// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2017-2018, Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /** * SVC_NUM_DATA_IN_FIFO - number of struct stratix10_svc_data in the FIFO * * SVC_NUM_CHANNEL - number of channel supported by service layer driver * * FPGA_CONFIG_DATA_CLAIM_TIMEOUT_MS - claim back the submitted buffer(s) * from the secure world for FPGA manager to reuse, or to free the buffer(s) * when all bit-stream data had be send. * * FPGA_CONFIG_STATUS_TIMEOUT_SEC - poll the FPGA configuration status, * service layer will return error to FPGA manager when timeout occurs, * timeout is set to 30 seconds (30 * 1000) at Intel Stratix10 SoC. */ #define SVC_NUM_DATA_IN_FIFO 32 #define SVC_NUM_CHANNEL 2 #define FPGA_CONFIG_DATA_CLAIM_TIMEOUT_MS 200 #define FPGA_CONFIG_STATUS_TIMEOUT_SEC 30 /* stratix10 service layer clients */ #define STRATIX10_RSU "stratix10-rsu" typedef void (svc_invoke_fn)(unsigned long, unsigned long, unsigned long, unsigned long, unsigned long, unsigned long, unsigned long, unsigned long, struct arm_smccc_res *); struct stratix10_svc_chan; /** * struct stratix10_svc - svc private data * @stratix10_svc_rsu: pointer to stratix10 RSU device */ struct stratix10_svc { struct platform_device *stratix10_svc_rsu; }; /** * struct stratix10_svc_sh_memory - service shared memory structure * @sync_complete: state for a completion * @addr: physical address of shared memory block * @size: size of shared memory block * @invoke_fn: function to issue secure monitor or hypervisor call * * This struct is used to save physical address and size of shared memory * block. The shared memory blocked is allocated by secure monitor software * at secure world. * * Service layer driver uses the physical address and size to create a memory * pool, then allocates data buffer from that memory pool for service client. */ struct stratix10_svc_sh_memory { struct completion sync_complete; unsigned long addr; unsigned long size; svc_invoke_fn *invoke_fn; }; /** * struct stratix10_svc_data_mem - service memory structure * @vaddr: virtual address * @paddr: physical address * @size: size of memory * @node: link list head node * * This struct is used in a list that keeps track of buffers which have * been allocated or freed from the memory pool. Service layer driver also * uses this struct to transfer physical address to virtual address. */ struct stratix10_svc_data_mem { void *vaddr; phys_addr_t paddr; size_t size; struct list_head node; }; /** * struct stratix10_svc_data - service data structure * @chan: service channel * @paddr: playload physical address * @size: playload size * @command: service command requested by client * @flag: configuration type (full or partial) * @arg: args to be passed via registers and not physically mapped buffers * * This struct is used in service FIFO for inter-process communication. */ struct stratix10_svc_data { struct stratix10_svc_chan *chan; phys_addr_t paddr; size_t size; u32 command; u32 flag; u64 arg[3]; }; /** * struct stratix10_svc_controller - service controller * @dev: device * @chans: array of service channels * @num_chans: number of channels in 'chans' array * @num_active_client: number of active service client * @node: list management * @genpool: memory pool pointing to the memory region * @task: pointer to the thread task which handles SMC or HVC call * @svc_fifo: a queue for storing service message data * @complete_status: state for completion * @svc_fifo_lock: protect access to service message data queue * @invoke_fn: function to issue secure monitor call or hypervisor call * * This struct is used to create communication channels for service clients, to * handle secure monitor or hypervisor call. */ struct