/* * Copyright 2012-15 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include #include #include "dm_services.h" #include "basics/dc_common.h" #include "dc.h" #include "core_types.h" #include "resource.h" #include "ipp.h" #include "timing_generator.h" #define DC_LOGGER dc->ctx->logger /******************************************************************************* * Private functions ******************************************************************************/ void update_stream_signal(struct dc_stream_state *stream, struct dc_sink *sink) { if (sink->sink_signal == SIGNAL_TYPE_NONE) stream->signal = stream->link->connector_signal; else stream->signal = sink->sink_signal; if (dc_is_dvi_signal(stream->signal)) { if (stream->ctx->dc->caps.dual_link_dvi && (stream->timing.pix_clk_100hz / 10) > TMDS_MAX_PIXEL_CLOCK && sink->sink_signal != SIGNAL_TYPE_DVI_SINGLE_LINK) stream->signal = SIGNAL_TYPE_DVI_DUAL_LINK; else stream->signal = SIGNAL_TYPE_DVI_SINGLE_LINK; } } static bool dc_stream_construct(struct dc_stream_state *stream, struct dc_sink *dc_sink_data) { uint32_t i = 0; stream->sink = dc_sink_data; dc_sink_retain(dc_sink_data); stream->ctx = dc_sink_data->ctx; stream->link = dc_sink_data->link; stream->sink_patches = dc_sink_data->edid_caps.panel_patch; stream->converter_disable_audio = dc_sink_data->converter_disable_audio; stream->qs_bit = dc_sink_data->edid_caps.qs_bit; stream->qy_bit = dc_sink_data->edid_caps.qy_bit; /* Copy audio modes */ /* TODO - Remove this translation */ for (i = 0; i < (dc_sink_data->edid_caps.audio_mode_count); i++) { stream->audio_info.modes[i].channel_count = dc_sink_data->edid_caps.audio_modes[i].channel_count; stream->audio_info.modes[i].format_code = dc_sink_data->edid_caps.audio_modes[i].format_code; stream->audio_info.modes[i].sample_rates.all = dc_sink_data->edid_caps.audio_modes[i].sample_rate; stream->audio_info.modes[i].sample_size = dc_sink_data->edid_caps.audio_modes[i].sample_size; } stream->audio_info.mode_count = dc_sink_data->edid_caps.audio_mode_count; stream->audio_info.audio_latency = dc_sink_data->edid_caps.audio_latency; stream->audio_info.video_latency = dc_sink_data->edid_caps.video_latency; memmove( stream->audio_info.display_name, dc_sink_data->edid_caps.display_name, AUDIO_INFO_DISPLAY_NAME_SIZE_IN_CHARS); stream->audio_info.manufacture_id = dc_sink_data->edid_caps.manufacturer_id; stream->audio_info.product_id = dc_sink_data->edid_caps.product_id; stream->audio_info.flags.all = dc_sink_data->edid_caps.speaker_flags; if (dc_sink_data->dc_container_id != NULL) { struct dc_container_id *dc_container_id = dc_sink_data->dc_container_id; stream->audio_info.port_id[0] = dc_container_id->portId[0]; stream->audio_info.port_id[1] = dc_container_id->portId[1]; } else { /* TODO - WindowDM has implemented, other DMs need Unhardcode port_id */ stream->audio_info.port_id[0] = 0x5558859e; stream->audio_info.port_id[1] = 0xd989449; } /* EDID CAP translation for HDMI 2.0 */ stream->timing.flags.LTE_340MCSC_SCRAMBLE = dc_sink_data->edid_caps.lte_340mcsc_scramble; memset(&stream->timing.dsc_cfg, 0, sizeof(stream->timing.dsc_cfg)); stream->timing.dsc_cfg.num_slices_h = 0; stream->timing.dsc_cfg.num_slices_v = 0; stream->timing.dsc_cfg.bits_per_pixel = 128; stream->timing.dsc_cfg.block_pred_enable = 1; stream->timing.dsc_cfg.linebuf_depth = 9; stream->timing.dsc_cfg.version_minor = 2; stream->timing.dsc_cfg.ycbcr422_simple = 