/* * Copyright 2016 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include #include "dm_services.h" #include "basics/dc_common.h" #include "core_types.h" #include "resource.h" #include "custom_float.h" #include "dcn10_hw_sequencer.h" #include "dcn10_hw_sequencer_debug.h" #include "dce/dce_hwseq.h" #include "abm.h" #include "dmcu.h" #include "dcn10_optc.h" #include "dcn10_dpp.h" #include "dcn10_mpc.h" #include "timing_generator.h" #include "opp.h" #include "ipp.h" #include "mpc.h" #include "reg_helper.h" #include "dcn10_hubp.h" #include "dcn10_hubbub.h" #include "dcn10_cm_common.h" #include "dc_link_dp.h" #include "dccg.h" #include "clk_mgr.h" #include "link_hwss.h" #include "dpcd_defs.h" #include "dsc.h" #include "dce/dmub_hw_lock_mgr.h" #include "dc_trace.h" #include "dce/dmub_outbox.h" #include "inc/dc_link_dp.h" #include "inc/link_dpcd.h" #define DC_LOGGER_INIT(logger) #define CTX \ hws->ctx #define REG(reg)\ hws->regs->reg #undef FN #define FN(reg_name, field_name) \ hws->shifts->field_name, hws->masks->field_name /*print is 17 wide, first two characters are spaces*/ #define DTN_INFO_MICRO_SEC(ref_cycle) \ print_microsec(dc_ctx, log_ctx, ref_cycle) #define GAMMA_HW_POINTS_NUM 256 #define PGFSM_POWER_ON 0 #define PGFSM_POWER_OFF 2 void print_microsec(struct dc_context *dc_ctx, struct dc_log_buffer_ctx *log_ctx, uint32_t ref_cycle) { const uint32_t ref_clk_mhz = dc_ctx->dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000; static const unsigned int frac = 1000; uint32_t us_x10 = (ref_cycle * frac) / ref_clk_mhz; DTN_INFO(" %11d.%03d", us_x10 / frac, us_x10 % frac); } void dcn10_lock_all_pipes(struct dc *dc, struct dc_state *context, bool lock) { struct pipe_ctx *pipe_ctx; struct timing_generator *tg; int i; for (i = 0; i < dc->res_pool->pipe_count; i++) { pipe_ctx = &context->res_ctx.pipe_ctx[i]; tg = pipe_ctx->stream_res.tg; /* * Only lock the top pipe's tg to prevent redundant * (un)locking. Also skip if pipe is disabled. */ if (pipe_ctx->top_pipe || !pipe_ctx->stream || !pipe_ctx->plane_state || !tg->funcs->is_tg_enabled(tg)) continue; if (lock) dc->hwss.pipe_control_lock(dc, pipe_ctx, true); else dc->hwss.pipe_control_lock(dc, pipe_ctx, false); } } static void log_mpc_crc(struct dc *dc, struct dc_log_buffer_ctx *log_ctx) { struct dc_context *dc_ctx = dc->ctx; struct dce_hwseq *hws = dc->hwseq; if (REG(MPC_CRC_RESULT_GB)) DTN_INFO("MPC_CRC_RESULT_GB:%d MPC_CRC_RESULT_C:%d MPC_CRC_RESULT_AR:%d\n", REG_READ(MPC_CRC_RESULT_GB), REG_READ(MPC_CRC_RESULT_C), REG_READ(MPC_CRC_RESULT_AR)); if (REG(DPP_TOP0_DPP_CRC_VAL_B_A)) DTN_INFO("DPP_TOP0_DPP_CRC_VAL_B_A:%d DPP_TOP0_DPP_CRC_VAL_R_G:%d\n", REG_READ(DPP_TOP0_DPP_CRC_VAL_B_A), REG_READ(DPP_TOP0_DPP_CRC_VAL_R_G)); } void dcn10_log_hubbub_state(struct dc *dc, struct dc_log_buffer_ctx *log_ctx) { struct dc_context *dc_ctx = dc->ctx; struct dcn_hubbub_wm wm; int i; memset(&wm, 0, sizeof(struct dcn_hubbub_wm)); dc->res_pool->hubbub->funcs->wm_read_state(dc->res_pool->hubbub, &wm); DTN_INFO("HUBBUB WM: data_urgent pte_meta_urgent" " sr_enter sr_exit dram_clk_change\n"); for (i = 0; i < 4; i++) { struct dcn_hubbub_wm_set *s; s = &wm.sets[i]; DTN_INFO("WM_Set[%d]:", s->wm_set); DTN_INFO_MICRO_SEC(s->data_urgent); DTN_INFO_MICRO_SEC(s->pte_meta_urgent); DTN_INFO_MICRO_SEC(s->sr_enter); DTN_INFO_MICRO_SEC(s->sr_exit); DTN_INFO_MICRO_SEC(s->dram_clk_chanage); DTN_INFO("\n"); } DTN_INFO("\n"); } static void dcn10_log_hubp_states(struct dc *dc, void *log_ctx) { struct dc_context *dc_ctx = dc->ctx; struct resource_pool *pool = dc->res_pool; int i; DTN_INFO( "HUBP: format addr_hi width height rot mir sw_mode dcc_en blank_en clock_en ttu_dis underflow min_ttu_vblank qos_low_wm qos_high_wm\n"); for (i = 0; i < pool->pipe_count; i++) { struct hubp *hubp = pool->hubps[i]; struct dcn_hubp_state *s = &(TO_DCN10_HUBP(hubp)->state); hubp->funcs->hubp_read_state(hubp); if (!s->blank_en) { DTN_INFO("[%2d]: %5xh %6xh %5d %6d %2xh %2xh %6xh %6d %8d %8d %7d %8xh", hubp->inst, s->pixel_format, s->inuse_addr_hi, s->viewport_width, s->viewport_height, s->rotation_angle, s->h_mirror_en, s->sw_mode, s->dcc_en, s->blank_en, s->clock_en, s->ttu_disable, s->underflow_status); DTN_INFO_MICRO_SEC(s->min_ttu_vblank); DTN_INFO_MICRO_SEC(s->qos_level_low_wm); DTN_INFO_MICRO_SEC(s->qos_level_high_wm); DTN_INFO("\n"); } } DTN_INFO("\n=========RQ========\n"); DTN_INFO("HUBP: drq_exp_m prq_exp_m mrq_exp_m crq_exp_m plane1_ba L:chunk_s min_chu_s meta_ch_s" " min_m_c_s dpte_gr_s mpte_gr_s swath_hei pte_row_h C:chunk_s min_chu_s meta_ch_s" " min_m_c_s dpte_gr_s mpte_gr_s swath_hei pte_row_h\n"); for (i = 0; i < pool->pipe_count; i++) { struct dcn_hubp_state *s = &(TO_DCN10_HUBP(pool->hubps[i])->state); struct _vcs_dpi_display_rq_regs_st *rq_regs = &s->rq_regs; if (!s->blank_en) DTN_INFO("[%2d]: %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh\n", pool->hubps[i]->inst, rq_regs->drq_expansion_mode, rq_regs->prq_expansion_mode, rq_regs->mrq_expansion_mode, rq_regs->crq_expansion_mode, rq_regs->plane1_base_address, rq_regs->rq_regs_l.chunk_size, rq_regs->rq_regs_l.min_chunk_size, rq_regs->rq_regs_l.meta_chunk_size, rq_regs->rq_regs_l.min_meta_chunk_size, rq_regs->rq_regs_l.dpte_group_size, rq_regs->rq_regs_l.mpte_group_size, rq_regs->rq_regs_l.swath_height, rq_regs->rq_regs_l.pte_row_height_linear, rq_regs->rq_regs_c.chunk_size, rq_regs->rq_regs_c.min_chunk_size, rq_regs->rq_regs_c.meta_chunk_size, rq_regs->rq_regs_c.min_meta_chunk_size, rq_regs->rq_regs_c.dpte_group_size, rq_regs->rq_regs_c.mpte_group_size, rq_regs->rq_regs_c.swath_height, rq_regs->rq_regs_c.pte_row_height_linear); } DTN_INFO("========DLG========\n"); DTN_INFO("HUBP: rc_hbe dlg_vbe min_d_y_n rc_per_ht rc_x_a_s " " dst_y_a_s dst_y_pf dst_y_vvb dst_y_rvb dst_y_vfl dst_y_rfl rf_pix_fq" " vratio_pf vrat_pf_c rc_pg_vbl rc_pg_vbc rc_mc_vbl rc_mc_vbc rc_pg_fll" " rc_pg_flc rc_mc_fll rc_mc_flc pr_nom_l pr_nom_c rc_pg_nl rc_pg_nc " " mr_nom_l mr_nom_c rc_mc_nl rc_mc_nc rc_ld_pl rc_ld_pc rc_ld_l " " rc_ld_c cha_cur0 ofst_cur1 cha_cur1 vr_af_vc0 ddrq_limt x_rt_dlay" " x_rp_dlay x_rr_sfl\n"); for (i = 0; i < pool->pipe_count; i++) { struct dcn_hubp_state *s = &(TO_DCN10_HUBP(pool->hubps[i])->state); struct _vcs_dpi_display_dlg_regs_st *dlg_regs = &s->dlg_attr; if (!s->blank_en) DTN_INFO("[%2d]: %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh" "% 8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh" " %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh\n", pool->hubps[i]->inst, dlg_regs->refcyc_h_blank_end, dlg_regs->dlg_vblank_end, dlg_regs->min_dst_y_next_start, dlg_regs->refcyc_per_htotal, dlg_regs->refcyc_x_after_scaler, dlg_regs->dst_y_after_scaler, dlg_regs->dst_y_prefetch, dlg_regs->dst_y_per_vm_vblank, dlg_regs->dst_y_per_row_vblank, dlg_regs->dst_y_per_vm_flip, dlg_regs->dst_y_per_row_flip, dlg_regs->ref_freq_to_pix_freq, dlg_regs->vratio_prefetch, dlg_regs->vratio_prefetch_c, dlg_regs->refcyc_per_pte_group_vblank_l, dlg_regs->refcyc_per_pte_group_vblank_c, dlg_regs->refcyc_per_meta_chunk_vblank_l, dlg_regs->refcyc_per_meta_chunk_vblank_c, dlg_regs->refcyc_per_pte_group_flip_l, dlg_regs->refcyc_per_pte_group_flip_c, dlg_regs->refcyc_per_meta_chunk_flip_l, dlg_regs->refcyc_per_meta_chunk_flip_c, dlg_regs->dst_y_per_pte_row_nom_l, dlg_regs->dst_y_per_pte_row_nom_c, dlg_regs->refcyc_per_pte_group_nom_l, dlg_regs->refcyc_per_pte_group_nom_c, dlg_regs->dst_y_per_meta_row_nom_l, dlg_regs->dst_y_per_meta_row_nom_c, dlg_regs->refcyc_per_meta_chunk_nom_l, dlg_regs->refcyc_per_meta_chunk_nom_c, dlg_regs->refcyc_per_line_delivery_pre_l, dlg_regs->refcyc_per_line_delivery_pre_c, dlg_regs->refcyc_per_line_delivery_l, dlg_regs->refcyc_per_line_delivery_c, dlg_regs->chunk_hdl_adjust_cur0, dlg_regs->dst_y_offset_cur1, dlg_regs->chunk_hdl_adjust_cur1, dlg_regs->vready_after_vcount0, dlg_regs->dst_y_delta_drq_limit, dlg_regs->xfc_reg_transfer_delay, dlg_regs->xfc_reg_precharge_delay, dlg_regs->xfc_reg_remote_surface_flip_latency); } DTN_INFO("========TTU========\n"); DTN_INFO("HUBP: qos_ll_wm qos_lh_wm mn_ttu_vb qos_l_flp rc_rd_p_l rc_rd_l rc_rd_p_c" " rc_rd_c rc_rd_c0 rc_rd_pc0 rc_rd_c1 rc_rd_pc1 qos_lf_l qos_rds_l" " qos_lf_c qos_rds_c qos_lf_c0 qos_rds_c0 qos_lf_c1 qos_rds_c1\n"); for (i = 0; i < pool->pipe_count; i++) { struct dcn_hubp_state *s = &(TO_DCN10_HUBP(pool->hubps[i])->state); struct _vcs_dpi_display_ttu_regs_st *ttu_regs = &s->ttu_attr; if (!s->blank_en) DTN_INFO("[%2d]: %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh %8xh\n", pool->hubps[i]->inst, ttu_regs->qos_level_low_wm, ttu_regs->qos_level_high_wm, ttu_regs->min_ttu_vblank, ttu_regs->qos_level_flip, ttu_regs->refcyc_per_req_delivery_pre_l, ttu_regs->refcyc_per_req_delivery_l, ttu_regs->refcyc_per_req_delivery_pre_c, ttu_regs->refcyc_per_req_delivery_c, ttu_regs->refcyc_per_req_delivery_cur0, ttu_regs->refcyc_per_req_delivery_pre_cur0, ttu_regs->refcyc_per_req_delivery_cur1, ttu_regs->refcyc_per_req_delivery_pre_cur1, ttu_regs->qos_level_fixed_l, ttu_regs->qos_ramp_disable_l, ttu_regs->qos_level_fixed_c, ttu_regs->qos_ramp_disable_c, ttu_regs->qos_level_fixed_cur0, ttu_regs->qos_ramp_disable_cur0, ttu_regs->qos_level_fixed_cur1, ttu_regs->qos_ramp_disable_cur1); } DTN_INFO("\n"); } void dcn10_log_hw_state(struct dc *dc, struct dc_log_buffer_ctx *log_ctx) { struct dc_context *dc_ctx = dc->ctx; struct resource_pool *pool = dc->res_pool; int i; DTN_INFO_BEGIN(); dcn10_log_hubbub_state(dc, log_ctx); dcn10_log_hubp_states(dc, log_ctx); DTN_INFO("DPP: IGAM format IGAM mode DGAM mode RGAM mode" " GAMUT mode C11 C12 C13 C14 C21 C22 C23 C24 " "C31 C32 C33 C34\n"); for (i = 0; i < pool->pipe_count; i++) { struct dpp *dpp = pool->dpps[i]; struct dcn_dpp_state s = {0}; dpp->funcs->dpp_read_state(dpp, &s); if (!s.is_enabled) continue; DTN_INFO("[%2d]: %11xh %-11s %-11s %-11s" "%8x %08xh %08xh %08xh %08xh %08xh %08xh", dpp->inst, s.igam_input_format, (s.igam_lut_mode == 0) ? "BypassFixed" : ((s.igam_lut_mode == 1) ? "BypassFloat" : ((s.igam_lut_mode == 2) ? "RAM" : ((s.igam_lut_mode == 3) ? "RAM" : "Unknown"))), (s.dgam_lut_mode == 0) ? "Bypass" : ((s.dgam_lut_mode == 1) ? "sRGB" : ((s.dgam_lut_mode == 2) ? "Ycc" : ((s.dgam_lut_mode == 3) ? "RAM" : ((s.dgam_lut_mode == 4) ? "RAM" : "Unknown")))), (s.rgam_lut_mode == 0) ? "Bypass" : ((s.rgam_lut_mode == 1) ? "sRGB" : ((s.rgam_lut_mode == 2) ? "Ycc" : ((s.rgam_lut_mode == 3) ? "RAM" : ((s.rgam_lut_mode == 4) ? "RAM" : "Unknown")))), s.gamut_remap_mode, s.gamut_remap_c11_c12, s.gamut_remap_c13_c14, s.gamut_remap_c21_c22, s.gamut_remap_c23_c24, s.gamut_remap_c31_c32, s.gamut_remap_c33_c34); DTN_INFO("\n"); } DTN_INFO("\n"); DTN_INFO("MPCC: OPP DPP MPCCBOT MODE ALPHA_MODE PREMULT OVERLAP_ONLY IDLE\n"); for (i = 0; i < pool->pipe_count; i++) { struct mpcc_state s = {0}; pool->mpc->funcs->read_mpcc_state(pool->mpc, i, &s); if (s.opp_id != 0xf) DTN_INFO("[%2d]: %2xh %2xh %6xh %4d %10d %7d %12d %4d\n", i, s.opp_id, s.dpp_id, s.bot_mpcc_id, s.mode, s.alpha_mode, s.pre_multiplied_alpha, s.overlap_only, s.idle); } DTN_INFO("\n"); DTN_INFO("OTG: v_bs v_be v_ss v_se vpol vmax vmin vmax_sel vmin_sel h_bs h_be h_ss h_se hpol htot vtot underflow blank_en\n"); for (i = 0; i < pool->timing_generator_count; i++) { struct timing_generator *tg = pool->timing_generators[i]; struct dcn_otg_state s = {0}; /* Read shared OTG state registers for all DCNx */ optc1_read_otg_state(DCN10TG_FROM_TG(tg), &s); /* * For DCN2 and greater, a register on the OPP is used to * determine if the CRTC is blanked instead of the OTG. So use * dpg_is_blanked() if exists, otherwise fallback on otg. * * TODO: Implement DCN-specific read_otg_state hooks. */ if (pool->opps[i]->funcs->dpg_is_blanked) s.blank_enabled = pool->opps[i]->funcs->dpg_is_blanked(pool->opps[i]); else