_mem *cxlm) { struct pci_dev *pdev = cxlm->pdev; struct device *dev = &pdev->dev; u32 regloc_size, regblocks; void __iomem *base; int regloc, i, n_maps; struct cxl_register_map *map, maps[CXL_REGLOC_RBI_TYPES]; int ret = 0; regloc = cxl_mem_dvsec(pdev, PCI_DVSEC_ID_CXL_REGLOC_DVSEC_ID); if (!regloc) { dev_err(dev, "register location dvsec not found\n"); return -ENXIO; } if (pci_request_mem_regions(pdev, pci_name(pdev))) return -ENODEV; /* Get the size of the Register Locator DVSEC */ pci_read_config_dword(pdev, regloc + PCI_DVSEC_HEADER1, ®loc_size); regloc_size = FIELD_GET(PCI_DVSEC_HEADER1_LENGTH_MASK, regloc_size); regloc += PCI_DVSEC_ID_CXL_REGLOC_BLOCK1_OFFSET; regblocks = (regloc_size - PCI_DVSEC_ID_CXL_REGLOC_BLOCK1_OFFSET) / 8; for (i = 0, n_maps = 0; i < regblocks; i++, regloc += 8) { u32 reg_lo, reg_hi; u8 reg_type; u64 offset; u8 bar; pci_read_config_dword(pdev, regloc, ®_lo); pci_read_config_dword(pdev, regloc + 4, ®_hi); cxl_decode_register_block(reg_lo, reg_hi, &bar, &offset, ®_type); dev_dbg(dev, "Found register block in bar %u @ 0x%llx of type %u\n", bar, offset, reg_type); /* Ignore unknown register block types */ if (reg_type > CXL_REGLOC_RBI_MEMDEV) continue; base = cxl_mem_map_regblock(cxlm, bar, offset); if (!base) return -ENOMEM; map = &maps[n_maps]; map->barno = bar; map->block_offset = offset; map->reg_type = reg_type; ret = cxl_probe_regs(cxlm, base + offset, map); /* Always unmap the regblock regardless of probe success */ cxl_mem_unmap_regblock(cxlm, base); if (ret) return ret; n_maps++; } pci_release_mem_regions(pdev); for (i = 0; i < n_maps; i++) { ret = cxl_map_regs(cxlm, &maps[i]); if (ret) break; } return ret; } static int cxl_xfer_log(struct cxl_mem *cxlm, uuid_t *uuid, u32 size, u8 *out) { u32 remaining = size; u32 offset = 0; while (remaining) { u32 xfer_size = min_t(u32, remaining, cxlm->payload_size); struct cxl_mbox_get_log { uuid_t uuid; __le32 offset; __le32 length; } __packed log = { .uuid = *uuid, .offset = cpu_to_le32(offset), .length = cpu_to_le32(xfer_size) }; int rc; rc = cxl_mem_mbox_send_cmd(cxlm, CXL_MBOX_OP_GET_LOG, &log, sizeof(log), out, xfer_size); if (rc < 0) return rc; out += xfer_size; remaining -= xfer_size; offset += xfer_size; } return 0; } /** * cxl_walk_cel() - Walk through the Command Effects Log. * @cxlm: Device. * @size: Length of the Command Effects Log. * @cel: CEL * * Iterate over each entry in the CEL and determine if the driver supports the * command. If so, the command is enabled for the device and can be used later. */ static void cxl_walk_cel(struct cxl_mem *cxlm, size_t size, u8 *cel) { struct cel_entry { __le16 opcode; __le16 effect; } __packed * cel_entry; const int cel_entries = size / sizeof(*cel_entry); int i; cel_entry = (struct cel_entry *)cel; for (i = 0; i < cel_entries; i++) { u16 opcode = le16_to_cpu(cel_entry[i].opcode); struct cxl_mem_command *cmd = cxl_mem_find_command(opcode); if (!cmd) { dev_dbg(&cxlm->pdev->dev, "Opcode 0x%04x unsupported by driver", opcode); continue; } set_bit(cmd->info.id, cxlm->enabled_cmds); } } struct cxl_mbox_get_supported_logs { __le16 entries; u8 rsvd[6]; struct gsl_entry { uuid_t uuid; __le32 size; } __packed entry[]; } __packed; static struct cxl_mbox_get_supported_logs *cxl_get_gsl(struct cxl_mem *cxlm) { struct cxl_mbox_get_supported_logs *ret; int rc; ret = kvmalloc(cxlm->payload_size, GFP_KERNEL); if (!ret) return ERR_PTR(-ENOMEM); rc = cxl_mem_mbox_send_cmd(cxlm, CXL_MBOX_OP_GET_SUPPORTED_LOGS, NULL, 0, ret, cxlm->payload_size); if (rc < 0) { kvfree(ret); return ERR_PTR(rc); } return ret; } /** * cxl_mem_get_partition_info - Get partition info * @cxlm: The device to act on * @active_volatile_bytes: returned active volatile