stratix10_svc_controller { struct device *dev; struct stratix10_svc_chan *chans; int num_chans; int num_active_client; struct list_head node; struct gen_pool *genpool; struct task_struct *task; struct kfifo svc_fifo; struct completion complete_status; spinlock_t svc_fifo_lock; svc_invoke_fn *invoke_fn; }; /** * struct stratix10_svc_chan - service communication channel * @ctrl: pointer to service controller which is the provider of this channel * @scl: pointer to service client which owns the channel * @name: service client name associated with the channel * @lock: protect access to the channel * * This struct is used by service client to communicate with service layer, each * service client has its own channel created by service controller. */ struct stratix10_svc_chan { struct stratix10_svc_controller *ctrl; struct stratix10_svc_client *scl; char *name; spinlock_t lock; }; static LIST_HEAD(svc_ctrl); static LIST_HEAD(svc_data_mem); /** * svc_pa_to_va() - translate physical address to virtual address * @addr: to be translated physical address * * Return: valid virtual address or NULL if the provided physical * address doesn't exist. */ static void *svc_pa_to_va(unsigned long addr) { struct stratix10_svc_data_mem *pmem; pr_debug("claim back P-addr=0x%016x\n", (unsigned int)addr); list_for_each_entry(pmem, &svc_data_mem, node) if (pmem->paddr == addr) return pmem->vaddr; /* physical address is not found */ return NULL; } /** * svc_thread_cmd_data_claim() - claim back buffer from the secure world * @ctrl: pointer to service layer controller * @p_data: pointer to service data structure * @cb_data: pointer to callback data structure to service client * * Claim back the submitted buffers from the secure world and pass buffer * back to service client (FPGA manager, etc) for reuse. */ static void svc_thread_cmd_data_claim(struct stratix10_svc_controller *ctrl, struct stratix10_svc_data *p_data, struct stratix10_svc_cb_data *cb_data) { struct arm_smccc_res res; unsigned long timeout; reinit_completion(&ctrl->complete_status); timeout = msecs_to_jiffies(FPGA_CONFIG_DATA_CLAIM_TIMEOUT_MS); pr_debug("%s: claim back the submitted buffer\n", __func__); do { ctrl->invoke_fn(INTEL_SIP_SMC_FPGA_CONFIG_COMPLETED_WRITE, 0, 0, 0, 0, 0, 0, 0, &res); if (res.a0 == INTEL_SIP_SMC_STATUS_OK) { if (!res.a1) { complete(&ctrl->complete_status); break; } cb_data->status = BIT(SVC_STATUS_BUFFER_DONE); cb_data->kaddr1 = svc_pa_to_va(res.a1); cb_data->kaddr2 = (res.a2) ? svc_pa_to_va(res.a2) : NULL; cb_data->kaddr3 = (res.a3) ? svc_pa_to_va(res.a3) : NULL; p_data->chan->scl->receive_cb(p_data->chan->scl, cb_data); } else { pr_debug("%s: secure world busy, polling again\n", __func__); } } while (res.a0 == INTEL_SIP_SMC_STATUS_OK || res.a0 == INTEL_SIP_SMC_STATUS_BUSY || wait_for_completion_timeout(&ctrl->complete_status, timeout)); } /** * svc_thread_cmd_config_status() - check configuration status * @ctrl: pointer to service layer controller * @p_data: pointer to service data structure * @cb_data: pointer to callback data structure to service client * * Check whether the secure firmware at secure world has finished the FPGA * configuration, and then inform FPGA manager the configuration status. */ static void svc_thread_cmd_config_status(struct stratix10_svc_controller *ctrl, struct stratix10_svc_data *p_data, struct stratix10_svc_cb_data *cb_data) { struct arm_smccc_res res; int count_in_sec; cb_data->kaddr1 = NULL; cb_data->kaddr2 = NULL; cb_data->kaddr3 = NULL; cb_data->status = BIT(SVC_STATUS_ERROR); pr_debug("%s: polling config status\n", __func__); count_in_sec = FPGA_CONFIG_STATUS_TIMEOUT_SEC; while (count_in_sec) { ctrl->invoke_fn(INTEL_SIP_SMC_FPGA_CONFIG_ISDONE, 0, 0, 0, 0, 0, 0, 