s.blank_enabled = tg->funcs->is_blanked(tg); //only print if OTG master is enabled if ((s.otg_enabled & 1) == 0) continue; DTN_INFO("[%d]: %5d %5d %5d %5d %5d %5d %5d %9d %9d %5d %5d %5d %5d %5d %5d %5d %9d %8d\n", tg->inst, s.v_blank_start, s.v_blank_end, s.v_sync_a_start, s.v_sync_a_end, s.v_sync_a_pol, s.v_total_max, s.v_total_min, s.v_total_max_sel, s.v_total_min_sel, s.h_blank_start, s.h_blank_end, s.h_sync_a_start, s.h_sync_a_end, s.h_sync_a_pol, s.h_total, s.v_total, s.underflow_occurred_status, s.blank_enabled); // Clear underflow for debug purposes // We want to keep underflow sticky bit on for the longevity tests outside of test environment. // This function is called only from Windows or Diags test environment, hence it's safe to clear // it from here without affecting the original intent. tg->funcs->clear_optc_underflow(tg); } DTN_INFO("\n"); // dcn_dsc_state struct field bytes_per_pixel was renamed to bits_per_pixel // TODO: Update golden log header to reflect this name change DTN_INFO("DSC: CLOCK_EN SLICE_WIDTH Bytes_pp\n"); for (i = 0; i < pool->res_cap->num_dsc; i++) { struct display_stream_compressor *dsc = pool->dscs[i]; struct dcn_dsc_state s = {0}; dsc->funcs->dsc_read_state(dsc, &s); DTN_INFO("[%d]: %-9d %-12d %-10d\n", dsc->inst, s.dsc_clock_en, s.dsc_slice_width, s.dsc_bits_per_pixel); DTN_INFO("\n"); } DTN_INFO("\n"); DTN_INFO("S_ENC: DSC_MODE SEC_GSP7_LINE_NUM" " VBID6_LINE_REFERENCE VBID6_LINE_NUM SEC_GSP7_ENABLE SEC_STREAM_ENABLE\n"); for (i = 0; i < pool->stream_enc_count; i++) { struct stream_encoder *enc = pool->stream_enc[i]; struct enc_state s = {0}; if (enc->funcs->enc_read_state) { enc->funcs->enc_read_state(enc, &s); DTN_INFO("[%-3d]: %-9d %-18d %-21d %-15d %-16d %-17d\n", enc->id, s.dsc_mode, s.sec_gsp_pps_line_num, s.vbid6_line_reference, s.vbid6_line_num, s.sec_gsp_pps_enable, s.sec_stream_enable); DTN_INFO("\n"); } } DTN_INFO("\n"); DTN_INFO("L_ENC: DPHY_FEC_EN DPHY_FEC_READY_SHADOW DPHY_FEC_ACTIVE_STATUS DP_LINK_TRAINING_COMPLETE\n"); for (i = 0; i < dc->link_count; i++) { struct link_encoder *lenc = dc->links[i]->link_enc; struct link_enc_state s = {0}; if (lenc->funcs->read_state) { lenc->funcs->read_state(lenc, &s); DTN_INFO("[%-3d]: %-12d %-22d %-22d %-25d\n", i, s.dphy_fec_en, s.dphy_fec_ready_shadow, s.dphy_fec_active_status, s.dp_link_training_complete); DTN_INFO("\n"); } } DTN_INFO("\n"); DTN_INFO("\nCALCULATED Clocks: dcfclk_khz:%d dcfclk_deep_sleep_khz:%d dispclk_khz:%d\n" "dppclk_khz:%d max_supported_dppclk_khz:%d fclk_khz:%d socclk_khz:%d\n\n", dc->current_state->bw_ctx.bw.dcn.clk.dcfclk_khz, dc->current_state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz, dc->current_state->bw_ctx.bw.dcn.clk.dispclk_khz, dc->current_state->bw_ctx.bw.dcn.clk.dppclk_khz, dc->current_state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz, dc->current_state->bw_ctx.bw.dcn.clk.fclk_khz, dc->current_state->bw_ctx.bw.dcn.clk.socclk_khz); log_mpc_crc(dc, log_ctx); DTN_INFO_END(); } bool dcn10_did_underflow_occur(struct dc *dc, struct pipe_ctx *pipe_ctx) { struct hubp *hubp = pipe_ctx->plane_res.hubp; struct timing_generator *tg = pipe_ctx->stream_res.tg; if (tg->funcs->is_optc_underflow_occurred(tg)) { tg->funcs->clear_optc_underflow(tg); return true; } if (hubp->funcs->hubp_get_underflow_status(hubp)) { hubp->funcs->hubp_clear_underflow(hubp); return true; } return false; } void dcn10_enable_power_gating_plane( struct dce_hwseq *hws, bool enable) { bool force_on = true; /* disable power gating */ if (enable) force_on = false; /* DCHUBP0/1/2/3 */ REG_UPDATE(DOMAIN0_PG_CONFIG, DOMAIN0_POWER_FORCEON, force_on); REG_UPDATE(DOMAIN2_PG_CONFIG, DOMAIN2_POWER_FORCEON, force_on); REG_UPDATE(DOMAIN4_PG_CONFIG, DOMAIN4_POWER_FORCEON, force_on); REG_UPDATE(DOMAIN6_PG_CONFIG, DOMAIN6_POWER_FORCEON, force_on); /* DPP0/1/2/3 */ REG_UPDATE(DOMAIN1_PG_CONFIG, DOMAIN1_POWER_FORCEON, force_on); REG_UPDATE(DOMAIN3_PG_CONFIG, DOMAIN3_POWER_FORCEON, force_on); REG_UPDATE(DOMAIN5_PG_CONFIG, DOMAIN5_POWER_FORCEON, force_on); REG_UPDATE(DOMAIN7_PG_CONFIG, DOMAIN7_POWER_FORCEON, force_on); } void dcn10_disable_vga( struct dce_hwseq *hws) { unsigned int in_vga1_mode = 0; unsigned int in_vga2_mode = 0; unsigned int in_vga3_mode = 0; unsigned int in_vga4_mode = 0; REG_GET(D1VGA_CONTROL, D1VGA_MODE_ENABLE, &in_vga1_mode); REG_GET(D2VGA_CONTROL, D2VGA_MODE_ENABLE, &in_vga2_mode); REG_GET(D3VGA_CONTROL, D3VGA_MODE_ENABLE, &in_vga3_mode); REG_GET(D4VGA_CONTROL, D4VGA_MODE_ENABLE, &in_vga4_mode); if (in_vga1_mode == 0 && in_vga2_mode == 0 && in_vga3_mode == 0 && in_vga4_mode == 0) return; REG_WRITE(D1VGA_CONTROL, 0); REG_WRITE(D2VGA_CONTROL, 0); REG_WRITE(D3VGA_CONTROL, 0); REG_WRITE(D4VGA_CONTROL, 0); /* HW Engineer's Notes: * During switch from vga->extended, if we set the VGA_TEST_ENABLE and * then hit the VGA_TEST_RENDER_START, then the DCHUBP timing gets updated correctly. * * Then vBIOS will have it poll for the VGA_TEST_RENDER_DONE and unset * VGA_TEST_ENABLE, to leave it in the same state as before. */ REG_UPDATE(VGA_TEST_CONTROL, VGA_TEST_ENABLE, 1); REG_UPDATE(VGA_TEST_CONTROL, VGA_TEST_RENDER_START, 1); } /** * dcn10_dpp_pg_control - DPP power gate control. * * @hws: dce_hwseq reference. * @dpp_inst: DPP instance reference. * @power_on: true if we want to enable power gate, false otherwise. * * Enable or disable power gate in the specific DPP instance. */ void dcn10_dpp_pg_control( struct dce_hwseq *hws, unsigned int dpp_inst, bool power_on) { uint32_t power_gate = power_on ? 0 : 1; uint32_t pwr_status = power_on ? PGFSM_POWER_ON : PGFSM_POWER_OFF; if (hws->ctx->dc->debug.disable_dpp_power_gate) return; if (REG(DOMAIN1_PG_CONFIG) == 0) return; switch (dpp_inst) { case 0: /* DPP0 */ REG_UPDATE(DOMAIN1_PG_CONFIG, DOMAIN1_POWER_GATE, power_gate); REG_WAIT(DOMAIN1_PG_STATUS, DOMAIN1_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 1: /* DPP1 */ REG_UPDATE(DOMAIN3_PG_CONFIG, DOMAIN3_POWER_GATE, power_gate); REG_WAIT(DOMAIN3_PG_STATUS, DOMAIN3_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 2: /* DPP2 */ REG_UPDATE(DOMAIN5_PG_CONFIG, DOMAIN5_POWER_GATE, power_gate); REG_WAIT(DOMAIN5_PG_STATUS, DOMAIN5_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 3: /* DPP3 */ REG_UPDATE(DOMAIN7_PG_CONFIG, DOMAIN7_POWER_GATE, power_gate); REG_WAIT(DOMAIN7_PG_STATUS, DOMAIN7_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; default: BREAK_TO_DEBUGGER(); break; } } /** * dcn10_hubp_pg_control - HUBP power gate control. * * @hws: dce_hwseq reference. * @hubp_inst: DPP instance reference. * @power_on: true if we want to enable power gate, false otherwise. * * Enable or disable power gate in the specific HUBP instance. */ void dcn10_hubp_pg_control( struct dce_hwseq *hws, unsigned int hubp_inst, bool power_on) { uint32_t power_gate = power_on ? 0 : 1; uint32_t pwr_status = power_on ? PGFSM_POWER_ON : PGFSM_POWER_OFF; if (hws->ctx->dc->debug.disable_hubp_power_gate) return; if (REG(DOMAIN0_PG_CONFIG) == 0) return; switch (hubp_inst) { case 0: /* DCHUBP0 */ REG_UPDATE(DOMAIN0_PG_CONFIG, DOMAIN0_POWER_GATE, power_gate); REG_WAIT(DOMAIN0_PG_STATUS, DOMAIN0_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 1: /* DCHUBP1 */ REG_UPDATE(DOMAIN2_PG_CONFIG, DOMAIN2_POWER_GATE, power_gate); REG_WAIT(DOMAIN2_PG_STATUS, DOMAIN2_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 2: /* DCHUBP2 */ REG_UPDATE(DOMAIN4_PG_CONFIG, DOMAIN4_POWER_GATE, power_gate); REG_WAIT(DOMAIN4_PG_STATUS, DOMAIN4_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; case 3: /* DCHUBP3 */ REG_UPDATE(DOMAIN6_PG_CONFIG, DOMAIN6_POWER_GATE, power_gate); REG_WAIT(DOMAIN6_PG_STATUS, DOMAIN6_PGFSM_PWR_STATUS, pwr_status, 1, 1000); break; default: BREAK_TO_DEBUGGER(); break; } } static void power_on_plane( struct dce_hwseq *hws, int plane_id) { DC_LOGGER_INIT(hws->ctx->logger); if (REG(DC_IP_REQUEST_CNTL)) { REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 1); if (hws->funcs.dpp_pg_control) hws->funcs.dpp_pg_control(hws, plane_id, true); if (hws->funcs.hubp_pg_control) hws->funcs.hubp_pg_control(hws, plane_id, true); REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 0); DC_LOG_DEBUG( "Un-gated front end for pipe %d\n", plane_id); } } static void undo_DEGVIDCN10_253_wa(struct dc *dc) { struct dce_hwseq *hws = dc->hwseq; struct hubp *hubp = dc->res_pool->hubps[0]; if (!hws->wa_state.DEGVIDCN10_253_applied) return; hubp->funcs->set_blank(hubp, true); REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 1); hws->funcs.hubp_pg_control(hws, 0, false); REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 0); hws->wa_state.DEGVIDCN10_253_applied = false; } static void apply_DEGVIDCN10_253_wa(struct dc *dc) { struct dce_hwseq *hws = dc->hwseq; struct hubp *hubp = dc->res_pool->hubps[0]; int i; if (dc->debug.disable_stutter) return; if (!hws->wa.DEGVIDCN10_253) return; for (i = 0; i < dc->res_pool->pipe_count; i++) { if (!dc->res_pool->hubps[i]->power_gated) return; } /* all pipe power gated, apply work around to enable stutter. */ REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 1); hws->funcs.hubp_pg_control(hws, 0, true); REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 0); hubp->funcs->set_hubp_blank_en(hubp, false); hws->wa_state.DEGVIDCN10_253_applied = true; } void dcn10_bios_golden_init(struct dc *dc) { struct dce_hwseq *hws = dc->hwseq; struct dc_bios *bp = dc->ctx->dc_bios; int i; bool allow_self_fresh_force_enable = true; if (hws->funcs.s0i3_golden_init_wa && hws->funcs.s0i3_golden_init_wa(dc)) return; if (dc->res_pool->hubbub->funcs->is_allow_self_refresh_enabled) allow_self_fresh_force_enable = dc->res_pool->hubbub->funcs->is_allow_self_refresh_enabled(dc->res_pool->hubbub); /* WA for making DF sleep when idle after resume from S0i3. * DCHUBBUB_ARB_ALLOW_SELF_REFRESH_FORCE_ENABLE is set to 1 by * command table, if DCHUBBUB_ARB_ALLOW_SELF_REFRESH_FORCE_ENABLE = 0 * before calling command table and it changed to 1 after, * it should be set back to 0. */ /* initialize dcn global */ bp->funcs->enable_disp_power_gating(bp, CONTROLLER_ID_D0, ASIC_PIPE_INIT); for (i = 0; i < dc->res_pool->pipe_count; i++) { /* initialize dcn per pipe */ bp->funcs->enable_disp_power_gating(bp, CONTROLLER_ID_D0 + i, ASIC_PIPE_DISABLE); } if (dc->res_pool->hubbub->funcs->allow_self_refresh_control) if (allow_self_fresh_force_enable == false && dc->res_pool->hubbub->funcs->is_allow_self_refresh_enabled(dc->res_pool->hubbub)) dc->res_pool->hubbub->funcs->allow_self_refresh_control(dc->res_pool->hubbub, !dc->res_pool->hubbub->ctx->dc->debug.disable_stutter); } static void false_optc_underflow_wa( struct dc *dc, const struct dc_stream_state *stream, struct timing_generator *tg) { int i; bool underflow; if (!dc->hwseq->wa.false_optc_underflow) return; underflow = tg->funcs->is_optc_underflow_occurred(tg); for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i]; if (old_pipe_ctx->stream != stream) continue; dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, old_pipe_ctx); } if (tg->funcs->set_blank_data_double_buffer) tg->funcs->set_blank_data_double_buffer(tg, true); if (tg->funcs->is_optc_underflow_occurred(tg) && !underflow) tg->funcs->clear_optc_underflow(tg); } static int calculate_vready_offset_for_group(struct pipe_ctx *pipe) { struct pipe_ctx *other_pipe; int vready_offset = pipe->pipe_dlg_param.vready_offset; /* Always use the largest vready_offset of all connected pipes */ for (other_pipe = pipe->bottom_pipe; other_pipe != NULL; other_pipe = other_pipe->bottom_pipe) { if (other_pipe->pipe_dlg_param.vready_offset > vready_offset) vready_offset = other_pipe->pipe_dlg_param.vready_offset; } for (other_pipe = pipe->top_pipe; other_pipe != NULL; other_pipe = other_pipe->top_pipe) { if (other_pipe->pipe_dlg_param.vready_offset > vready_offset) vready_offset = other_pipe->pipe_dlg_param.vready_offset; } for (other_pipe = pipe->next_odm_pipe; other_pipe != NULL; other_pipe = other_pipe->next_odm_pipe) { if (other_pipe->pipe_dlg_param.vready_offset > vready_offset) vready_offset = other_pipe->pipe_dlg_param.vready_offset; } for (other_pipe = pipe->prev_odm_pipe; other_pipe != NULL; other_pipe = other_pipe->prev_odm_pipe) { if (other_pipe->pipe_dlg_param.vready_offset > vready_offset) vready_offset = other_pipe->pipe_dlg_param.vready_offset; } return vready_offset; } enum dc_status dcn10_enable_stream_timing( struct pipe_ctx *pipe_ctx, struct dc_state *context, struct dc *dc) { struct dc_stream_state *stream = pipe_ctx->stream; enum dc_color_space color_space; struct tg_color black_color = {0}; /* by upper caller loop, pipe0 is parent pipe and be called first. * back end is set up by for pipe0. Other children pipe share back end * with pipe 0. No program is needed. */ if (pipe_ctx->top_pipe != NULL) return DC_OK; /* TODO check if timing_changed, disable stream if timing changed */ /* HW program guide assume display already disable * by unplug sequence. OTG assume stop. */ pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, true); if (false == pipe_ctx->clock_source->funcs->program_pix_clk( pipe_ctx->clock_source, &pipe_ctx->stream_res.pix_clk_params, &pipe_ctx->pll_settings)) { BREAK_TO_DEBUGGER(); return DC_ERROR_UNEXPECTED; } pipe_ctx->stream_res.tg->funcs->program_timing( pipe_ctx->stream_res.tg, &stream->timing, calculate_vready_offset_for_group(pipe_ctx), pipe_ctx->pipe_dlg_param.vstartup_start, pipe_ctx->pipe_dlg_param.vupdate_offset, pipe_ctx->pipe_dlg_param.vupdate_width, pipe_ctx->stream->signal, true); #if 0 /* move to after enable_crtc */ /* TODO: OPP FMT, ABM. etc. should be done here. */ /* or FPGA now. instance 0 only. TODO: move to opp.c */ inst_offset = reg_offsets[pipe_ctx->stream_res.tg->inst].fmt; pipe_ctx->stream_res.opp->funcs->opp_program_fmt( pipe_ctx->stream_res.opp, &stream->bit_depth_params, &stream->clamping); #endif /* program otg blank color */ color_space = stream->output_color_space; color_space_to_black_color(dc, color_space, &black_color); /* * The way 420 is packed, 2 channels carry Y component, 1 channel * alternate between Cb and Cr, so both channels need the pixel * value for Y */ if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420) black_color.color_r_cr = black_color.color_g_y; if (pipe_ctx->stream_res.tg->funcs->set_blank_color) pipe_ctx->stream_res.tg->funcs->set_blank_color( pipe_ctx->stream_res.tg, &black_color); if (pipe_ctx->stream_res.tg->funcs->is_blanked && !pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg)) { pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, true); hwss_wait_for_blank_complete(pipe_ctx->stream_res.tg); false_optc_underflow_wa(dc, pipe_ctx->stream, pipe_ctx->stream_res.tg); } /* VTG is within DCHUB command block. DCFCLK is always on */ if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(pipe_ctx->stream_res.tg)) { BREAK_TO_DEBUGGER(); return DC_ERROR_UNEXPECTED; } /* TODO program crtc source select for non-virtual signal*/ /* TODO program FMT */ /* TODO setup link_enc */ /* TODO set stream attributes */ /* TODO program audio */ /* TODO enable stream if timing changed */ /* TODO unblank stream if DP */ return DC_OK; } static void dcn10_reset_back_end_for_pipe( struct dc *dc, struct pipe_ctx *pipe_ctx, struct dc_state *context) { int i; struct dc_link *link; DC_LOGGER_INIT(dc->ctx->logger); if (pipe_ctx->stream_res.stream_enc == NULL) { pipe_ctx->stream = NULL; return; } if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) { link = pipe_ctx->stream->link; /* DPMS may already disable or */ /* dpms_off status is incorrect due to fastboot * feature. When system resume from S4 with second * screen only, the dpms_off would be true but * VBIOS lit up eDP, so check link status too. */ if (!pipe_ctx->stream->dpms_off || link->link_status.link_active) core_link_disable_stream(pipe_ctx); else if (pipe_ctx->stream_res.audio) dc->hwss.disable_audio_stream(pipe_ctx); if (pipe_ctx->stream_res.audio) { /*disable az_endpoint*/ pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio); /*free audio*/ if (dc->caps.dynamic_audio == true) { /*we have to dynamic arbitrate the audio endpoints*/ /*we free the resource, need reset is_audio_acquired*/ update_audio_usage(&dc->current_state->res_ctx, dc->res_pool, pipe_ctx->stream_res.audio, false); pipe_ctx->stream_res.audio = NULL; } } } /* by upper caller loop, parent pipe: pipe0, will be reset last. * back end share by all pipes and will be disable only when disable * parent pipe. */ if (pipe_ctx->top_pipe == NULL) { if (pipe_ctx->stream_res.abm) dc->hwss.set_abm_immediate_disable(pipe_ctx); pipe_ctx->stream_res.tg->funcs->disable_crtc(pipe_ctx->stream_res.tg); pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, false); if (pipe_ctx->stream_res.tg->funcs->set_drr) pipe_ctx->stream_res.tg->funcs->set_drr( pipe_ctx->stream_res.tg, NULL); } for (i = 0; i < dc->res_pool->pipe_count; i++) if (&dc->current_state->res_ctx.pipe_ctx[i] == pipe_ctx) break; if (i == dc->res_pool->pipe_count) return; pipe_ctx->stream = NULL; DC_LOG_DEBUG("Reset back end for pipe %d, tg:%d\n", pipe_ctx->pipe_idx, pipe_ctx->stream_res.tg->inst); } static bool dcn10_hw_wa_force_recovery(struct dc *dc) { struct hubp *hubp ; unsigned int i; bool need_recover = true; if (!dc->debug.recovery_enabled) return false; for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i]; if (pipe_ctx != NULL) { hubp = pipe_ctx->plane_res.hubp; if (hubp != NULL && hubp->funcs->hubp_get_underflow_status) { if (hubp->funcs->hubp_get_underflow_status(hubp) != 0) { /* one pipe underflow, we will reset all the pipes*/ need_recover = true; } } } } if (!need_recover) return false; /* DCHUBP_CNTL:HUBP_BLANK_EN=1 DCHUBBUB_SOFT_RESET:DCHUBBUB_GLOBAL_SOFT_RESET=1 DCHUBP_CNTL:HUBP_DISABLE=1 DCHUBP_CNTL:HUBP_DISABLE=0 DCHUBBUB_SOFT_RESET:DCHUBBUB_GLOBAL_SOFT_RESET=0 DCSURF_PRIMARY_SURFACE_ADDRESS DCHUBP_CNTL:HUBP_BLANK_EN=0 */ for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i]; if (pipe_ctx != NULL) { hubp = pipe_ctx->plane_res.hubp; /*DCHUBP_CNTL:HUBP_BLANK_EN=1*/ if (hubp != NULL && hubp->funcs->set_hubp_blank_en) hubp->funcs->set_hubp_blank_en(hubp, true); } } /*DCHUBBUB_SOFT_RESET:DCHUBBUB_GLOBAL_SOFT_RESET=1*/ hubbub1_soft_reset(dc->res_pool->hubbub, true); for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i]; if (pipe_ctx != NULL) { hubp = pipe_ctx->plane_res.hubp; /*DCHUBP_CNTL:HUBP_DISABLE=1*/ if (hubp != NULL && hubp->funcs->hubp_disable_control) hubp->funcs->hubp_disable_control(hubp, true); } } for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i]; if (pipe_ctx != NULL) { hubp = pipe_ctx->plane_res.hubp; /*DCHUBP_CNTL:HUBP_DISABLE=0*/ if (hubp != NULL && hubp->funcs->hubp_disable_control) hubp->funcs->hubp_disable_control(hubp, true); } } /*DCHUBBUB_SOFT_RESET:DCHUBBUB_GLOBAL_SOFT_RESET=0*/ hubbub1_soft_reset(dc->res_pool->hubbub, false); for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i]; if (pipe_ctx != NULL) { hubp = pipe_ctx->plane_res.hubp; /*DCHUBP_CNTL:HUBP_BLANK_EN=0*/ if (hubp != NULL && hubp->funcs->set_hubp_blank_en) hubp->funcs->set_hubp_blank_en(hubp, true); } } return true; } void dcn10_verify_allow_pstate_change_high(struct dc *dc) { struct hubbub *hubbub = dc->res_pool->hubbub; static bool should_log_hw_state; /* prevent hw state log by default */ if (!hubbub->funcs->verify_allow_pstate_change_high) return; if (!hubbub->funcs->verify_allow_pstate_change_high(hubbub)) { int i = 0; if (should_log_hw_state) dcn10_log_hw_state(dc, NULL); TRACE_DC_PIPE_STATE(pipe_ctx, i, MAX_PIPES); BREAK_TO_DEBUGGER(); if (dcn10_hw_wa_force_recovery(dc)) { /*check again*/ if (!hubbub->funcs->verify_allow_pstate_change_high(hubbub)) BREAK_TO_DEBUGGER(); } } } /* trigger HW to start disconnect plane from stream on the next vsync */ void dcn10_plane_atomic_disconnect(struct dc *dc, struct pipe_ctx *pipe_ctx) { struct dce_hwseq *hws = dc->hwseq; struct hubp *hubp = pipe_ctx->plane_res.hubp; int dpp_id = pipe_ctx->plane_res.dpp->inst; struct mpc *mpc = dc->res_pool->mpc; struct mpc_tree *mpc_tree_params; struct mpcc *mpcc_to_remove = NULL; struct output_pixel_processor *opp = pipe_ctx->stream_res.opp; mpc_tree_params = &(opp->mpc_tree_params); mpcc_to_remove = mpc->funcs->get_mpcc_for_dpp(mpc_tree_params, dpp_id); /*Already reset*/ if (mpcc_to_remove == NULL) return; mpc->funcs->remove_mpcc(mpc, mpc_tree_params, mpcc_to_remove); if (opp != NULL) opp->mpcc_disconnect_pending[pipe_ctx->plane_res.mpcc_inst] = true; dc->optimized_required = true; if (hubp->funcs->hubp_disconnect) hubp->funcs->hubp_disconnect(hubp); if (dc->debug.sanity_checks) hws->funcs.verify_allow_pstate_change_high(dc); } /** * dcn10_plane_atomic_power_down - Power down plane components. * * @dc: dc struct reference. used for grab hwseq. * @dpp: dpp struct reference. * @hubp: hubp struct reference. * * Keep in mind that this operation requires a power gate configuration; * however, requests for switch power gate are precisely controlled to avoid * problems. For this reason, power gate request is usually disabled. This * function first needs to enable the power gate request before disabling DPP * and HUBP. Finally, it disables the power gate request again. */ void dcn10_plane_atomic_power_down(struct dc *dc, struct dpp *dpp, struct hubp *hubp) { struct dce_hwseq *hws = dc->hwseq; DC_LOGGER_INIT(dc->ctx->logger); if (REG(DC_IP_REQUEST_CNTL)) { REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 1); if (hws->funcs.dpp_pg_control) hws->funcs.dpp_pg_control(hws, dpp->inst, false); if (hws->funcs.hubp_pg_control) hws->funcs.hubp_pg_control(hws, hubp->inst, false); dpp->funcs->dpp_reset(dpp); REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 0); DC_LOG_DEBUG( "Power gated front end %d\n", hubp->inst); } } /* disable HW used by plane. * note: cannot disable until disconnect is complete */ void dcn10_plane_atomic_disable(struct dc *dc, struct pipe_ctx *pipe_ctx) { struct dce_hwseq *hws = dc->hwseq; struct hubp *hubp = pipe_ctx->plane_res.hubp; struct dpp *dpp = pipe_ctx->plane_res.dpp; int opp_id = hubp->opp_id; dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe_ctx); hubp->funcs->hubp_clk_cntl(hubp, false); dpp->funcs->dpp_dppclk_control(dpp, false, false); if (opp_id != 0xf && pipe_ctx->stream_res.opp->mpc_tree_params.opp_list == NULL) pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control( pipe_ctx->stream_res.opp, false); hubp->power_gated = true; dc->optimized_required = false; /* We're powering off, no need to optimize */ hws->funcs.plane_atomic_power_down(dc, pipe_ctx->plane_res.dpp, pipe_ctx->plane_res.hubp); pipe_ctx->stream = NULL; memset(&pipe_ctx->stream_res, 0, sizeof(pipe_ctx->stream_res)); memset(&pipe_ctx->plane_res, 0, sizeof(pipe_ctx->plane_res)); pipe_ctx->top_pipe = NULL; pipe_ctx->bottom_pipe = NULL; pipe_ctx->plane_state = NULL; } void dcn10_disable_plane(struct dc *dc, struct pipe_ctx *pipe_ctx) { struct dce_hwseq *hws = dc->hwseq; DC_LOGGER_INIT(dc->ctx->logger); if (!pipe_ctx->plane_res.hubp || pipe_ctx->plane_res.hubp->power_gated) return; hws->funcs.plane_atomic_disable(dc, pipe_ctx); apply_DEGVIDCN10_253_wa(dc); DC_LOG_DC("Power down front end %d\n", pipe_ctx->pipe_idx); } void dcn10_init_pipes(struct dc *dc, struct dc_state *context) { int i; struct dce_hwseq *hws = dc->hwseq; bool can_apply_seamless_boot = false; for (i = 0; i < context->stream_count; i++) { if (context->streams[i]->apply_seamless_boot_optimization) { can_apply_seamless_boot = true; break; } } for (i = 0; i < dc->res_pool->pipe_count; i++) { struct timing_generator *tg = dc->res_pool->timing_generators[i]; struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; /* There is assumption that pipe_ctx is not mapping irregularly * to non-preferred front end. If pipe_ctx->stream is not NULL, * we will use the pipe, so don't disable */ if (pipe_ctx->stream != NULL && can_apply_seamless_boot) continue; /* Blank controller using driver code instead of * command table. */ if (tg->funcs->is_tg_enabled(tg)) { if (hws->funcs.init_blank != NULL) { hws->funcs.init_blank(dc, tg); tg->funcs->lock(tg); } else { tg->funcs->lock(tg); tg->funcs->set_blank(tg, true); hwss_wait_for_blank_complete(tg); } } } /* num_opp will be equal to number of mpcc */ for (i = 0; i < dc->res_pool->res_cap->num_opp; i++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; /* Cannot reset the MPC mux if seamless boot */ if (pipe_ctx->stream != NULL && can_apply_seamless_boot) continue; dc->res_pool->mpc->funcs->mpc_init_single_inst( dc->res_pool->mpc, i); } for (i = 0; i < dc->res_pool->pipe_count; i++) { struct timing_generator *tg = dc->res_pool->timing_generators[i]; struct hubp *hubp = dc->res_pool->hubps[i]; struct dpp *dpp = dc->res_pool->dpps[i]; struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; /* There is assumption that pipe_ctx is not mapping irregularly * to non-preferred front end. If pipe_ctx->stream is not NULL, * we will use the pipe, so don't disable */ if (can_apply_seamless_boot && pipe_ctx->stream != NULL && pipe_ctx->stream_res.tg->funcs->is_tg_enabled( pipe_ctx->stream_res.tg)) { // Enable double buffering for OTG_BLANK no matter if // seamless boot is enabled or not to suppress global sync // signals when OTG blanked. This is to prevent pipe from // requesting data while in PSR. tg->funcs->tg_init(tg); hubp->power_gated = true; continue; } /* Disable on the current state so the new one isn't cleared. */ pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i]; dpp->funcs->dpp_reset(dpp); pipe_ctx->stream_res.tg = tg; pipe_ctx->pipe_idx = i; pipe_ctx->plane_res.hubp = hubp; pipe_ctx->plane_res.dpp = dpp; pipe_ctx->plane_res.mpcc_inst = dpp->inst; hubp->mpcc_id = dpp->inst; hubp->opp_id = OPP_ID_INVALID; hubp->power_gated = false; dc->res_pool->opps[i]->mpc_tree_params.opp_id = dc->res_pool->opps[i]->inst; dc->res_pool->opps[i]->mpc_tree_params.opp_list = NULL; dc->res_pool->opps[i]->mpcc_disconnect_pending[pipe_ctx->plane_res.mpcc_inst] = true; pipe_ctx->stream_res.opp = dc->res_pool->opps[i]; hws->funcs.plane_atomic_disconnect(dc, pipe_ctx); if (tg->funcs->is_tg_enabled(tg)) tg->funcs->unlock(tg); dc->hwss.disable_plane(dc, pipe_ctx); pipe_ctx->stream_res.tg = NULL; pipe_ctx->plane_res.hubp = NULL; tg->funcs->tg_init(tg); } } void dcn10_init_hw(struct dc *dc) { int i, j; struct abm *abm = dc->res_pool->abm; struct dmcu *dmcu = dc->res_pool->dmcu; struct dce_hwseq *hws = dc->hwseq; struct dc_bios *dcb = dc->ctx->dc_bios; struct resource_pool *res_pool = dc->res_pool; uint32_t backlight = MAX_BACKLIGHT_LEVEL; bool is_optimized_init_done = false; if (dc->clk_mgr && dc->clk_mgr->funcs->init_clocks) dc->clk_mgr->funcs->init_clocks(dc->clk_mgr); // Initialize the dccg if (dc->res_pool->dccg && dc->res_pool->dccg->funcs->dccg_init) dc->res_pool->dccg->funcs->dccg_init(res_pool->dccg); if (IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) { REG_WRITE(REFCLK_CNTL, 0); REG_UPDATE(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_ENABLE, 1); REG_WRITE(DIO_MEM_PWR_CTRL, 0); if (!dc->debug.disable_clock_gate) { /* enable all DCN clock gating */ REG_WRITE(DCCG_GATE_DISABLE_CNTL, 0); REG_WRITE(DCCG_GATE_DISABLE_CNTL2, 0); REG_UPDATE(DCFCLK_CNTL, DCFCLK_GATE_DIS, 0); } //Enable ability to power gate / don't force power on permanently if (hws->funcs.enable_power_gating_plane) hws->funcs.enable_power_gating_plane(hws, true); return; } if (!dcb->funcs->is_accelerated_mode(dcb)) hws->funcs.disable_vga(dc->hwseq); hws->funcs.bios_golden_init(dc); if (dc->ctx->dc_bios->fw_info_valid) { res_pool->ref_clocks.xtalin_clock_inKhz = dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency; if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) { if (res_pool->dccg && res_pool->hubbub) { (res_pool->dccg->funcs->get_dccg_ref_freq)(res_pool->dccg, dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency, &res_pool->ref_clocks.dccg_ref_clock_inKhz); (res_pool->hubbub->funcs->get_dchub_ref_freq)(res_pool->hubbub, res_pool->ref_clocks.dccg_ref_clock_inKhz, &res_pool->ref_clocks.dchub_ref_clock_inKhz); } else { // Not all ASICs have DCCG sw component res_pool->ref_clocks.dccg_ref_clock_inKhz = res_pool->ref_clocks.xtalin_clock_inKhz; res_pool->ref_clocks.dchub_ref_clock_inKhz = res_pool->ref_clocks.xtalin_clock_inKhz; } } } else ASSERT_CRITICAL(false); for (i = 0; i < dc->link_count; i++) { /* Power up AND update implementation according to the * required signal (which may be different from the * default signal on connector). */ struct dc_link *link = dc->links[i]; if (!is_optimized_init_done) link->link_enc->funcs->hw_init(link->link_enc); /* Check for enabled DIG to identify enabled display */ if (link->link_enc->funcs->is_dig_enabled && link->link_enc->funcs->is_dig_enabled(link->link_enc)) link->link_status.link_active = true; } /* Power gate DSCs */ if (!is_optimized_init_done) { for (i = 0; i < res_pool->res_cap->num_dsc; i++) if (hws->funcs.dsc_pg_control != NULL) hws->funcs.dsc_pg_control(hws, res_pool->dscs[i]->inst, false); } /* Enable outbox notification feature of dmub */ if (dc->debug.enable_dmub_aux_for_legacy_ddc) dmub_enable_outbox_notification(dc); /* we want to turn off all dp displays before doing detection */ if (dc->config.power_down_display_on_boot) { uint8_t dpcd_power_state = '\0'; enum dc_status status = DC_ERROR_UNEXPECTED; for (i = 0; i < dc->link_count; i++) { if (dc->links[i]->connector_signal != SIGNAL_TYPE_DISPLAY_PORT) continue; /* DP 2.0 requires that LTTPR Caps be read first */ dp_retrieve_lttpr_cap(dc->links[i]); /* * If any of the displays are lit up turn them off. * The reason is that some MST hubs cannot be turned off * completely until we tell them to do so. * If not turned off, then displays connected to MST hub * won't light up. */ status = core_link_read_dpcd(dc->links[i], DP_SET_POWER, &dpcd_power_state, sizeof(dpcd_power_state)); if (status == DC_OK && dpcd_power_state == DP_POWER_STATE_D0) { /* blank dp stream before power off receiver*/ if (dc->links[i]->link_enc->funcs->get_dig_frontend) { unsigned int fe = dc->links[i]->link_enc->funcs->get_dig_frontend(dc->links[i]->link_enc); for (j = 0; j < dc->res_pool->stream_enc_count; j++) { if (fe == dc->res_pool->stream_enc[j]->id) { dc->res_pool->stream_enc[j]->funcs->dp_blank( dc->res_pool->stream_enc[j]); break; } } } dp_receiver_power_ctrl(dc->links[i], false); } } } if (hws->funcs.enable_power_gating_plane) hws->funcs.enable_power_gating_plane(dc->hwseq, true); /* If taking control over from VBIOS, we may want to optimize our first * mode set, so we need to skip powering down pipes until we know which * pipes we want to use. * Otherwise, if taking control is not possible, we need to power * everything down. */ if (dcb->funcs->is_accelerated_mode(dcb) || dc->config.power_down_display_on_boot) { if (!is_optimized_init_done) { hws->funcs.init_pipes(dc, dc->current_state); if (dc->res_pool->hubbub->funcs->allow_self_refresh_control) dc->res_pool->hubbub->funcs->allow_self_refresh_control(dc->res_pool->hubbub, !dc->res_pool->hubbub->ctx->dc->debug.disable_stutter); } } if (!is_optimized_init_done) { for (i = 0; i < res_pool->audio_count; i++) { struct audio *audio = res_pool->audios[i]; audio->funcs->hw_init(audio); } for (i = 0; i < dc->link_count; i++) { struct dc_link *link = dc->links[i]; if (link->panel_cntl) backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl); } if (abm != NULL) abm->funcs->abm_init(abm, backlight); if (dmcu != NULL && !dmcu->auto_load_dmcu) dmcu->funcs->dmcu_init(dmcu); } if (abm != NULL && dmcu != NULL) abm->dmcu_is_running = dmcu->funcs->is_dmcu_initialized(dmcu); /* power AFMT HDMI memory TODO: may move to dis/en output save power*/ if (!is_optimized_init_done) REG_WRITE(DIO_MEM_PWR_CTRL, 0); if (!dc->debug.disable_clock_gate) { /* enable all DCN clock gating */ REG_WRITE(DCCG_GATE_DISABLE_CNTL, 0); REG_WRITE(DCCG_GATE_DISABLE_CNTL2, 0); REG_UPDATE(DCFCLK_CNTL, DCFCLK_GATE_DIS, 0); } if (dc->clk_mgr->funcs->notify_wm_ranges) dc->clk_mgr->funcs->notify_wm_ranges(dc->clk_mgr); } /* In headless boot cases, DIG may be turned * on which causes HW/SW discrepancies. * To avoid this, power down hardware on boot * if DIG is turned on */ void dcn10_power_down_on_boot(struct dc *dc) { struct dc_link *edp_links[MAX_NUM_EDP]; struct dc_link *edp_link = NULL; int edp_num; int i = 0; get_edp_links(dc, edp_links, &edp_num); if (edp_num) edp_link = edp_links[0]; if (edp_link && edp_link->link_enc->funcs->is_dig_enabled && edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc) && dc->hwseq->funcs.edp_backlight_control && dc->hwss.power_down && dc->hwss.edp_power_control) { dc->hwseq->funcs.edp_backlight_control(edp_link, false); dc->hwss.power_down(dc); dc->hwss.edp_power_control(edp_link, false); } else { for (i = 0; i < dc->link_count; i++) { struct dc_link *link = dc->links[i]; if (link->link_enc && link->link_enc->funcs->is_dig_enabled && link->link_enc->funcs->is_dig_enabled(link->link_enc) && dc->hwss.power_down) { dc->hwss.power_down(dc); break; } } } /* * Call update_clocks with empty context * to send DISPLAY_OFF * Otherwise DISPLAY_OFF may not be asserted */ if (dc->clk_mgr->funcs->set_low_power_state) dc->clk_mgr->funcs->set_low_power_state(dc->clk_mgr); } void dcn10_reset_hw_ctx_wrap( struct dc *dc, struct dc_state *context) { int i; struct dce_hwseq *hws = dc->hwseq; /* Reset Back End*/ for (i = dc->res_pool->pipe_count - 1; i >= 0 ; i--) { struct pipe_ctx *pipe_ctx_old = &dc->current_state->res_ctx.pipe_ctx[i]; struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; if (!pipe_ctx_old->stream) continue; if (pipe_ctx_old->top_pipe) continue; if (!pipe_ctx->stream || pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) { struct clock_source *old_clk = pipe_ctx_old->clock_source; dcn10_reset_back_end_for_pipe(dc, pipe_ctx_old, dc->current_state); if (hws->funcs.enable_stream_gating) hws->funcs.enable_stream_gating(dc, pipe_ctx); if (old_clk) old_clk->funcs->cs_power_down(old_clk); } } } static bool patch_address_for_sbs_tb_stereo( struct pipe_ctx *pipe_ctx, PHYSICAL_ADDRESS_LOC *addr) { struct dc_plane_state *plane_state = pipe_ctx->plane_state; bool sec_split = pipe_ctx->top_pipe && pipe_ctx->top_pipe->plane_state == pipe_ctx->plane_state; if (sec_split && plane_state->address.type == PLN_ADDR_TYPE_GRPH_STEREO && (pipe_ctx->stream->timing.timing_3d_format == TIMING_3D_FORMAT_SIDE_BY_SIDE || pipe_ctx->stream->timing.timing_3d_format == TIMING_3D_FORMAT_TOP_AND_BOTTOM)) { *addr = plane_state->address.grph_stereo.left_addr; plane_state->address.grph_stereo.left_addr = plane_state->address.grph_stereo.right_addr; return true; } else { if (pipe_ctx->stream->view_format != VIEW_3D_FORMAT_NONE && plane_state->address.type != PLN_ADDR_TYPE_GRPH_STEREO) { plane_state->address.type = PLN_ADDR_TYPE_GRPH_STEREO; plane_state->address.grph_stereo.right_addr = plane_state->address.grph_stereo.left_addr; plane_state->address.grph_stereo.right_meta_addr = plane_state->address.grph_stereo.left_meta_addr; } } return false; } void dcn10_update_plane_addr(const struct dc *dc, struct pipe_ctx *pipe_ctx) { bool addr_patched = false; PHYSICAL_ADDRESS_LOC addr; struct dc_plane_state *plane_state = pipe_ctx->plane_state; if (plane_state == NULL) return; addr_patched = patch_address_for_sbs_tb_stereo(pipe_ctx, &addr); pipe_ctx->plane_res.hubp->funcs->hubp_program_surface_flip_and_addr( pipe_ctx->plane_res.hubp, &plane_state->address, plane_state->flip_immediate); plane_state->status.requested_address = plane_state->address; if (plane_state->flip_immediate) plane_state->status.current_address = plane_state->address; if (addr_patched) pipe_ctx->plane_state->address.grph_stereo.left_addr = addr; } bool dcn10_set_input_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx, const struct dc_plane_state *plane_state) { struct dpp *dpp_base = pipe_ctx->plane_res.dpp; const struct dc_transfer_func *tf = NULL; bool result = true; if (dpp_base == NULL) return false; if (plane_state->in_transfer_func) tf = plane_state->in_transfer_func; if (plane_state->gamma_correction && !dpp_base->ctx->dc->debug.always_use_regamma && !plane_state->gamma_correction->is_identity && dce_use_lut(plane_state->format)) dpp_base->funcs->dpp_program_input_lut(dpp_base, plane_state->gamma_correction); if (tf == NULL) dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_BYPASS); else if (tf->type == TF_TYPE_PREDEFINED) { switch (tf->tf) { case TRANSFER_FUNCTION_SRGB: dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_HW_sRGB); break; case TRANSFER_FUNCTION_BT709: dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_HW_xvYCC); break; case TRANSFER_FUNCTION_LINEAR: dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_BYPASS); break; case TRANSFER_FUNCTION_PQ: dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_USER_PWL); cm_helper_translate_curve_to_degamma_hw_format(tf, &dpp_base->degamma_params); dpp_base->funcs->dpp_program_degamma_pwl(dpp_base, &dpp_base->degamma_params); result = true; break; default: result = false; break; } } else if (tf->type == TF_TYPE_BYPASS) { dpp_base->funcs->dpp_set_degamma(dpp_base, IPP_DEGAMMA_MODE_BYPASS); } else { cm_helper_translate_curve_to_degamma_hw_format(tf, &dpp_base->degamma_params); dpp_base->funcs->dpp_program_degamma_pwl(dpp_base, &dpp_base->degamma_params); result = true; } return result; } #define MAX_NUM_HW_POINTS 0x200 static void log_tf(struct dc_context *ctx, struct dc_transfer_func *tf, uint32_t hw_points_num) { // DC_LOG_GAMMA is default logging of all hw points // DC_LOG_ALL_GAMMA logs all points, not only hw points // DC_LOG_ALL_TF_POINTS logs all channels of the tf int i = 0; DC_LOGGER_INIT(ctx->logger); DC_LOG_GAMMA("Gamma Correction TF"); DC_LOG_ALL_GAMMA("Logging all tf points..."); DC_LOG_ALL_TF_CHANNELS("Logging all channels..."); for (i = 0; i < hw_points_num; i++) { DC_LOG_GAMMA("R\t%d\t%llu", i, tf->tf_pts.red[i].value); DC_LOG_ALL_TF_CHANNELS("G\t%d\t%llu", i, tf->tf_pts.green[i].value); DC_LOG_ALL_TF_CHANNELS("B\t%d\t%llu", i, tf->tf_pts.blue[i].value); } for (i = hw_points_num; i < MAX_NUM_HW_POINTS; i++) { DC_LOG_ALL_GAMMA("R\t%d\t%llu", i, tf->tf_pts.red[i].value); DC_LOG_ALL_TF_CHANNELS("G\t%d\t%llu", i, tf->tf_pts.green[i].value); DC_LOG_ALL_TF_CHANNELS("B\t%d\t%llu", i, tf->tf_pts.blue[i].value); } } bool dcn10_set_output_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx, const struct dc_stream_state *stream) { struct dpp *dpp = pipe_ctx->plane_res.dpp; if (!stream) return false; if (dpp == NULL) return false; dpp->regamma_params.hw_points_num = GAMMA_HW_POINTS_NUM; if (stream->out_transfer_func && stream->out_transfer_func->type == TF_TYPE_PREDEFINED && stream->out_transfer_func->tf == TRANSFER_FUNCTION_SRGB) dpp->funcs->dpp_program_regamma_pwl(dpp, NULL, OPP_REGAMMA_SRGB); /* dcn10_translate_regamma_to_hw_format takes 750us, only do it when full * update. */ else if (cm_helper_translate_curve_to_hw_format( stream->out_transfer_func, &dpp->regamma_params, false)) { dpp->funcs->dpp_program_regamma_pwl( dpp, &dpp->regamma_params, OPP_REGAMMA_USER); } else dpp->funcs->dpp_program_regamma_pwl(dpp, NULL, OPP_REGAMMA_BYPASS); if (stream->ctx && stream->out_transfer_func) { log_tf(stream->ctx, stream->out_transfer_func, dpp->regamma_params.hw_points_num); } return true; } void dcn10_pipe_control_lock( struct dc *dc, struct pipe_ctx *pipe, bool lock) { struct dce_hwseq *hws = dc->hwseq; /* use TG master update lock to lock everything on the TG * therefore only top pipe need to lock */ if (!pipe || pipe->top_pipe) return; if (dc->debug.sanity_checks) hws->funcs.verify_allow_pstate_change_high(dc); if (lock) pipe->stream_res.tg->funcs->lock(pipe->stream_res.tg); else pipe->stream_res.tg->funcs->unlock(pipe->stream_res.tg); if (dc->debug.sanity_checks) hws->funcs.verify_allow_pstate_change_high(dc); } /** * delay_cursor_until_vupdate() - Delay cursor update if too close to VUPDATE. * * Software keepout workaround to prevent cursor update locking from stalling * out cursor updates indefinitely or from old values from being retained in * the case where the viewport changes in the same frame as the cursor. * * The idea is to calculate the remaining time from VPOS to VUPDATE. If it's * too close to VUPDATE, then stall out until VUPDATE finishes. * * TODO: Optimize cursor programming to be once per frame before VUPDATE * to avoid the need for this workaround. */ static void delay_cursor_until_vupdate(struct dc *dc, struct pipe_ctx *pipe_ctx) { struct dc_stream_state *stream = pipe_ctx->stream; struct crtc_position position; uint32_t vupdate_start, vupdate_end; unsigned int lines_to_vupdate, us_to_vupdate, vpos; unsigned int us_per_line, us_vupdate; if (!dc->hwss.calc_vupdate_position || !dc->hwss.get_position) return; if (!pipe_ctx->stream_res.stream_enc || !pipe_ctx->stream_res.tg) return; dc->hwss.calc_vupdate_position(dc, pipe_ctx, &vupdate_start, &vupdate_end); dc->hwss.get_position(&pipe_ctx, 1, &position); vpos = position.vertical_count; /* Avoid wraparound calculation issues */ vupdate_start += stream->timing.v_total; vupdate_end += stream->timing.v_total; vpos += stream->timing.v_total; if (vpos <= vupdate_start) { /* VPOS is in VACTIVE or back porch. */ lines_to_vupdate = vupdate_start - vpos; } else if (vpos > vupdate_end) { /* VPOS is in the front porch. */ return; } else { /* VPOS is in VUPDATE. */ lines_to_vupdate = 0; } /* Calculate time until VUPDATE in microseconds. */ us_per_line = stream->timing.h_total * 10000u / stream->timing.pix_clk_100hz; us_to_vupdate = lines_to_vupdate * us_per_line; /* 70 us is a conservative estimate of cursor update time*/ if (us_to_vupdate > 70) return; /* Stall out until the cursor update completes. */ if (vupdate_end < vupdate_start) vupdate_end += stream->timing.v_total; us_vupdate = (vupdate_end - vupdate_start + 1) * us_per_line; udelay(us_to_vupdate + us_vupdate); } void dcn10_cursor_lock(struct dc *dc, struct pipe_ctx *pipe, bool lock) { /* cursor lock is per MPCC tree, so only need to lock one pipe per stream */ if (!pipe || pipe->top_pipe) return; /* Prevent cursor lock from stalling out cursor updates. */ if (lock) delay_cursor_until_vupdate(dc, pipe); if (pipe->stream && should_use_dmub_lock(pipe->stream->link)) { union dmub_hw_lock_flags hw_locks = { 0 }; struct dmub_hw_lock_inst_flags inst_flags = { 0 }; hw_locks.bits.lock_cursor = 1; inst_flags.opp_inst = pipe->stream_res.opp->inst; dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv, lock, &hw_locks, &inst_flags); } else dc->res_pool->mpc->funcs->cursor_lock(dc->res_pool->mpc, pipe->stream_res.opp->inst, lock); } static bool wait_for_reset_trigger_to_occur( struct dc_context *dc_ctx, struct timing_generator *tg) { bool rc = false; /* To avoid endless loop we wait at most * frames_to_wait_on_triggered_reset frames for the reset to occur. */ const uint32_t frames_to_wait_on_triggered_reset = 10; int i; for (i = 0; i < frames_to_wait_on_triggered_reset; i++) { if (!tg->funcs->is_counter_moving(tg)) { DC_ERROR("TG counter is not moving!\n"); break; } if (tg->funcs->did_triggered_reset_occur(tg)) { rc = true; /* usually occurs at i=1 */ DC_SYNC_INFO("GSL: reset occurred at wait count: %d\n", i); break; } /* Wait for one frame. */ tg->funcs->wait_for_state(tg, CRTC_STATE_VACTIVE); tg->funcs->wait_for_state(tg, CRTC_STATE_VBLANK); } if (false == rc) DC_ERROR("GSL: Timeout on reset trigger!\n"); return rc; } uint64_t reduceSizeAndFraction( uint64_t *numerator, uint64_t *denominator, bool checkUint32Bounary) { int i; bool ret = checkUint32Bounary == false; uint64_t max_int32 = 0xffffffff; uint64_t num, denom; static const uint16_t prime_numbers[] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997}; int count = ARRAY_SIZE(prime_numbers); num = *numerator; denom = *denominator; for (i = 0; i < count; i++) { uint32_t num_remainder, denom_remainder; uint64_t num_result, denom_result; if (checkUint32Bounary && num <= max_int32 && denom <= max_int32) { ret = true; break; } do { num_result = div_u64_rem(num, prime_numbers[i], &num_remainder); denom_result = div_u64_rem(denom, prime_numbers[i], &denom_remainder); if (num_remainder == 0 && denom_remainder == 0) { num = num_result; denom = denom_result; } } while (num_remainder == 0 && denom_remainder == 0); } *numerator = num; *denominator = denom; return ret; } bool is_low_refresh_rate(struct pipe_ctx *pipe) { uint32_t master_pipe_refresh_rate = pipe->stream->timing.pix_clk_100hz * 100 / pipe->stream->timing.h_total / pipe->stream->timing.v_total; return master_pipe_refresh_rate <= 30; } uint8_t get_clock_divider(struct pipe_ctx *pipe, bool account_low_refresh_rate) { uint32_t clock_divider = 1; uint32_t numpipes = 1; if (account_low_refresh_rate && is_low_refresh_rate(pipe)) clock_divider *= 2; if (pipe->stream_res.pix_clk_params.pixel_encoding == PIXEL_ENCODING_YCBCR420) clock_divider *= 2; while (pipe->next_odm_pipe) { pipe = pipe->next_odm_pipe; numpipes++; } clock_divider *= numpipes; return clock_divider; } int dcn10_align_pixel_clocks( struct dc *dc, int group_size, struct pipe_ctx *grouped_pipes[]) { struct dc_context *dc_ctx = dc->ctx; int i, master = -1, embedded = -1; struct dc_crtc_timing hw_crtc_timing[MAX_PIPES] = {0}; uint64_t phase[MAX_PIPES]; uint64_t modulo[MAX_PIPES]; unsigned int pclk; uint32_t embedded_pix_clk_100hz; uint16_t embedded_h_total; uint16_t embedded_v_total; bool clamshell_closed = false; uint32_t dp_ref_clk_100hz = dc->res_pool->dp_clock_source->ctx->dc->clk_mgr->dprefclk_khz*10; if (dc->config.vblank_alignment_dto_params && dc->res_pool->dp_clock_source->funcs->override_dp_pix_clk) { clamshell_closed = (dc->config.vblank_alignment_dto_params >> 63); embedded_h_total = (dc->config.vblank_alignment_dto_params >> 32) & 0x7FFF; embedded_v_total = (dc->config.vblank_alignment_dto_params >> 48) & 0x7FFF; embedded_pix_clk_100hz = dc->config.vblank_alignment_dto_params & 0xFFFFFFFF; for (i = 0; i < group_size; i++) { grouped_pipes[i]->stream_res.tg->funcs->get_hw_timing( grouped_pipes[i]->stream_res.tg, &hw_crtc_timing[i]); dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz( dc->res_pool->dp_clock_source, grouped_pipes[i]->stream_res.tg->inst, &pclk); hw_crtc_timing[i].pix_clk_100hz = pclk; if (dc_is_embedded_signal( grouped_pipes[i]->stream->signal)) { embedded = i; master = i; phase[i] = embedded_pix_clk_100hz*100; modulo[i] = dp_ref_clk_100hz*100; } else { phase[i] = (uint64_t)embedded_pix_clk_100hz* hw_crtc_timing[i].h_total* hw_crtc_timing[i].v_total; phase[i] = div_u64(phase[i], get_clock_divider(grouped_pipes[i], true)); modulo[i] = (uint64_t)dp_ref_clk_100hz* embedded_h_total* embedded_v_total; if (reduceSizeAndFraction(&phase[i], &modulo[i], true) == false) { /* * this will help to stop reporting * this timing synchronizable */ DC_SYNC_INFO("Failed to reduce DTO parameters\n"); grouped_pipes[i]->stream->has_non_synchronizable_pclk = true; } } } for (i = 0; i < group_size; i++) { if (i != embedded && !grouped_pipes[i]->stream->has_non_synchronizable_pclk) { dc->res_pool->dp_clock_source->funcs->override_dp_pix_clk( dc->res_pool->dp_clock_source, grouped_pipes[i]->stream_res.tg->inst, phase[i], modulo[i]); dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz( dc->res_pool->dp_clock_source, grouped_pipes[i]->stream_res.tg->inst, &pclk); grouped_pipes[i]->stream->timing.pix_clk_100hz = pclk*get_clock_divider(grouped_pipes[i], false); if (master == -1) master = i; } } } return master; } void dcn10_enable_vblanks_synchronization( struct dc *dc, int group_index, int group_size, struct pipe_ctx *grouped_pipes[]) { struct dc_context *dc_ctx = dc->ctx; struct output_pixel_processor *opp; struct timing_generator *tg; int i, width, height, master; for (i = 1; i < group_size; i++) { opp = grouped_pipes[i]->stream_res.opp; tg = grouped_pipes[i]->stream_res.tg; tg->funcs->get_otg_active_size(tg, &width, &height); if (opp->funcs->opp_program_dpg_dimensions) opp->funcs->opp_program_dpg_dimensions(opp, width, 2*(height) + 1); } for (i = 0; i < group_size; i++) { if (grouped_pipes[i]->stream == NULL) continue; grouped_pipes[i]->stream->vblank_synchronized = false; grouped_pipes[i]->stream->has_non_synchronizable_pclk = false; } DC_SYNC_INFO("Aligning DP DTOs\n"); master = dcn10_align_pixel_clocks(dc, group_size, grouped_pipes); DC_SYNC_INFO("Synchronizing VBlanks\n"); if (master >= 0) { for (i = 0; i < group_size; i++) { if (i != master && !grouped_pipes[i]->stream->has_non_synchronizable_pclk) grouped_pipes[i]->stream_res.tg->funcs->align_vblanks( grouped_pipes[master]->stream_res.tg, grouped_pipes[i]->stream_res.tg, grouped_pipes[master]->stream->timing.pix_clk_100hz, grouped_pipes[i]->stream->timing.pix_clk_100hz, get_clock_divider(grouped_pipes[master], false), get_clock_divider(grouped_pipes[i], false)); grouped_pipes[i]->stream->vblank_synchronized = true; } grouped_pipes[master]->stream->vblank_synchronized = true; DC_SYNC_INFO("Sync complete\n"); } for (i = 1; i < group_size; i++) { opp = grouped_pipes[i]->stream_res.opp; tg = grouped_pipes[i]->stream_res.tg; tg->funcs->get_otg_active_size(tg, &width, &height); if (opp->funcs->opp_program_dpg_dimensions) opp->funcs->opp_program_dpg_dimensions(opp, width, height); } } void dcn10_enable_timing_synchronization( struct dc *dc, int group_index, int group_size, struct pipe_ctx *grouped_pipes[]) { struct dc_context *dc_ctx = dc->ctx; struct output_pixel_processor *opp; struct timing_generator *tg; int i, width, height; DC_SYNC_INFO("Setting up OTG reset trigger\n"); for (i = 1; i < group_size; i++) { opp = grouped_pipes[i]->stream_res.opp; tg = grouped_pipes[i]->stream_res.tg; tg->funcs->get_otg_active_size(tg, &width, &height); if (opp->funcs->opp_program_dpg_dimensions) opp->funcs->opp_program_dpg_dimensions(opp, width, 2*(height) + 1); } for (i = 0; i < group_size; i++) { if (grouped_pipes[i]->stream == NULL) continue; grouped_pipes[i]->stream->vblank_synchronized = false; } for (i = 1; i < group_size; i++) grouped_pipes[i]->stream_res.tg->funcs->enable_reset_trigger( grouped_pipes[i]->stream_res.tg, grouped_pipes[0]->stream_res.tg->inst); DC_SYNC_INFO("Waiting for trigger\n"); /* Need to get only check 1 pipe for having reset as all the others are * synchronized. Look at last pipe programmed to reset. */ wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[1]->stream_res.tg); for (i = 1; i < group_size; i++) grouped_pipes[i]->stream_res.tg->funcs->disable_reset_trigger( grouped_pipes[i]->stream_res.tg); for (i = 1; i < group_size; i++) { opp = grouped_pipes[i]->stream_res.opp; tg = grouped_pipes[i]->stream_res.tg; tg->funcs->get_otg_active_size(tg, &width, &height); if (opp->funcs->opp_program_dpg_dimensions) opp->funcs->opp_program_dpg_dimensions(opp, width, height); } DC_SYNC_INFO("Sync complete\n"); } void dcn10_enable_per_frame_crtc_position_reset( struct dc *dc, int group_size, struct pipe_ctx *grouped_pipes[]) { struct dc_context *dc_ctx = dc->ctx; int i; DC_SYNC_INFO("Setting up\n"); for (i = 0; i < group_size; i++) if (grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset) grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset( grouped_pipes[i]->stream_res.tg, 0, &grouped_pipes[i]->stream->triggered_crtc_reset); DC_SYNC_INFO("Waiting for trigger\n"); for (i = 0; i < group_size; i++) wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg); DC_SYNC_INFO("Multi-display sync is complete\n"); } static void mmhub_read_vm_system_aperture_settings(struct dcn10_hubp *hubp1, struct vm_system_aperture_param *apt, struct dce_hwseq *hws) { PHYSICAL_ADDRESS_LOC physical_page_number; uint32_t logical_addr_low; uint32_t logical_addr_high; REG_GET(MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR_MSB, PHYSICAL_PAGE_NUMBER_MSB, &physical_page_number.high_part); REG_GET(MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR_LSB, PHYSICAL_PAGE_NUMBER_LSB, &physical_page_number.low_part); REG_GET(MC_VM_SYSTEM_APERTURE_LOW_ADDR, LOGICAL_ADDR, &logical_addr_low); REG_GET(MC_VM_SYSTEM_APERTURE_HIGH_ADDR, LOGICAL_ADDR, &logical_addr_high); apt->sys_default.quad_part = physical_page_number.quad_part << 12; apt->sys_low.quad_part = (int64_t)logical_addr_low << 18; apt->sys_high.quad_part = (int64_t)logical_addr_high << 18; } /* Temporary read settings, future will get values from kmd directly */ static void mmhub_read_vm_context0_settings(struct dcn10_hubp *hubp1, struct vm_context0_param *vm0, struct dce_hwseq *hws) { PHYSICAL_ADDRESS_LOC fb_base; PHYSICAL_ADDRESS_LOC fb_offset; uint32_t fb_base_value; uint32_t fb_offset_value; REG_GET(DCHUBBUB_SDPIF_FB_BASE, SDPIF_FB_BASE, &fb_base_value); REG_GET(DCHUBBUB_SDPIF_FB_OFFSET, SDPIF_FB_OFFSET, &fb_offset_value); REG_GET(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_HI32, PAGE_DIRECTORY_ENTRY_HI32, &vm0->pte_base.high_part); REG_GET(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_LO32, PAGE_DIRECTORY_ENTRY_LO32, &vm0->pte_base.low_part); REG_GET(VM_CONTEXT0_PAGE_TABLE_START_ADDR_HI32, LOGICAL_PAGE_NUMBER_HI4, &vm0->pte_start.high_part); REG_GET(VM_CONTEXT0_PAGE_TABLE_START_ADDR_LO32, LOGICAL_PAGE_NUMBER_LO32, &vm0->pte_start.low_part); REG_GET(VM_CONTEXT0_PAGE_TABLE_END_ADDR_HI32, LOGICAL_PAGE_NUMBER_HI4, &vm0->pte_end.high_part); REG_GET(VM_CONTEXT0_PAGE_TABLE_END_ADDR_LO32, LOGICAL_PAGE_NUMBER_LO32, &vm0->pte_end.low_part); REG_GET(VM_L2_PROTECTION_FAULT_DEFAULT_ADDR_HI32, PHYSICAL_PAGE_ADDR_HI4, &vm0->fault_default.high_part); REG_GET(VM_L2_PROTECTION_FAULT_DEFAULT_ADDR_LO32, PHYSICAL_PAGE_ADDR_LO32, &vm0->fault_default.low_part); /* * The values in VM_CONTEXT0_PAGE_TABLE_BASE_ADDR is in UMA space. * Therefore we need to do * DCN_VM_CONTEXT0_PAGE_TABLE_BASE_ADDR = VM_CONTEXT0_PAGE_TABLE_BASE_ADDR * - DCHUBBUB_SDPIF_FB_OFFSET + DCHUBBUB_SDPIF_FB_BASE */ fb_base.quad_part = (uint64_t)fb_base_value << 24; fb_offset.quad_part = (uint64_t)fb_offset_value << 24; vm0->pte_base.quad_part += fb_base.quad_part; vm0->pte_base.quad_part -= fb_offset.quad_part; } void dcn10_program_pte_vm(struct dce_hwseq *hws, struct hubp *hubp) { struct dcn10_hubp *hubp1 = TO_DCN10_HUBP(hubp); struct vm_system_aperture_param apt = { {{ 0 } } }; struct vm_context0_param vm0 = { { { 0 } } }; mmhub_read_vm_system_aperture_settings(hubp1, &apt, hws); mmhub_read_vm_context0_settings(hubp1, &vm0, hws); hubp->funcs->hubp_set_vm_system_aperture_settings(hubp, &apt); hubp->funcs->hubp_set_vm_context0_settings(hubp, &vm0); } static void dcn10_enable_plane( struct dc *dc, struct pipe_ctx *pipe_ctx, struct dc_state *context) { struct dce_hwseq *hws = dc->hwseq; if (dc->debug.sanity_checks) { hws->funcs.verify_allow_pstate_change_high(dc); } undo_DEGVIDCN10_253_wa(dc); power_on_plane(dc->hwseq, pipe_ctx->plane_res.hubp->inst); /* enable DCFCLK current DCHUB */ pipe_ctx->plane_res.hubp->funcs->hubp_clk_cntl(pipe_ctx->plane_res.hubp, true); /* make sure OPP_PIPE_CLOCK_EN = 1 */ pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control( pipe_ctx->stream_res.opp, true); if (dc->config.gpu_vm_support) dcn10_program_pte_vm(hws, pipe_ctx->plane_res.hubp); if (dc->debug.sanity_checks) { hws->funcs.verify_allow_pstate_change_high(dc); } if (!pipe_ctx->top_pipe && pipe_ctx->plane_state && pipe_ctx->plane_state->flip_int_enabled && pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_int) pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_int(pipe_ctx->plane_res.hubp); } void dcn10_program_gamut_remap(struct pipe_ctx *pipe_ctx) { int i = 0; struct dpp_grph_csc_adjustment adjust; memset(&adjust, 0, sizeof(adjust)); adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS; if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) { adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW; for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++) adjust.temperature_matrix[i] = pipe_ctx->stream->gamut_remap_matrix.matrix[i]; } else if (pipe_ctx->plane_state && pipe_ctx->plane_state->gamut_remap_matrix.enable_remap == true) { adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW; for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++) adjust.temperature_matrix[i] = pipe_ctx->plane_state->gamut_remap_matrix.matrix[i]; } pipe_ctx->plane_res.dpp->funcs->dpp_set_gamut_remap(pipe_ctx->plane_res.dpp, &adjust); } static bool dcn10_is_rear_mpo_fix_required(struct pipe_ctx *pipe_ctx, enum dc_color_space colorspace) { if (pipe_ctx->plane_state && pipe_ctx->plane_state->layer_index > 0 && is_rgb_cspace(colorspace)) { if (pipe_ctx->top_pipe) { struct pipe_ctx *top = pipe_ctx->top_pipe; while (top->top_pipe) top = top->top_pipe; // Traverse to top pipe_ctx if (top->plane_state && top->plane_state->layer_index == 0) return true; // Front MPO plane not hidden } } return false; } static void dcn10_set_csc_adjustment_rgb_mpo_fix(struct pipe_ctx *pipe_ctx, uint16_t *matrix) { // Override rear plane RGB bias to fix MPO brightness uint16_t rgb_bias = matrix[3]; matrix[3] = 0; matrix[7] = 0; matrix[11] = 0; pipe_ctx->plane_res.dpp->funcs->dpp_set_csc_adjustment(pipe_ctx->plane_res.dpp, matrix); matrix[3] = rgb_bias; matrix[7] = rgb_bias; matrix[11] = rgb_bias; } void dcn10_program_output_csc(struct dc *dc, struct pipe_ctx *pipe_ctx, enum dc_color_space colorspace, uint16_t *matrix, int opp_id) { if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) { if (pipe_ctx->plane_res.dpp->funcs->dpp_set_csc_adjustment != NULL) { /* MPO is broken with RGB colorspaces when OCSC matrix * brightness offset >= 0 on DCN1 due to OCSC before MPC * Blending adds offsets from front + rear to rear plane * * Fix is to set RGB bias to 0 on rear plane, top plane * black value pixels add offset instead of rear + front */ int16_t rgb_bias = matrix[3]; // matrix[3/7/11] are all the same offset value if (rgb_bias > 0 && dcn10_is_rear_mpo_fix_required(pipe_ctx, colorspace)) { dcn10_set_csc_adjustment_rgb_mpo_fix(pipe_ctx, matrix); } else { pipe_ctx->plane_res.dpp->funcs->dpp_set_csc_adjustment(pipe_ctx->plane_res.dpp, matrix); } } } else { if (pipe_ctx->plane_res.dpp->funcs->dpp_set_csc_default != NULL) pipe_ctx->plane_res.dpp->funcs->dpp_set_csc_default(pipe_ctx->plane_res.dpp, colorspace); } } static void dcn10_update_dpp(struct dpp *dpp, struct dc_plane_state *plane_state) { struct dc_bias_and_scale bns_params = {0}; // program the input csc dpp->funcs->dpp_setup(dpp, plane_state->format, EXPANSION_MODE_ZERO, plane_state->input_csc_color_matrix, plane_state->color_space, NULL); //set scale and bias registers build_prescale_params(&bns_params, plane_state); if (dpp->funcs->dpp_program_bias_and_scale) dpp->funcs->dpp_program_bias_and_scale(dpp, &bns_params); } void dcn10_update_visual_confirm_color(struct dc *dc, struct pipe_ctx *pipe_ctx, struct