0; update_stream_signal(stream, dc_sink_data); stream->out_transfer_func = dc_create_transfer_func(); if (stream->out_transfer_func == NULL) { dc_sink_release(dc_sink_data); return false; } stream->out_transfer_func->type = TF_TYPE_BYPASS; stream->stream_id = stream->ctx->dc_stream_id_count; stream->ctx->dc_stream_id_count++; return true; } static void dc_stream_destruct(struct dc_stream_state *stream) { dc_sink_release(stream->sink); if (stream->out_transfer_func != NULL) { dc_transfer_func_release(stream->out_transfer_func); stream->out_transfer_func = NULL; } } void dc_stream_retain(struct dc_stream_state *stream) { kref_get(&stream->refcount); } static void dc_stream_free(struct kref *kref) { struct dc_stream_state *stream = container_of(kref, struct dc_stream_state, refcount); dc_stream_destruct(stream); kfree(stream); } void dc_stream_release(struct dc_stream_state *stream) { if (stream != NULL) { kref_put(&stream->refcount, dc_stream_free); } } struct dc_stream_state *dc_create_stream_for_sink( struct dc_sink *sink) { struct dc_stream_state *stream; if (sink == NULL) return NULL; stream = kzalloc(sizeof(struct dc_stream_state), GFP_KERNEL); if (stream == NULL) goto alloc_fail; if (dc_stream_construct(stream, sink) == false) goto construct_fail; kref_init(&stream->refcount); return stream; construct_fail: kfree(stream); alloc_fail: return NULL; } struct dc_stream_state *dc_copy_stream(const struct dc_stream_state *stream) { struct dc_stream_state *new_stream; new_stream = kmemdup(stream, sizeof(struct dc_stream_state), GFP_KERNEL); if (!new_stream) return NULL; if (new_stream->sink) dc_sink_retain(new_stream->sink); if (new_stream->out_transfer_func) dc_transfer_func_retain(new_stream->out_transfer_func); new_stream->stream_id = new_stream->ctx->dc_stream_id_count; new_stream->ctx->dc_stream_id_count++; kref_init(&new_stream->refcount); return new_stream; } /** * dc_stream_get_status_from_state - Get stream status from given dc state * @state: DC state to find the stream status in * @stream: The stream to get the stream status for * * The given stream is expected to exist in the given dc state. Otherwise, NULL * will be returned. */ struct dc_stream_status *dc_stream_get_status_from_state( struct dc_state *state, struct dc_stream_state *stream) { uint8_t i; if (state == NULL) return NULL; for (i = 0; i < state->stream_count; i++) { if (stream == state->streams[i]) return &state->stream_status[i]; } return NULL; } /** * dc_stream_get_status() - Get current stream status of the given stream state * @stream: The stream to get the stream status for. * * The given stream is expected to exist in dc->current_state. Otherwise, NULL * will be returned. */ struct dc_stream_status *dc_stream_get_status( struct dc_stream_state *stream) { struct dc *dc = stream->ctx->dc; return dc_stream_get_status_from_state(dc->current_state, stream); } static void program_cursor_attributes( struct dc *dc, struct dc_stream_state *stream, const struct dc_cursor_attributes *attributes) { int i; struct resource_context *res_ctx; struct pipe_ctx *pipe_to_program = NULL; if (!stream) return; res_ctx = &dc->current_state->res_ctx; for (i = 0; i < MAX_PIPES; i++) { struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i]; if (pipe_ctx->stream != stream) continue; if (!pipe_to_program) { pipe_to_program = pipe_ctx; dc->hwss.cursor_lock(dc, pipe_to_program, true); } dc->hwss.set_cursor_attribute(pipe_ctx); if (dc->hwss.set_cursor_sdr_white_level) dc->hwss.set_cursor_sdr_white_level(pipe_ctx); } if (pipe_to_program) dc->hwss.cursor_lock(dc, pipe_to_program, false); } #ifndef TRIM_FSFT /* * dc_optimize_timing_for_fsft() - dc to optimize timing */ bool dc_optimize_timing_for_fsft( struct dc_stream_state *pStream, unsigned int max_input_rate_in_khz) { struct dc *dc; dc = pStream->ctx->dc; return (dc->hwss.optimize_timing_for_fsft && dc->hwss.optimize_timing_for_fsft(dc, &pStream->timing, max_input_rate_in_khz)); } #endif /* * dc_stream_set_cursor_attributes() - Update cursor attributes and set cursor surface address */ bool dc_stream_set_cursor_attributes( struct dc_stream_state *stream, const struct dc_cursor_attributes *attributes) { struct dc *dc; #if defined(CONFIG_DRM_AMD_DC_DCN) bool reset_idle_optimizations = false; #endif if (NULL == stream) { dm_error("DC: dc_stream is NULL!\n"); return false; } if (NULL == attributes) { dm_error("DC: attributes is NULL!\n"); return false; } if (attributes->address.quad_part == 0) { dm_output_to_console("DC: Cursor address is 0!\n"); return false; } dc = stream->ctx->dc; stream->cursor_attributes = *attributes; #if defined(CONFIG_DRM_AMD_DC_DCN) dc_z10_restore(dc); /* disable idle optimizations while updating cursor */ if (dc->idle_optimizations_allowed) { dc_allow_idle_optimizations(dc, false); reset_idle_optimizations = true; } #endif program_cursor_attributes(dc, stream, attributes); #if defined(CONFIG_DRM_AMD_DC_DCN) /* re-enable idle optimizations if necessary */ if (reset_idle_optimizations) dc_allow_idle_optimizations(dc, true); #endif return true; } static void program_cursor_position( struct dc *dc, struct dc_stream_state *stream, const struct dc_cursor_position *position) { int i; struct resource_context *res_ctx; struct pipe_ctx *pipe_to_program = NULL; if (!stream) return; res_ctx = &dc->current_state->res_ctx; for (i = 0; i < MAX_PIPES; i++) { struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i]; if (pipe_ctx->stream != stream || (!pipe_ctx->plane_res.mi && !pipe_ctx->plane_res.hubp) || !pipe_ctx->plane_state || (!pipe_ctx->plane_res.xfm && !pipe_ctx->plane_res.dpp) || (!pipe_ctx->plane_res.ipp && !pipe_ctx->plane_res.dpp)) continue; if (!pipe_to_program) { pipe_to_program = pipe_ctx; dc->hwss.cursor_lock(dc, pipe_to_program, true); } dc->hwss.set_cursor_position(pipe_ctx); } if (pipe_to_program) dc->hwss.cursor_lock(dc, pipe_to_program, false); } bool dc_stream_set_cursor_position( struct dc_stream_state *stream, const struct dc_cursor_position *position) { struct dc *dc; #if defined(CONFIG_DRM_AMD_DC_DCN) bool reset_idle_optimizations = false; #endif if (NULL == stream) { dm_error("DC: dc_stream is NULL!\n"); return false; } if (NULL == position) { dm_error("DC: cursor position is NULL!\n"); return false; } dc = stream->ctx->dc; #if defined(CONFIG_DRM_AMD_DC_DCN) dc_z10_restore(dc); /* disable idle optimizations if enabling cursor */ if (dc->idle_optimizations_allowed && !stream->cursor_position.enable && position->enable) { dc_allow_idle_optimizations(dc, false); reset_idle_optimizations = true; } #endif stream->cursor_position = *position; program_cursor_position(dc, stream, position); #if defined(CONFIG_DRM_AMD_DC_DCN) /* re-enable idle optimizations if necessary */ if (reset_idle_optimizations) dc_allow_idle_optimizations(dc, true); #endif return true; } bool dc_stream_add_writeback(struct dc *dc, struct dc_stream_state *stream, struct dc_writeback_info *wb_info) { bool isDrc = false; int i = 0; struct dwbc *dwb; if (stream == NULL) { dm_error("DC: dc_stream is NULL!