0, &res); if ((res.a0 == INTEL_SIP_SMC_STATUS_OK) || (res.a0 == INTEL_SIP_SMC_STATUS_ERROR)) break; /* * configuration is still in progress, wait one second then * poll again */ msleep(1000); count_in_sec--; } if (res.a0 == INTEL_SIP_SMC_STATUS_OK && count_in_sec) cb_data->status = BIT(SVC_STATUS_COMPLETED); p_data->chan->scl->receive_cb(p_data->chan->scl, cb_data); } /** * svc_thread_recv_status_ok() - handle the successful status * @p_data: pointer to service data structure * @cb_data: pointer to callback data structure to service client * @res: result from SMC or HVC call * * Send back the correspond status to the service clients. */ static void svc_thread_recv_status_ok(struct stratix10_svc_data *p_data, struct stratix10_svc_cb_data *cb_data, struct arm_smccc_res res) { cb_data->kaddr1 = NULL; cb_data->kaddr2 = NULL; cb_data->kaddr3 = NULL; switch (p_data->command) { case COMMAND_RECONFIG: case COMMAND_RSU_UPDATE: case COMMAND_RSU_NOTIFY: cb_data->status = BIT(SVC_STATUS_OK); break; case COMMAND_RECONFIG_DATA_SUBMIT: cb_data->status = BIT(SVC_STATUS_BUFFER_SUBMITTED); break; case COMMAND_RECONFIG_STATUS: cb_data->status = BIT(SVC_STATUS_COMPLETED); break; case COMMAND_RSU_RETRY: case COMMAND_RSU_MAX_RETRY: cb_data->status = BIT(SVC_STATUS_OK); cb_data->kaddr1 = &res.a1; break; case COMMAND_RSU_DCMF_VERSION: cb_data->status = BIT(SVC_STATUS_OK); cb_data->kaddr1 = &res.a1; cb_data->kaddr2 = &res.a2; break; default: pr_warn("it shouldn't happen\n"); break; } pr_debug("%s: call receive_cb\n", __func__); p_data->chan->scl->receive_cb(p_data->chan->scl, cb_data); } /** * svc_normal_to_secure_thread() - the function to run in the kthread * @data: data pointer for kthread function * * Service layer driver creates stratix10_svc_smc_hvc_call kthread on CPU * node 0, its function stratix10_svc_secure_call_thread is used to handle * SMC or HVC calls between kernel driver and secure monitor software. * * Return: 0 for success or -ENOMEM on error. */ static int svc_normal_to_secure_thread(void *data) { struct stratix10_svc_controller *ctrl = (struct stratix10_svc_controller *)data; struct stratix10_svc_data *pdata; struct stratix10_svc_cb_data *cbdata; struct arm_smccc_res res; unsigned long a0, a1, a2; int ret_fifo = 0; pdata = kmalloc(sizeof(*pdata), GFP_KERNEL); if (!pdata) return -ENOMEM; cbdata = kmalloc(sizeof(*cbdata), GFP_KERNEL); if (!cbdata) { kfree(pdata); return -ENOMEM; } /* default set, to remove build warning */ a0 = INTEL_SIP_SMC_FPGA_CONFIG_LOOPBACK; a1 = 0; a2 = 0; pr_debug("smc_hvc_shm_thread is running\n"); while (!kthread_should_stop()) { ret_fifo = kfifo_out_spinlocked(&ctrl->svc_fifo, pdata, sizeof(*pdata), &ctrl->svc_fifo_lock); if (!ret_fifo) continue; pr_debug("get from FIFO pa=0x%016x, command=%u, size=%u\n", (unsigned int)pdata->paddr, pdata->command, (unsigned int)pdata->size); switch (pdata->command) { case COMMAND_RECONFIG_DATA_CLAIM: svc_thread_cmd_data_claim(ctrl, pdata, cbdata); continue; case COMMAND_RECONFIG: a0 = INTEL_SIP_SMC_FPGA_CONFIG_START; pr_debug("conf_type=%u\n", (unsigned int)pdata->flag); a1 = pdata->flag; a2 = 0; break; case COMMAND_RECONFIG_DATA_SUBMIT: a0 = INTEL_SIP_SMC_FPGA_CONFIG_WRITE; a1 = (unsigned long)pdata->paddr; a2 = (unsigned long)pdata->size; break; case COMMAND_RECONFIG_STATUS: a0 = INTEL_SIP_SMC_FPGA_CONFIG_ISDONE; a1 = 0; a2 = 0; break; case COMMAND_RSU_STATUS: a0 = INTEL_SIP_SMC_RSU_STATUS; a1 = 0; a2 = 0; break; case COMMAND_RSU_UPDATE: a0 = INTEL_SIP_SMC_RSU_UPDATE; a1 = pdata->arg[0]; a2 = 0; break; case COMMAND_RSU_NOTIFY: a0 = INTEL_SIP_SMC_RSU_NOTIFY; a1 = pdata->arg[0]; a2 = 0; break; case COMMAND_RSU_RETRY: a0 = INTEL_SIP_SMC_RSU_RETRY_COUNTER; a1 = 0; a2 = 0; break; case COMMAND_RSU_MAX_RETRY: a0 = INTEL_SIP_SMC_RSU_MAX_RETRY; a1 = 0; a2 = 0; break; case COMMAND_RSU_DCMF_VERSION: a0 = INTEL_SIP_SMC_RSU_DCMF_VERSION; a1 = 0; a2 = 0; break; default: pr_warn("it shouldn't happen\n"); break; } pr_debug("%s: before SMC call -- a0=0x%016x a1=0x%016x", __func__, (unsigned int)a0, (unsigned int)a1); pr_debug(" a2=0x%016x\n", (unsigned int)a2); ctrl->invoke_fn(a0, a1, a2, 0, 0, 0, 0, 0, &res); pr_debug("%s: after SMC call -- res.a0=0x%016x", __func__, (unsigned int)res.a0); pr_debug(" res.a1=0x%016x, res.a2=0x%016x", (unsigned int)res.a1, (unsigned int)res.a2); pr_debug(" res.a3=0x%016x\n", (unsigned int)res.a3); if (pdata->command == COMMAND_RSU_STATUS) { if (res.a0 == INTEL_SIP_SMC_RSU_ERROR) cbdata->status = BIT(SVC_STATUS_ERROR); else cbdata->status = BIT(SVC_STATUS_OK); cbdata->kaddr1 = &res; cbdata->kaddr2 = NULL; cbdata->kaddr3 = NULL; pdata->chan->scl->receive_cb(pdata->chan->scl, cbdata); continue; } switch (res.a0) { case INTEL_SIP_SMC_STATUS_OK: svc_thread_recv_status_ok(pdata, cbdata, res); break; case INTEL_SIP_SMC_STATUS_BUSY: switch (pdata->command) { case COMMAND_RECONFIG_DATA_SUBMIT: svc_thread_cmd_data_claim(ctrl, pdata, cbdata); break; case COMMAND_RECONFIG_STATUS: svc_thread_cmd_config_status(ctrl, pdata, cbdata); break; default: pr_warn("it shouldn't happen\n"); break; } break; case INTEL_SIP_SMC_STATUS_REJECTED: pr_debug("%s: STATUS_REJECTED\n", __func__); break; case INTEL_SIP_SMC_STATUS_ERROR: case INTEL_SIP_SMC_RSU_ERROR: pr_err("%s: STATUS_ERROR\n", __func__); cbdata->status = BIT(SVC_STATUS_ERROR); cbdata->kaddr1 = &res.a1; cbdata->kaddr2 = NULL; cbdata->kaddr3 = NULL; pdata->chan->scl->receive_cb(pdata->chan->scl, cbdata); break; default: pr_warn("Secure firmware doesn't support...\n"); /* * be compatible with older version firmware which * doesn't support RSU notify or retry */ if ((pdata->command == COMMAND_RSU_RETRY) || (pdata->command == COMMAND_RSU_MAX_RETRY) || (pdata->command == COMMAND_RSU_NOTIFY)) { cbdata->status = BIT(SVC_STATUS_NO_SUPPORT); cbdata->kaddr1 = NULL; cbdata->kaddr2 = NULL; cbdata->kaddr3 = NULL; pdata->chan->scl->receive_cb( pdata->chan->scl, cbdata); } break; } } kfree(cbdata); kfree(pdata); return 0; } /** * svc_normal_to_secure_shm_thread() - the function to run in the kthread * @data: data pointer for kthread function * * Service layer driver creates stratix10_svc_smc_hvc_shm kthread on CPU * node 0, its function stratix10_svc_secure_shm_thread is used to query the * physical address of memory block reserved by secure monitor software at * secure world. * * svc_normal_to_secure_shm_thread() calls do_exit() directly since it is a * standlone thread for which no one will call kthread_stop() or return when * 'kthread_should_stop()' is true. */ static int svc_normal_to_secure_shm_thread(void *data) { struct stratix10_svc_sh_memory *sh_mem = (struct stratix10_svc_sh_memory *)data; struct arm_smccc_res res; /* SMC or HVC call to get shared memory info from secure world */ sh_mem->invoke_fn(INTEL_SIP_SMC_FPGA_CONFIG_GET_MEM, 0, 0, 0, 0, 0, 0, 0, &res); if (res.a0 == INTEL_SIP_SMC_STATUS_OK) { sh_mem->addr = res.a1; sh_mem->size = res.a2; } else { pr_err("%s: after SMC call -- res.a0=0x%016x", __func__, (unsigned int)res.a0); sh_mem->addr = 0; sh_mem->size = 0; } complete(&sh_mem->sync_complete); do_exit(0); } /** * svc_get_sh_memory() - get memory block reserved by secure monitor SW * @pdev: pointer to service layer device * @sh_memory: pointer to service shared memory structure * * Return: zero for successfully getting the physical address of memory block * reserved by secure monitor software, or negative value on error. */ static int svc_get_sh_memory(struct platform_device *pdev, struct stratix10_svc_sh_memory *sh_memory) { struct device *dev = &pdev->dev; struct task_struct *sh_memory_task; unsigned int cpu = 0; init_completion(&sh_memory->sync_complete); /* smc or hvc call happens on cpu 0 bound kthread */ sh_memory_task = kthread_create_on_node(svc_normal_to_secure_shm_thread, (void *)sh_memory, cpu_to_node(cpu), "svc_smc_hvc_shm_thread"); if (IS_ERR(sh_memory_task)) { dev_err(dev, "fail to create stratix10_svc_smc_shm_thread\n"); return -EINVAL; } wake_up_process(sh_memory_task); if (!wait_for_completion_timeout(&sh_memory->sync_complete, 10 * HZ)) { dev_err(dev, "timeout to get sh-memory paras from secure world\n"); return -ETIMEDOUT; } if (!sh_memory->addr || !sh_memory->size) { dev_err(dev, "failed to get shared memory info from secure world\n"); return -ENOMEM; } dev_dbg(dev, "SM software provides paddr: 0x%016x, size: 0x%08x\n", (unsigned int)sh_memory->addr, (unsigned int)sh_memory->size); return 0; } /** * svc_create_memory_pool() - create a memory pool from reserved memory block * @pdev: pointer to service layer device * @sh_memory: pointer to service shared memory structure * * Return: pool allocated from reserved memory block or ERR_PTR() on error. */ static struct gen_pool * svc_create_memory_pool(struct platform_device *pdev, struct stratix10_svc_sh_memory *sh_memory) { struct device *dev = &pdev->dev; struct gen_pool *genpool; unsigned long vaddr; phys_addr_t paddr; size_t size; phys_addr_t begin; phys_addr_t end; void *va; size_t page_mask = PAGE_SIZE - 1; int min_alloc_order = 3; int ret; begin = roundup(sh_memory->addr, PAGE_SIZE); end = rounddown(sh_memory->addr + sh_memory->size, PAGE_SIZE); paddr = begin; size = end - begin; va = devm_memremap(dev, paddr, size, MEMREMAP_WC); if (IS_ERR(va)) { dev_err(dev, "fail to remap shared memory\n"); return ERR_PTR(-EINVAL); } vaddr = (unsigned long)va; dev_dbg(dev, "reserved memory vaddr: %p, paddr: 0x%16x size: 0x%8x\n", va, (unsigned int)paddr, (unsigned int)size); if ((vaddr & page_mask) || (paddr & page_mask) || (size & page_mask)) { dev_err(dev, "page is not aligned\n"); return ERR_PTR(-EINVAL); } genpool = gen_pool_create(min_alloc_order, -1); if (!genpool) { dev_err(dev, "fail to create genpool\n"); return ERR_PTR(-ENOMEM); } gen_pool_set_algo(genpool, gen_pool_best_fit, NULL); ret = gen_pool_add_virt(genpool, vaddr, paddr, size, -1); if (ret) { dev_err(dev, "fail to add memory chunk to the pool\n"); gen_pool_destroy(genpool); return ERR_PTR(ret); } return genpool; } /** * svc_smccc_smc() - secure monitor call between normal and secure world * @a0: argument passed in registers 0 * @a1: argument passed in registers 1 * @a2: argument passed in registers 2 * @a3: argument passed in registers 3 * @a4: argument passed in registers 4 * @a5: argument passed in registers 5 * @a6: argument passed in registers 6 * @a7: argument passed in registers 7 * @res: result values from register 0 to 3 */ static void svc_smccc_smc(unsigned long a0, unsigned long a1, unsigned long a2, unsigned long a3, unsigned long a4, unsigned long a5, unsigned long a6, unsigned long a7, struct arm_smccc_res *res) { arm_smccc_smc(a0, a1, a2, a3, a4, a5, a6, a7, res); } /** * svc_smccc_hvc() - hypervisor call between normal and secure world * @a0: argument passed in registers 0 * @a1: argument passed in registers 1 * @a2: argument passed in registers 2 * @a3: argument passed in registers 3 * @a4: argument passed in registers 4 * @a5: argument passed in registers 5 * @a6: argument passed in registers 6 * @a7: argument passed in registers 7 * @res: result values from register 0 to 3 */ static void svc_smccc_hvc(unsigned long a0, unsigned long a1, unsigned long a2, unsigned long a3, unsigned long a4, unsigned long a5, unsigned