tg_color *color, int mpcc_id) { struct mpc *mpc = dc->res_pool->mpc; if (dc->debug.visual_confirm == VISUAL_CONFIRM_HDR) get_hdr_visual_confirm_color(pipe_ctx, color); else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE) get_surface_visual_confirm_color(pipe_ctx, color); else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SWIZZLE) get_surface_tile_visual_confirm_color(pipe_ctx, color); else color_space_to_black_color( dc, pipe_ctx->stream->output_color_space, color); if (mpc->funcs->set_bg_color) mpc->funcs->set_bg_color(mpc, color, mpcc_id); } void dcn10_update_mpcc(struct dc *dc, struct pipe_ctx *pipe_ctx) { struct hubp *hubp = pipe_ctx->plane_res.hubp; struct mpcc_blnd_cfg blnd_cfg = {{0}}; bool per_pixel_alpha = pipe_ctx->plane_state->per_pixel_alpha && pipe_ctx->bottom_pipe; int mpcc_id; struct mpcc *new_mpcc; struct mpc *mpc = dc->res_pool->mpc; struct mpc_tree *mpc_tree_params = &(pipe_ctx->stream_res.opp->mpc_tree_params); blnd_cfg.overlap_only = false; blnd_cfg.global_gain = 0xff; if (per_pixel_alpha && pipe_ctx->plane_state->global_alpha) { blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_PER_PIXEL_ALPHA_COMBINED_GLOBAL_GAIN; blnd_cfg.global_gain = pipe_ctx->plane_state->global_alpha_value; } else if (per_pixel_alpha) { blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_PER_PIXEL_ALPHA; } else { blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_GLOBAL_ALPHA; } if (pipe_ctx->plane_state->global_alpha) blnd_cfg.global_alpha = pipe_ctx->plane_state->global_alpha_value; else blnd_cfg.global_alpha = 0xff; /* DCN1.0 has output CM before MPC which seems to screw with * pre-multiplied alpha. */ blnd_cfg.pre_multiplied_alpha = is_rgb_cspace( pipe_ctx->stream->output_color_space) && per_pixel_alpha; /* * TODO: remove hack * Note: currently there is a bug in init_hw such that * on resume from hibernate, BIOS sets up MPCC0, and * we do mpcc_remove but the mpcc cannot go to idle * after remove. This cause us to pick mpcc1 here, * which causes a pstate hang for yet unknown reason. */ mpcc_id = hubp->inst; /* If there is no full update, don't need to touch MPC tree*/ if (!pipe_ctx->plane_state->update_flags.bits.full_update) { mpc->funcs->update_blending(mpc, &blnd_cfg, mpcc_id); dc->hwss.update_visual_confirm_color(dc, pipe_ctx, &blnd_cfg.black_color, mpcc_id); return; } /* check if this MPCC is already being used */ new_mpcc = mpc->funcs->get_mpcc_for_dpp(mpc_tree_params, mpcc_id); /* remove MPCC if being used */ if (new_mpcc != NULL) mpc->funcs->remove_mpcc(mpc, mpc_tree_params, new_mpcc); else if (dc->debug.sanity_checks) mpc->funcs->assert_mpcc_idle_before_connect( dc->res_pool->mpc, mpcc_id); /* Call MPC to insert new plane */ new_mpcc = mpc->funcs->insert_plane(dc->res_pool->mpc, mpc_tree_params, &blnd_cfg, NULL, NULL, hubp->inst, mpcc_id); dc->hwss.update_visual_confirm_color(dc, pipe_ctx, &blnd_cfg.black_color, mpcc_id); ASSERT(new_mpcc != NULL); hubp->opp_id = pipe_ctx->stream_res.opp->inst; hubp->mpcc_id = mpcc_id; } static void update_scaler(struct pipe_ctx *pipe_ctx) { bool per_pixel_alpha = pipe_ctx->plane_state->per_pixel_alpha && pipe_ctx->bottom_pipe; pipe_ctx->plane_res.scl_data.lb_params.alpha_en = per_pixel_alpha; pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_36BPP; /* scaler configuration */ pipe_ctx->plane_res.dpp->funcs->dpp_set_scaler( pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data); } static void dcn10_update_dchubp_dpp( struct dc *dc, struct pipe_ctx *pipe_ctx, struct dc_state *context) { struct dce_hwseq *hws = dc->hwseq; struct hubp *hubp = pipe_ctx->plane_res.hubp; struct dpp *dpp = pipe_ctx->plane_res.dpp; struct dc_plane_state *plane_state = pipe_ctx->plane_state; struct plane_size size = plane_state->plane_size; unsigned int compat_level = 0; bool should_divided_by_2 = false; /* depends on DML calculation, DPP clock value may change dynamically */ /* If request max dpp clk is lower than current dispclk, no need to * divided by 2 */ if (plane_state->update_flags.bits.full_update) { /* new calculated dispclk, dppclk are stored in * context->bw_ctx.bw.dcn.clk.dispclk_khz / dppclk_khz. current * dispclk, dppclk are from dc->clk_mgr->clks.dispclk_khz. * dcn_validate_bandwidth compute new dispclk, dppclk. * dispclk will put in use after optimize_bandwidth when * ramp_up_dispclk_with_dpp is called. * there are two places for dppclk be put in use. One location * is the same as the location as dispclk. Another is within * update_dchubp_dpp which happens between pre_bandwidth and * optimize_bandwidth. * dppclk updated within update_dchubp_dpp will cause new * clock values of dispclk and dppclk not be in use at the same * time. when clocks are decreased, this may cause dppclk is * lower than previous configuration and let pipe stuck. * for example, eDP + external dp, change resolution of DP from * 1920x1080x144hz to 1280x960x60hz. * before change: dispclk = 337889 dppclk = 337889 * change mode, dcn_validate_bandwidth calculate * dispclk = 143122 dppclk = 143122 * update_dchubp_dpp be executed before dispclk be updated, * dispclk = 337889, but dppclk use new value dispclk /2 = * 168944. this will cause pipe pstate warning issue. * solution: between pre_bandwidth and optimize_bandwidth, while * dispclk is going to be decreased, keep dppclk = dispclk **/ if (context->bw_ctx.bw.dcn.clk.dispclk_khz < dc->clk_mgr->clks.dispclk_khz) should_divided_by_2 = false; else should_divided_by_2 = context->bw_ctx.bw.dcn.clk.dppclk_khz <= dc->clk_mgr->clks.dispclk_khz / 2; dpp->funcs->dpp_dppclk_control( dpp, should_divided_by_2, true); if (dc->res_pool->dccg) dc->res_pool->dccg->funcs->update_dpp_dto( dc->res_pool->dccg, dpp->inst, pipe_ctx->plane_res.bw.dppclk_khz); else dc->clk_mgr->clks.dppclk_khz = should_divided_by_2 ? dc->clk_mgr->clks.dispclk_khz / 2 : dc->clk_mgr->clks.dispclk_khz; } /* TODO: Need input parameter to tell current DCHUB pipe tie to which OTG * VTG is within DCHUBBUB which is commond block share by each pipe HUBP. * VTG is 1:1 mapping with OTG. Each pipe HUBP will select which VTG */ if (plane_state->update_flags.bits.full_update) { hubp->funcs->hubp_vtg_sel(hubp, pipe_ctx->stream_res.tg->inst); hubp->funcs->hubp_setup( hubp, &pipe_ctx->dlg_regs, &pipe_ctx->ttu_regs, &pipe_ctx->rq_regs, &pipe_ctx->pipe_dlg_param); hubp->funcs->hubp_setup_interdependent( hubp, &pipe_ctx->dlg_regs, &pipe_ctx->ttu_regs); } size.surface_size = pipe_ctx->plane_res.scl_data.viewport; if (plane_state->update_flags.bits.full_update || plane_state->update_flags.bits.bpp_change) dcn10_update_dpp(dpp, plane_state); if (plane_state->update_flags.bits.full_update || plane_state->update_flags.bits.per_pixel_alpha_change || plane_state->update_flags.bits.global_alpha_change) hws->funcs.update_mpcc(dc, pipe_ctx); if (plane_state->update_flags.bits.full_update || plane_state->update_flags.bits.per_pixel_alpha_change || plane_state->update_flags.bits.global_alpha_change || plane_state->update_flags.bits.scaling_change || plane_state->update_flags.bits.position_change) { update_scaler(pipe_ctx); } if (plane_state->update_flags.bits.full_update || plane_state->update_flags.bits.scaling_change || plane_state->update_flags.bits.position_change) { hubp->funcs->mem_program_viewport( hubp, &pipe_ctx->plane_res.scl_data.viewport, &pipe_ctx->plane_res.scl_data.viewport_c); } if (pipe_ctx->stream->cursor_attributes.address.quad_part != 0) { dc->hwss.set_cursor_position(pipe_ctx); dc->hwss.set_cursor_attribute(pipe_ctx); if (dc->hwss.set_cursor_sdr_white_level) dc->hwss.set_cursor_sdr_white_level(pipe_ctx); } if (plane_state->update_flags.bits.full_update) { /*gamut remap*/ dc->hwss.program_gamut_remap(pipe_ctx); dc->hwss.program_output_csc(dc, pipe_ctx, pipe_ctx->stream->output_color_space, pipe_ctx->stream->csc_color_matrix.matrix, pipe_ctx->stream_res.opp->inst); } if (plane_state->update_flags.bits.full_update || plane_state->update_flags.bits.pixel_format_change || plane_state->update_flags.bits.horizontal_mirror_change || plane_state->update_flags.bits.rotation_change || plane_state->update_flags.bits.swizzle_change || plane_state->update_flags.bits.dcc_change || plane_state->update_flags.bits.bpp_change || plane_state->update_flags.bits.scaling_change || plane_state->update_flags.bits.plane_size_change) { hubp->funcs->hubp_program_surface_config( hubp, plane_state->format, &plane_state->tiling_info, &size, plane_state->rotation, &plane_state->dcc, plane_state->horizontal_mirror, compat_level); } hubp->power_gated = false; hws->funcs.update_plane_addr(dc, pipe_ctx); if (is_pipe_tree_visible(pipe_ctx)) hubp->funcs->set_blank(hubp, false); } void dcn10_blank_pixel_data( struct dc *dc, struct pipe_ctx *pipe_ctx, bool blank) { enum dc_color_space color_space; struct tg_color black_color = {0}; struct stream_resource *stream_res = &pipe_ctx->stream_res; struct dc_stream_state *stream = pipe_ctx->stream; /* program otg blank color */ color_space = stream->output_color_space; color_space_to_black_color(dc, color_space, &black_color); /* * The way 420 is packed, 2 channels carry Y component, 1 channel * alternate between Cb and Cr, so both channels need the pixel * value for Y */ if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420) black_color.color_r_cr = black_color.color_g_y; if (stream_res->tg->funcs->set_blank_color) stream_res->tg->funcs->set_blank_color( stream_res->tg, &black_color); if (!blank) { if (stream_res->tg->funcs->set_blank) stream_res->tg->funcs->set_blank(stream_res->tg, blank); if (stream_res->abm) { dc->hwss.set_pipe(pipe_ctx); stream_res->abm->funcs->set_abm_level(stream_res->abm, stream->abm_level); } } else if (blank) { dc->hwss.set_abm_immediate_disable(pipe_ctx); if (stream_res->tg->funcs->set_blank) { stream_res->tg->funcs->wait_for_state(stream_res->tg, CRTC_STATE_VBLANK); stream_res->tg->funcs->set_blank(stream_res->tg, blank); } } } void dcn10_set_hdr_multiplier(struct pipe_ctx *pipe_ctx) { struct fixed31_32 multiplier = pipe_ctx->plane_state->hdr_mult; uint32_t hw_mult = 0x1f000; // 1.0 default multiplier struct custom_float_format fmt; fmt.exponenta_bits = 6; fmt.mantissa_bits = 12; fmt.sign = true; if (!dc_fixpt_eq(multiplier, dc_fixpt_from_int(0))) // check != 0 convert_to_custom_float_format(multiplier, &fmt, &hw_mult); pipe_ctx->plane_res.dpp->funcs->dpp_set_hdr_multiplier( pipe_ctx->plane_res.dpp, hw_mult); } void dcn10_program_pipe( struct dc *dc, struct pipe_ctx *pipe_ctx, struct dc_state *context) { struct dce_hwseq *hws = dc->hwseq; if (pipe_ctx->top_pipe == NULL) { bool blank = !is_pipe_tree_visible(pipe_ctx); pipe_ctx->stream_res.tg->funcs->program_global_sync( pipe_ctx->stream_res.tg, calculate_vready_offset_for_group(pipe_ctx), pipe_ctx->pipe_dlg_param.vstartup_start, pipe_ctx->pipe_dlg_param.vupdate_offset, pipe_ctx->pipe_dlg_param.vupdate_width); pipe_ctx->stream_res.tg->funcs->set_vtg_params( pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing, true); if (hws->funcs.setup_vupdate_interrupt) hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx); hws->funcs.blank_pixel_data(dc, pipe_ctx, blank); } if (pipe_ctx->plane_state->update_flags.bits.full_update) dcn10_enable_plane(dc, pipe_ctx, context); dcn10_update_dchubp_dpp(dc, pipe_ctx, context); hws->funcs.set_hdr_multiplier(pipe_ctx); if (pipe_ctx->plane_state->update_flags.bits.full_update || pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change || pipe_ctx->plane_state->update_flags.bits.gamma_change) hws->funcs.set_input_transfer_func(dc, pipe_ctx, pipe_ctx->plane_state); /* dcn10_translate_regamma_to_hw_format takes 750us to finish * only do gamma programming for full update. * TODO: This can be further optimized/cleaned up * Always call this for now