\n"); return false; } if (wb_info == NULL) { dm_error("DC: dc_writeback_info is NULL!\n"); return false; } if (wb_info->dwb_pipe_inst >= MAX_DWB_PIPES) { dm_error("DC: writeback pipe is invalid!\n"); return false; } wb_info->dwb_params.out_transfer_func = stream->out_transfer_func; dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst]; dwb->dwb_is_drc = false; /* recalculate and apply DML parameters */ for (i = 0; i < stream->num_wb_info; i++) { /*dynamic update*/ if (stream->writeback_info[i].wb_enabled && stream->writeback_info[i].dwb_pipe_inst == wb_info->dwb_pipe_inst) { stream->writeback_info[i] = *wb_info; isDrc = true; } } if (!isDrc) { stream->writeback_info[stream->num_wb_info++] = *wb_info; } if (dc->hwss.enable_writeback) { struct dc_stream_status *stream_status = dc_stream_get_status(stream); struct dwbc *dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst]; dwb->otg_inst = stream_status->primary_otg_inst; } if (IS_DIAG_DC(dc->ctx->dce_environment)) { if (!dc->hwss.update_bandwidth(dc, dc->current_state)) { dm_error("DC: update_bandwidth failed!\n"); return false; } /* enable writeback */ if (dc->hwss.enable_writeback) { struct dwbc *dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst]; if (dwb->funcs->is_enabled(dwb)) { /* writeback pipe already enabled, only need to update */ dc->hwss.update_writeback(dc, wb_info, dc->current_state); } else { /* Enable writeback pipe from scratch*/ dc->hwss.enable_writeback(dc, wb_info, dc->current_state); } } } return true; } bool dc_stream_remove_writeback(struct dc *dc, struct dc_stream_state *stream, uint32_t dwb_pipe_inst) { int i = 0, j = 0; if (stream == NULL) { dm_error("DC: dc_stream is NULL!\n"); return false; } if (dwb_pipe_inst >= MAX_DWB_PIPES) { dm_error("DC: writeback pipe is invalid!\n"); return false; } // stream->writeback_info[dwb_pipe_inst].wb_enabled = false; for (i = 0; i < stream->num_wb_info; i++) { /*dynamic update*/ if (stream->writeback_info[i].wb_enabled && stream->writeback_info[i].dwb_pipe_inst == dwb_pipe_inst) { stream->writeback_info[i].wb_enabled = false; } } /* remove writeback info for disabled writeback pipes from stream */ for (i = 0, j = 0; i < stream->num_wb_info; i++) { if (stream->writeback_info[i].wb_enabled) { if (i != j) /* trim the array */ stream->writeback_info[j] = stream->writeback_info[i]; j++; } } stream->num_wb_info = j; if (IS_DIAG_DC(dc->ctx->dce_environment)) { /* recalculate and apply DML parameters */ if (!dc->hwss.update_bandwidth(dc, dc->current_state)) { dm_error("DC: update_bandwidth failed!\n"); return false; } /* disable writeback */ if (dc->hwss.disable_writeback) dc->hwss.disable_writeback(dc, dwb_pipe_inst); } return true; } bool dc_stream_warmup_writeback(struct dc *dc, int num_dwb, struct dc_writeback_info *wb_info) { if (dc->hwss.mmhubbub_warmup) return dc->hwss.mmhubbub_warmup(dc, num_dwb, wb_info); else return false; } uint32_t dc_stream_get_vblank_counter(const struct dc_stream_state *stream) { uint8_t i; struct dc *dc = stream->ctx->dc; struct resource_context *res_ctx = &dc->current_state->res_ctx; for (i = 0; i < MAX_PIPES; i++) { struct timing_generator *tg = res_ctx->pipe_ctx[i].stream_res.tg; if (res_ctx->pipe_ctx[i].stream != stream || !tg) continue; return tg->funcs->get_frame_count(tg); } return 0; } bool dc_stream_send_dp_sdp(const struct dc_stream_state *stream, const uint8_t *custom_sdp_message, unsigned int sdp_message_size) { int i; struct dc *dc; struct resource_context *res_ctx; if (stream == NULL) { dm_error("DC: dc_stream is NULL!