long a6, unsigned long a7, struct arm_smccc_res *res) { arm_smccc_hvc(a0, a1, a2, a3, a4, a5, a6, a7, res); } /** * get_invoke_func() - invoke SMC or HVC call * @dev: pointer to device * * Return: function pointer to svc_smccc_smc or svc_smccc_hvc. */ static svc_invoke_fn *get_invoke_func(struct device *dev) { const char *method; if (of_property_read_string(dev->of_node, "method", &method)) { dev_warn(dev, "missing \"method\" property\n"); return ERR_PTR(-ENXIO); } if (!strcmp(method, "smc")) return svc_smccc_smc; if (!strcmp(method, "hvc")) return svc_smccc_hvc; dev_warn(dev, "invalid \"method\" property: %s\n", method); return ERR_PTR(-EINVAL); } /** * stratix10_svc_request_channel_byname() - request a service channel * @client: pointer to service client * @name: service client name * * This function is used by service client to request a service channel. * * Return: a pointer to channel assigned to the client on success, * or ERR_PTR() on error. */ struct stratix10_svc_chan *stratix10_svc_request_channel_byname( struct stratix10_svc_client *client, const char *name) { struct device *dev = client->dev; struct stratix10_svc_controller *controller; struct stratix10_svc_chan *chan = NULL; unsigned long flag; int i; /* if probe was called after client's, or error on probe */ if (list_empty(&svc_ctrl)) return ERR_PTR(-EPROBE_DEFER); controller = list_first_entry(&svc_ctrl, struct stratix10_svc_controller, node); for (i = 0; i < SVC_NUM_CHANNEL; i++) { if (!strcmp(controller->chans[i].name, name)) { chan = &controller->chans[i]; break; } } /* if there was no channel match */ if (i == SVC_NUM_CHANNEL) { dev_err(dev, "%s: channel not allocated\n", __func__); return ERR_PTR(-EINVAL); } if (chan->scl || !try_module_get(controller->dev->driver->owner)) { dev_dbg(dev, "%s: svc not free\n", __func__); return ERR_PTR(-EBUSY); } spin_lock_irqsave(&chan->lock, flag); chan->scl = client; chan->ctrl->num_active_client++; spin_unlock_irqrestore(&chan->lock, flag); return chan; } EXPORT_SYMBOL_GPL(stratix10_svc_request_channel_byname); /** * stratix10_svc_free_channel() - free service channel * @chan: service channel to be freed * * This function is used by service client to free a service channel. */ void stratix10_svc_free_channel(struct stratix10_svc_chan *chan) { unsigned long flag; spin_lock_irqsave(&chan->lock, flag); chan->scl = NULL; chan->ctrl->num_active_client--; module_put(chan->ctrl->dev->driver->owner); spin_unlock_irqrestore(&chan->lock, flag); } EXPORT_SYMBOL_GPL(stratix10_svc_free_channel); /** * stratix10_svc_send() - send a message data to the remote * @chan: service channel assigned to the client * @msg: message data to be sent, in the format of * "struct stratix10_svc_client_msg" * * This function is used by service client to add a message to the service * layer driver's queue for being sent to the secure world. * * Return: 0 for success, -ENOMEM or -ENOBUFS on error. */ int stratix10_svc_send(struct stratix10_svc_chan *chan, void *msg) { struct stratix10_svc_client_msg *p_msg = (struct stratix10_svc_client_msg *)msg; struct stratix10_svc_data_mem *p_mem; struct stratix10_svc_data *p_data; int ret = 0; unsigned int cpu = 0; p_data = kzalloc(sizeof(*p_data), GFP_KERNEL); if (!p_data) return -ENOMEM; /* first client will create kernel thread */ if (!chan->ctrl->task) { chan->ctrl->task = kthread_create_on_node(svc_normal_to_secure_thread, (void *)chan->ctrl, cpu_to_node(cpu), "svc_smc_hvc_thread"); if (IS_ERR(chan->ctrl->task)) { dev_err(chan->ctrl->dev, "failed to create svc_smc_hvc_thread\n"); kfree(p_data); return -EINVAL; } kthread_bind(chan->ctrl->task, cpu); wake_up_process(chan->ctrl->task); } pr_debug("%s: sent