capacity * @active_persistent_bytes: returned active persistent capacity * @next_volatile_bytes: return next volatile capacity * @next_persistent_bytes: return next persistent capacity * * Retrieve the current partition info for the device specified. If not 0, the * 'next' values are pending and take affect on next cold reset. * * Return: 0 if no error: or the result of the mailbox command. * * See CXL @8.2.9.5.2.1 Get Partition Info */ static int cxl_mem_get_partition_info(struct cxl_mem *cxlm, u64 *active_volatile_bytes, u64 *active_persistent_bytes, u64 *next_volatile_bytes, u64 *next_persistent_bytes) { struct cxl_mbox_get_partition_info { __le64 active_volatile_cap; __le64 active_persistent_cap; __le64 next_volatile_cap; __le64 next_persistent_cap; } __packed pi; int rc; rc = cxl_mem_mbox_send_cmd(cxlm, CXL_MBOX_OP_GET_PARTITION_INFO, NULL, 0, &pi, sizeof(pi)); if (rc) return rc; *active_volatile_bytes = le64_to_cpu(pi.active_volatile_cap); *active_persistent_bytes = le64_to_cpu(pi.active_persistent_cap); *next_volatile_bytes = le64_to_cpu(pi.next_volatile_cap); *next_persistent_bytes = le64_to_cpu(pi.next_volatile_cap); *active_volatile_bytes *= CXL_CAPACITY_MULTIPLIER; *active_persistent_bytes *= CXL_CAPACITY_MULTIPLIER; *next_volatile_bytes *= CXL_CAPACITY_MULTIPLIER; *next_persistent_bytes *= CXL_CAPACITY_MULTIPLIER; return 0; } /** * cxl_mem_enumerate_cmds() - Enumerate commands for a device. * @cxlm: The device. * * Returns 0 if enumerate completed successfully. * * CXL devices have optional support for certain commands. This function will * determine the set of supported commands for the hardware and update the * enabled_cmds bitmap in the @cxlm. */ static int cxl_mem_enumerate_cmds(struct cxl_mem *cxlm) { struct cxl_mbox_get_supported_logs *gsl; struct device *dev = &cxlm->pdev->dev; struct cxl_mem_command *cmd; int i, rc; gsl = cxl_get_gsl(cxlm); if (IS_ERR(gsl)) return PTR_ERR(gsl); rc = -ENOENT; for (i = 0; i < le16_to_cpu(gsl->entries); i++) { u32 size = le32_to_cpu(gsl->entry[i].size); uuid_t uuid = gsl->entry[i].uuid; u8 *log; dev_dbg(dev, "Found LOG type %pU of size %d", &uuid, size); if (!uuid_equal(&uuid, &log_uuid[CEL_UUID])) continue; log = kvmalloc(size, GFP_KERNEL); if (!log) { rc = -ENOMEM; goto out; } rc = cxl_xfer_log(cxlm, &uuid, size, log); if (rc) { kvfree(log); goto out; } cxl_walk_cel(cxlm, size, log); kvfree(log); /* In case CEL was bogus, enable some default commands. */ cxl_for_each_cmd(cmd) if (cmd->flags & CXL_CMD_FLAG_FORCE_ENABLE) set_bit(cmd->info.id, cxlm->enabled_cmds); /* Found the required CEL */ rc = 0; } out: kvfree(gsl); return rc; } /** * cxl_mem_identify() - Send the IDENTIFY command to the device. * @cxlm: The device to identify. * * Return: 0 if identify was executed successfully. * * This will dispatch the identify command to the device and on success populate * structures to be exported to sysfs. */ static int cxl_mem_identify(struct cxl_mem *cxlm) { /* See CXL 2.0 Table 175 Identify Memory Device Output Payload */ struct cxl_mbox_identify { char fw_revision[0x10]; __le64 total_capacity; __le64 volatile_capacity; __le64 persistent_capacity; __le64 partition_align; __le16 info_event_log_size; __le16 warning_event_log_size; __le16 failure_event_log_size; __le16 fatal_event_log_size; __le32 lsa_size; u8 poison_list_max_mer[3]; __le16 inject_poison_limit; u8 poison_caps; u8 qos_telemetry_caps; } __packed id; int rc; rc = cxl_mem_mbox_send_cmd(cxlm, CXL_MBOX_OP_IDENTIFY, NULL, 0, &id, sizeof(id)); if (rc < 0) return rc; cxlm->total_bytes = le64_to_cpu(id.total_capacity); cxlm->total_bytes *= CXL_CAPACITY_MULTIPLIER; cxlm->volatile_only_bytes = le64_to_cpu(id.volatile_capacity); cxlm->volatile_only_bytes *= CXL_CAPACITY_MULTIPLIER; cxlm->persistent_only_bytes = le64_to_cpu(id.persistent_capacity); cxlm->persistent_only_bytes *= CXL_CAPACITY_MULTIPLIER; cxlm->partition_align_bytes = le64_to_cpu(id.partition_align); cxlm->partition_align_bytes *= CXL_CAPACITY_MULTIPLIER; dev_dbg(&cxlm->pdev->dev, "Identify Memory Device\n" " total_bytes = %#llx\n" " volatile_only_bytes = %#llx\n" " persistent_only_bytes = %#llx\n" " partition_align_bytes = %#llx\n", cxlm->total_bytes, cxlm->volatile_only_bytes, cxlm->persistent_only_bytes, cxlm->partition_align_bytes); cxlm->lsa_size = le32_to_cpu(id.lsa_size); memcpy(cxlm->firmware_version, id.fw_revision, sizeof(id.fw_revision)); return 0; } static int cxl_mem_create_range_info(struct cxl_mem *cxlm) { int rc; if (cxlm->partition_align_bytes == 0) { cxlm->ram_range.start = 0; cxlm->ram_range.end = cxlm->volatile_only_bytes - 1; cxlm->pmem_range.start = cxlm->volatile_only_bytes; cxlm->pmem_range.end = cxlm->volatile_only_bytes + cxlm->persistent_only_bytes - 1; return 0; } rc = cxl_mem_get_partition_info(cxlm, &cxlm->active_volatile_bytes, &cxlm->active_persistent_bytes, &cxlm->next_volatile_bytes, &cxlm->next_persistent_bytes); if (rc < 0) { dev_err(&cxlm->pdev->dev, "Failed to query partition information\n"); return rc; } dev_dbg(&cxlm->pdev->dev, "Get Partition Info\n" " active_volatile_bytes = %#llx\n" " active_persistent_bytes = %#llx\n" " next_volatile_bytes = %#llx\n" " next_persistent_bytes = %#llx\n", cxlm->active_volatile_bytes, cxlm->active_persistent_bytes, cxlm->next_volatile_bytes, cxlm->next_persistent_bytes); cxlm->ram_range.start = 0; cxlm->ram_range.end = cxlm->active_volatile_bytes - 1; cxlm->pmem_range.start = cxlm->active_volatile_bytes; cxlm->pmem_range.end = cxlm->active_volatile_bytes + cxlm->active_persistent_bytes - 1; return 0; } static int cxl_mem_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct cxl_memdev *cxlmd; struct cxl_mem *cxlm; int rc; rc = pcim_enable_device(pdev); if (rc) return rc; cxlm = cxl_mem_create(pdev); if (IS_ERR(cxlm)) return PTR_ERR(cxlm); rc = cxl_mem_setup_regs(cxlm); if (rc) return rc; rc = cxl_mem_setup_mailbox(cxlm); if (rc) return rc; rc = cxl_mem_enumerate_cmds(cxlm); if (rc) return rc; rc = cxl_mem_identify(cxlm); if (rc) return rc; rc = cxl_mem_create_range_info(cxlm); if (rc) return rc; cxlmd = devm_cxl_add_memdev(&pdev->dev, cxlm, &cxl_memdev_fops); if (IS_ERR(cxlmd)) return PTR_ERR(cxlmd); if (range_len(&cxlm->pmem_range) && IS_ENABLED(CONFIG_CXL_PMEM)) rc = devm_cxl_add_nvdimm(&pdev->dev, cxlmd); return rc; } static const struct pci_device_id cxl_mem_pci_tbl[] = { /* PCI class code for CXL.mem Type-3 Devices */ { PCI_DEVICE_CLASS((PCI_CLASS_MEMORY_CXL << 8 | CXL_MEMORY_PROGIF), ~0)}, { /* terminate list */ }, }; MODULE_DEVICE_TABLE(pci, cxl_mem_pci_tbl); static struct pci_driver cxl_mem_driver = { .name = KBUILD_MODNAME, .id_table = cxl_mem_pci_tbl, .probe = cxl_mem_probe, .driver = { .probe_type = PROBE_PREFER_ASYNCHRONOUS, }, }; static __init int cxl_mem_init(void) { struct dentry *mbox_debugfs; int rc; /* Double check the anonymous union trickery in struct cxl_regs */ BUILD_BUG_ON(offsetof(struct cxl_regs, memdev) != offsetof(struct cxl_regs, device_regs.memdev)); rc = pci_register_driver(&cxl_mem_driver); if (rc) return rc; cxl_debugfs = debugfs_create_dir("cxl", NULL); mbox_debugfs = debugfs_create_dir("mbox", cxl_debugfs); debugfs_create_bool("raw_allow_all", 0600, mbox_debugfs, &cxl_raw_allow_all); return 0; } static __exit void cxl_mem_exit(void) { debugfs_remove_recursive(cxl_debugfs); pci_unregister_driver(&cxl_mem_driver); } MODULE_LICENSE("GPL v2"); module_init(cxl_mem_init); module_exit(cxl_mem_exit); MODULE_IMPORT_NS(CXL);