\n"); return false; } dc = stream->ctx->dc; res_ctx = &dc->current_state->res_ctx; for (i = 0; i < MAX_PIPES; i++) { struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i]; if (pipe_ctx->stream != stream) continue; if (dc->hwss.send_immediate_sdp_message != NULL) dc->hwss.send_immediate_sdp_message(pipe_ctx, custom_sdp_message, sdp_message_size); else DC_LOG_WARNING("%s:send_immediate_sdp_message not implemented on this ASIC\n", __func__); } return true; } bool dc_stream_get_scanoutpos(const struct dc_stream_state *stream, uint32_t *v_blank_start, uint32_t *v_blank_end, uint32_t *h_position, uint32_t *v_position) { uint8_t i; bool ret = false; struct dc *dc = stream->ctx->dc; struct resource_context *res_ctx = &dc->current_state->res_ctx; for (i = 0; i < MAX_PIPES; i++) { struct timing_generator *tg = res_ctx->pipe_ctx[i].stream_res.tg; if (res_ctx->pipe_ctx[i].stream != stream || !tg) continue; tg->funcs->get_scanoutpos(tg, v_blank_start, v_blank_end, h_position, v_position); ret = true; break; } return ret; } bool dc_stream_dmdata_status_done(struct dc *dc, struct dc_stream_state *stream) { struct pipe_ctx *pipe = NULL; int i; if (!dc->hwss.dmdata_status_done) return false; for (i = 0; i < MAX_PIPES; i++) { pipe = &dc->current_state->res_ctx.pipe_ctx[i]; if (pipe->stream == stream) break; } /* Stream not found, by default we'll assume HUBP fetched dm data */ if (i == MAX_PIPES) return true; return dc->hwss.dmdata_status_done(pipe); } bool dc_stream_set_dynamic_metadata(struct dc *dc, struct dc_stream_state *stream, struct dc_dmdata_attributes *attr) { struct pipe_ctx *pipe_ctx = NULL; struct hubp *hubp; int i; /* Dynamic metadata is only supported on HDMI or DP */ if (!dc_is_hdmi_signal(stream->signal) && !dc_is_dp_signal(stream->signal)) return false; /* Check hardware support */ if (!dc->hwss.program_dmdata_engine) return false; for (i = 0; i < MAX_PIPES; i++) { pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i]; if (pipe_ctx->stream == stream) break; } if (i == MAX_PIPES) return false; hubp = pipe_ctx->plane_res.hubp; if (hubp == NULL) return false; pipe_ctx->stream->dmdata_address = attr->address; dc->hwss.program_dmdata_engine(pipe_ctx); if (hubp->funcs->dmdata_set_attributes != NULL && pipe_ctx->stream->dmdata_address.quad_part != 0) { hubp->funcs->dmdata_set_attributes(hubp, attr); } return true; } enum dc_status dc_stream_add_dsc_to_resource(struct dc *dc, struct dc_state *state, struct dc_stream_state *stream) { if (dc->res_pool->funcs->add_dsc_to_stream_resource) { return dc->res_pool->funcs->add_dsc_to_stream_resource(dc, state, stream); } else { return DC_NO_DSC_RESOURCE; } } void dc_stream_log(const struct dc *dc, const struct dc_stream_state *stream) { DC_LOG_DC( "core_stream 0x%p: src: %d, %d, %d, %d; dst: %d, %d, %d, %d, colorSpace:%d\n", stream, stream->src.x, stream->src.y, stream->src.width, stream->src.height, stream->dst.x, stream->dst.y, stream->dst.width, stream->dst.height, stream->output_color_space); DC_LOG_DC( "\tpix_clk_khz: %d, h_total: %d, v_total: %d, pixelencoder:%d, displaycolorDepth:%d\n", stream->timing.pix_clk_100hz / 10, stream->timing.h_total, stream->timing.v_total, stream->timing.pixel_encoding, stream->timing.display_color_depth); DC_LOG_DC( "\tlink: %d\n", stream->link->link_index); }