P-va=%p, P-com=%x, P-size=%u\n", __func__, p_msg->payload, p_msg->command, (unsigned int)p_msg->payload_length); if (list_empty(&svc_data_mem)) { if (p_msg->command == COMMAND_RECONFIG) { struct stratix10_svc_command_config_type *ct = (struct stratix10_svc_command_config_type *) p_msg->payload; p_data->flag = ct->flags; } } else { list_for_each_entry(p_mem, &svc_data_mem, node) if (p_mem->vaddr == p_msg->payload) { p_data->paddr = p_mem->paddr; break; } } p_data->command = p_msg->command; p_data->arg[0] = p_msg->arg[0]; p_data->arg[1] = p_msg->arg[1]; p_data->arg[2] = p_msg->arg[2]; p_data->size = p_msg->payload_length; p_data->chan = chan; pr_debug("%s: put to FIFO pa=0x%016x, cmd=%x, size=%u\n", __func__, (unsigned int)p_data->paddr, p_data->command, (unsigned int)p_data->size); ret = kfifo_in_spinlocked(&chan->ctrl->svc_fifo, p_data, sizeof(*p_data), &chan->ctrl->svc_fifo_lock); kfree(p_data); if (!ret) return -ENOBUFS; return 0; } EXPORT_SYMBOL_GPL(stratix10_svc_send); /** * stratix10_svc_done() - complete service request transactions * @chan: service channel assigned to the client * * This function should be called when client has finished its request * or there is an error in the request process. It allows the service layer * to stop the running thread to have maximize savings in kernel resources. */ void stratix10_svc_done(struct stratix10_svc_chan *chan) { /* stop thread when thread is running AND only one active client */ if (chan->ctrl->task && chan->ctrl->num_active_client <= 1) { pr_debug("svc_smc_hvc_shm_thread is stopped\n"); kthread_stop(chan->ctrl->task); chan->ctrl->task = NULL; } } EXPORT_SYMBOL_GPL(stratix10_svc_done); /** * stratix10_svc_allocate_memory() - allocate memory * @chan: service channel assigned to the client * @size: memory size requested by a specific service client * * Service layer allocates the requested number of bytes buffer from the * memory pool, service client uses this function to get allocated buffers. * * Return: address of allocated memory on success, or ERR_PTR() on error. */ void *stratix10_svc_allocate_memory(struct stratix10_svc_chan *chan, size_t size) { struct stratix10_svc_data_mem *pmem; unsigned long va; phys_addr_t pa; struct gen_pool *genpool = chan->ctrl->genpool; size_t s = roundup(size, 1 << genpool->min_alloc_order); pmem = devm_kzalloc(chan->ctrl->dev, sizeof(*pmem), GFP_KERNEL); if (!pmem) return ERR_PTR(-ENOMEM); va = gen_pool_alloc(genpool, s); if (!va) return ERR_PTR(-ENOMEM); memset((void *)va, 0, s); pa = gen_pool_virt_to_phys(genpool, va); pmem->vaddr = (void *)va; pmem->paddr = pa; pmem->size = s; list_add_tail(&pmem->node, &svc_data_mem); pr_debug("%s: va=%p, pa=0x%016x\n", __func__, pmem->vaddr, (unsigned int)pmem->paddr); return (void *)va; } EXPORT_SYMBOL_GPL(stratix10_svc_allocate_memory); /** * stratix10_svc_free_memory() - free allocated memory * @chan: service channel assigned to the client * @kaddr: memory to be freed * * This function is used by service client to free allocated buffers. */ void stratix10_svc_free_memory(struct stratix10_svc_chan *chan, void *kaddr) { struct stratix10_svc_data_mem *pmem; list_for_each_entry(pmem, &svc_data_mem, node) if (pmem->vaddr == kaddr) { gen_pool_free(chan->ctrl->genpool, (unsigned long)kaddr, pmem->size); pmem->vaddr = NULL; list_del(&pmem->node); return; } list_del(&svc_data_mem); } EXPORT_SYMBOL_GPL(stratix10_svc_free_memory); static const struct of_device_id stratix10_svc_drv_match[] = { {.compatible = "intel,stratix10-svc"}, {.compatible = "intel,agilex-svc"}, {}, }; static int stratix10_svc_drv_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct stratix10_svc_controller *controller; struct stratix10_svc_chan *chans; struct gen_pool *genpool; struct stratix10_svc_sh_memory *sh_memory; struct stratix10_svc *svc; svc_invoke_fn *invoke_fn; size_t fifo_size; int ret; /* get SMC or HVC function */ invoke_fn = get_invoke_func(dev); if (IS_ERR(invoke_fn)) return -EINVAL; sh_memory = devm_kzalloc(dev, sizeof(*sh_memory), GFP_KERNEL); if (!sh_memory) return -ENOMEM; sh_memory->invoke_fn = invoke_fn; ret = svc_get_sh_memory(pdev, sh_memory); if (ret) return ret; genpool = svc_create_memory_pool(pdev, sh_memory); if (IS_ERR(genpool)) return PTR_ERR(genpool); /* allocate service controller and supporting channel */ controller = devm_kzalloc(dev, sizeof(*controller), GFP_KERNEL); if (!controller) { ret = -ENOMEM; goto err_destroy_pool; } chans = devm_kmalloc_array(dev, SVC_NUM_CHANNEL, sizeof(*chans), GFP_KERNEL | __GFP_ZERO); if (!chans) { ret = -ENOMEM; goto err_destroy_pool; } controller->dev = dev; controller->num_chans = SVC_NUM_CHANNEL; controller->num_active_client = 0; controller->chans = chans; controller->genpool = genpool; controller->task = NULL; controller->invoke_fn = invoke_fn; init_completion(&controller->complete_status); fifo_size = sizeof(struct stratix10_svc_data) * SVC_NUM_DATA_IN_FIFO; ret = kfifo_alloc(&controller->svc_fifo, fifo_size, GFP_KERNEL); if (ret) { dev_err(dev, "failed to allocate FIFO\n"); goto err_destroy_pool; } spin_lock_init(&controller->svc_fifo_lock); chans[0].scl = NULL; chans[0].ctrl = controller; chans[0].name = SVC_CLIENT_FPGA; spin_lock_init(&chans[0].lock); chans[1].scl = NULL; chans[1].ctrl = controller; chans[1].name = SVC_CLIENT_RSU; spin_lock_init(&chans[1].lock); list_add_tail(&controller->node, &svc_ctrl); platform_set_drvdata(pdev, controller); /* add svc client device(s) */ svc = devm_kzalloc(dev, sizeof(*svc), GFP_KERNEL); if (!svc) { ret = -ENOMEM; goto err_free_kfifo; } svc->stratix10_svc_rsu = platform_device_alloc(STRATIX10_RSU, 0); if (!svc->stratix10_svc_rsu) { dev_err(dev, "failed to allocate %s device\n", STRATIX10_RSU); ret = -ENOMEM; goto err_free_kfifo; } ret = platform_device_add(svc->stratix10_svc_rsu); if (ret) goto err_put_device; dev_set_drvdata(dev, svc); pr_info("Intel Service Layer Driver Initialized\n"); return 0; err_put_device: platform_device_put(svc->stratix10_svc_rsu); err_free_kfifo: kfifo_free(&controller->svc_fifo); err_destroy_pool: gen_pool_destroy(genpool); return ret; } static int stratix10_svc_drv_remove(struct platform_device *pdev) { struct stratix10_svc *svc = dev_get_drvdata(&pdev->dev); struct stratix10_svc_controller *ctrl = platform_get_drvdata(pdev); platform_device_unregister(svc->stratix10_svc_rsu); kfifo_free(&ctrl->svc_fifo); if (ctrl->task) { kthread_stop(ctrl->task); ctrl->task = NULL; } if (ctrl->genpool) gen_pool_destroy(ctrl->genpool); list_del(&ctrl->node); return 0; } static struct platform_driver stratix10_svc_driver = { .probe = stratix10_svc_drv_probe, .remove = stratix10_svc_drv_remove, .driver = { .name = "stratix10-svc", .of_match_table = stratix10_svc_drv_match, }, }; static int __init stratix10_svc_init(void) { struct device_node *fw_np; struct device_node *np; int ret; fw_np = of_find_node_by_name(NULL, "firmware"); if (!fw_np) return -ENODEV; np = of_find_matching_node(fw_np, stratix10_svc_drv_match); if (!np) return -ENODEV; of_node_put(np); ret = of_platform_populate(fw_np, stratix10_svc_drv_match, NULL, NULL); if (ret) return ret; return platform_driver_register(&stratix10_svc_driver); } static void __exit stratix10_svc_exit(void) { return platform_driver_unregister(&stratix10_svc_driver); } subsys_initcall(stratix10_svc_init); module_exit(stratix10_svc_exit); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Intel Stratix10 Service Layer Driver"); MODULE_AUTHOR("Richard Gong "); MODULE_ALIAS("platform:stratix10-svc");