since it does memcmp inside before * doing heavy calculation and programming */ if (pipe_ctx->plane_state->update_flags.bits.full_update) hws->funcs.set_output_transfer_func(dc, pipe_ctx, pipe_ctx->stream); } void dcn10_wait_for_pending_cleared(struct dc *dc, struct dc_state *context) { struct pipe_ctx *pipe_ctx; struct timing_generator *tg; int i; for (i = 0; i < dc->res_pool->pipe_count; i++) { pipe_ctx = &context->res_ctx.pipe_ctx[i]; tg = pipe_ctx->stream_res.tg; /* * Only wait for top pipe's tg penindg bit * Also skip if pipe is disabled. */ if (pipe_ctx->top_pipe || !pipe_ctx->stream || !pipe_ctx->plane_state || !tg->funcs->is_tg_enabled(tg)) continue; /* * Wait for VBLANK then VACTIVE to ensure we get VUPDATE. * For some reason waiting for OTG_UPDATE_PENDING cleared * seems to not trigger the update right away, and if we * lock again before VUPDATE then we don't get a separated * operation. */ pipe_ctx->stream_res.tg->funcs->wait_for_state(pipe_ctx->stream_res.tg, CRTC_STATE_VBLANK); pipe_ctx->stream_res.tg->funcs->wait_for_state(pipe_ctx->stream_res.tg, CRTC_STATE_VACTIVE); } } void dcn10_post_unlock_program_front_end( struct dc *dc, struct dc_state *context) { int i; DC_LOGGER_INIT(dc->ctx->logger); for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; if (!pipe_ctx->top_pipe && !pipe_ctx->prev_odm_pipe && pipe_ctx->stream) { struct timing_generator *tg = pipe_ctx->stream_res.tg; if (context->stream_status[i].plane_count == 0) false_optc_underflow_wa(dc, pipe_ctx->stream, tg); } } for (i = 0; i < dc->res_pool->pipe_count; i++) if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable) dc->hwss.disable_plane(dc, &dc->current_state->res_ctx.pipe_ctx[i]); for (i = 0; i < dc->res_pool->pipe_count; i++) if (context->res_ctx.pipe_ctx[i].update_flags.bits.disable) { dc->hwss.optimize_bandwidth(dc, context); break; } if (dc->hwseq->wa.DEGVIDCN10_254) hubbub1_wm_change_req_wa(dc->res_pool->hubbub); } static void dcn10_stereo_hw_frame_pack_wa(struct dc *dc, struct dc_state *context) { uint8_t i; for (i = 0; i < context->stream_count; i++) { if (context->streams[i]->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING) { /* * Disable stutter */ hubbub1_allow_self_refresh_control(dc->res_pool->hubbub, false); break; } } } void dcn10_prepare_bandwidth( struct dc *dc, struct dc_state *context) { struct dce_hwseq *hws = dc->hwseq; struct hubbub *hubbub = dc->res_pool->hubbub; if (dc->debug.sanity_checks) hws->funcs.verify_allow_pstate_change_high(dc); if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) { if (context->stream_count == 0) context->bw_ctx.bw.dcn.clk.phyclk_khz = 0; dc->clk_mgr->funcs->update_clocks( dc->clk_mgr, context, false); } dc->wm_optimized_required = hubbub->funcs->program_watermarks(hubbub, &context->bw_ctx.bw.dcn.watermarks, dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000, true); dcn10_stereo_hw_frame_pack_wa(dc, context); if (dc->debug.pplib_wm_report_mode == WM_REPORT_OVERRIDE) dcn_bw_notify_pplib_of_wm_ranges(dc); if (dc->debug.sanity_checks) hws->funcs.verify_allow_pstate_change_high(dc); } void dcn10_optimize_bandwidth( struct dc *dc, struct dc_state *context) { struct dce_hwseq *hws = dc->hwseq; struct hubbub *hubbub = dc->res_pool->hubbub; if (dc->debug.sanity_checks) hws->funcs.verify_allow_pstate_change_high(dc); if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) { if (context->stream_count == 0) context->bw_ctx.bw.dcn.clk.phyclk_khz = 0; dc->clk_mgr->funcs->update_clocks( dc->clk_mgr, context, true); } hubbub->funcs->program_watermarks(hubbub, &context->bw_ctx.bw.dcn.watermarks, dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000, true); dcn10_stereo_hw_frame_pack_wa(dc, context); if (dc->debug.pplib_wm_report_mode == WM_REPORT_OVERRIDE) dcn_bw_notify_pplib_of_wm_ranges(dc); if (dc->debug.sanity_checks) hws->funcs.verify_allow_pstate_change_high(dc); } void dcn10_set_drr(struct pipe_ctx **pipe_ctx, int num_pipes, struct dc_crtc_timing_adjust adjust) { int i = 0; struct drr_params params = {0}; // DRR set trigger event mapped to OTG_TRIG_A (bit 11) for manual control flow unsigned int event_triggers = 0x800; // Note DRR trigger events are generated regardless of whether num frames met. unsigned int num_frames = 2; params.vertical_total_max = adjust.v_total_max; params.vertical_total_min = adjust.v_total_min; params.vertical_total_mid = adjust.v_total_mid; params.vertical_total_mid_frame_num = adjust.v_total_mid_frame_num; /* TODO: If multiple pipes are to be supported, you need * some GSL stuff. Static screen triggers may be programmed differently * as well. */ for (i = 0; i < num_pipes; i++) { pipe_ctx[i]->stream_res.tg->funcs->set_drr( pipe_ctx[i]->stream_res.tg, ¶ms); if (adjust.v_total_max != 0 && adjust.v_total_min != 0) pipe_ctx[i]->stream_res.tg->funcs->set_static_screen_control( pipe_ctx[i]->stream_res.tg, event_triggers, num_frames); } } void dcn10_get_position(struct pipe_ctx **pipe_ctx, int num_pipes, struct crtc_position *position) { int i = 0; /* TODO: handle pipes > 1 */ for (i = 0; i < num_pipes; i++) pipe_ctx[i]->stream_res.tg->funcs->get_position(pipe_ctx[i]->stream_res.tg, position); } void dcn10_set_static_screen_control(struct pipe_ctx **pipe_ctx, int num_pipes, const struct dc_static_screen_params *params) { unsigned int i; unsigned int triggers = 0; if (params->triggers.surface_update) triggers |= 0x80; if (params->triggers.cursor_update) triggers |= 0x2; if (params->triggers.force_trigger) triggers |= 0x1; for (i = 0; i < num_pipes; i++) pipe_ctx[i]->stream_res.tg->funcs-> set_static_screen_control(pipe_ctx[i]->stream_res.tg, triggers, params->num_frames); } static void dcn10_config_stereo_parameters( struct dc_stream_state *stream, struct crtc_stereo_flags *flags) { enum view_3d_format view_format = stream->view_format; enum dc_timing_3d_format timing_3d_format =\ stream->timing.timing_3d_format; bool non_stereo_timing = false; if (timing_3d_format == TIMING_3D_FORMAT_NONE || timing_3d_format == TIMING_3D_FORMAT_SIDE_BY_SIDE || timing_3d_format == TIMING_3D_FORMAT_TOP_AND_BOTTOM) non_stereo_timing = true; if (non_stereo_timing == false && view_format == VIEW_3D_FORMAT_FRAME_SEQUENTIAL) { flags->PROGRAM_STEREO = 1; flags->PROGRAM_POLARITY = 1; if (timing_3d_format == TIMING_3D_FORMAT_INBAND_FA || timing_3d_format == TIMING_3D_FORMAT_DP_HDMI_INBAND_FA || timing_3d_format == TIMING_3D_FORMAT_SIDEBAND_FA) { enum display_dongle_type dongle = \ stream->link->ddc->dongle_type; if (dongle == DISPLAY_DONGLE_DP_VGA_CONVERTER || dongle == DISPLAY_DONGLE_DP_DVI_CONVERTER || dongle == DISPLAY_DONGLE_DP_HDMI_CONVERTER) flags->DISABLE_STEREO_DP_SYNC = 1; } flags->RIGHT_EYE_POLARITY =\ stream->timing.flags.RIGHT_EYE_3D_POLARITY; if (timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING) flags->FRAME_PACKED = 1; } return; } void dcn10_setup_stereo(struct pipe_ctx *pipe_ctx, struct dc *dc) { struct crtc_stereo_flags flags = { 0 }; struct dc_stream_state *stream = pipe_ctx->stream; dcn10_config_stereo_parameters(stream, &flags); if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_SIDEBAND_FA) { if (!dc_set_generic_gpio_for_stereo(true, dc->ctx->gpio_service)) dc_set_generic_gpio_for_stereo(false, dc->ctx->gpio_service); } else { dc_set_generic_gpio_for_stereo(false, dc->ctx->gpio_service); } pipe_ctx->stream_res.opp->funcs->opp_program_stereo( pipe_ctx->stream_res.opp, flags.PROGRAM_STEREO == 1, &stream->timing); pipe_ctx->stream_res.tg->funcs->program_stereo( pipe_ctx->stream_res.tg, &stream->timing, &flags); return; } static struct hubp *get_hubp_by_inst(struct resource_pool *res_pool, int mpcc_inst) { int i; for (i = 0; i < res_pool->pipe_count; i++) { if (res_pool->hubps[i]->inst == mpcc_inst) return res_pool->hubps[i]; } ASSERT(false); return NULL; } void dcn10_wait_for_mpcc_disconnect( struct dc *dc, struct resource_pool *res_pool, struct pipe_ctx *pipe_ctx) { struct dce_hwseq *hws = dc->hwseq; int mpcc_inst; if (dc->debug.sanity_checks) { hws->funcs.verify_allow_pstate_change_high(dc); } if (!pipe_ctx->stream_res.opp) return; for (mpcc_inst = 0; mpcc_inst < MAX_PIPES; mpcc_inst++) { if (pipe_ctx->stream_res.opp->mpcc_disconnect_pending[mpcc_inst]) { struct hubp *hubp = get_hubp_by_inst(res_pool, mpcc_inst); if (pipe_ctx->stream_res.tg && pipe_ctx->stream_res.tg->funcs->is_tg_enabled(pipe_ctx->stream_res.tg)) res_pool->mpc->funcs->wait_for_idle(res_pool->mpc, mpcc_inst); pipe_ctx->stream_res.opp->mpcc_disconnect_pending[mpcc_inst] = false; hubp->funcs->set_blank(hubp, true); } } if (dc->debug.sanity_checks) { hws->funcs.verify_allow_pstate_change_high(dc); } } bool dcn10_dummy_display_power_gating( struct dc *dc, uint8_t controller_id, struct dc_bios *dcb, enum pipe_gating_control power_gating) { return true; } void dcn10_update_pending_status(struct pipe_ctx *pipe_ctx) { struct dc_plane_state *plane_state = pipe_ctx->plane_state; struct timing_generator *tg = pipe_ctx->stream_res.tg; bool flip_pending; struct dc *dc = plane_state->ctx->dc; if (plane_state == NULL) return; flip_pending = pipe_ctx->plane_res.hubp->funcs->hubp_is_flip_pending( pipe_ctx->plane_res.hubp); plane_state->status.is_flip_pending = plane_state->status.is_flip_pending || flip_pending; if (!flip_pending) plane_state->status.current_address = plane_state->status.requested_address; if (plane_state->status.current_address.type == PLN_ADDR_TYPE_GRPH_STEREO && tg->funcs->is_stereo_left_eye) { plane_state->status.is_right_eye = !tg->funcs->is_stereo_left_eye(pipe_ctx->stream_res.tg); } if (dc->hwseq->wa_state.disallow_self_refresh_during_multi_plane_transition_applied) { struct dce_hwseq *hwseq = dc->hwseq; struct timing_generator *tg = dc->res_pool->timing_generators[0]; unsigned int cur_frame = tg->funcs->get_frame_count(tg); if (cur_frame != hwseq->wa_state.disallow_self_refresh_during_multi_plane_transition_applied_on_frame) { struct hubbub *hubbub = dc->res_pool->hubbub; hubbub->funcs->allow_self_refresh_control(hubbub, !dc->debug.disable_stutter); hwseq->wa_state.disallow_self_refresh_during_multi_plane_transition_applied = false; } } } void dcn10_update_dchub(struct dce_hwseq *hws, struct dchub_init_data *dh_data) { struct hubbub *hubbub = hws->ctx->dc->res_pool->hubbub; /* In DCN, this programming sequence is owned by the hubbub */ hubbub->funcs->update_dchub(hubbub, dh_data); } static bool dcn10_can_pipe_disable_cursor(struct pipe_ctx *pipe_ctx) { struct pipe_ctx *test_pipe, *split_pipe; const struct scaler_data *scl_data = &pipe_ctx->plane_res.scl_data; struct rect r1 = scl_data->recout, r2, r2_half; int r1_r = r1.x + r1.width, r1_b = r1.y + r1.height, r2_r, r2_b; int cur_layer = pipe_ctx->plane_state->layer_index; /** * Disable the cursor if there's another pipe above this with a * plane that contains this pipe's viewport to prevent double cursor * and incorrect scaling artifacts. */ for (test_pipe = pipe_ctx->top_pipe; test_pipe; test_pipe = test_pipe->top_pipe) { // Skip invisible layer and pipe-split plane on same layer if (!test_pipe->plane_state || !test_pipe->plane_state->visible || test_pipe->plane_state->layer_index == cur_layer) continue; r2 = test_pipe->plane_res.scl_data.recout; r2_r = r2.x + r2.width; r2_b = r2.y + r2.height; split_pipe = test_pipe; /** * There is another half plane on same layer because of * pipe-split, merge together per same height. */ for (split_pipe = pipe_ctx->top_pipe; split_pipe; split_pipe = split_pipe->top_pipe) if (split_pipe->plane_state->layer_index == test_pipe->plane_state->layer_index) { r2_half = split_pipe->plane_res.scl_data.recout; r2.x = (r2_half.x < r2.x) ? r2_half.x : r2.x; r2.width = r2.width + r2_half.width; r2_r = r2.x + r2.width; break; } if (r1.x >= r2.x && r1.y >= r2.y && r1_r <= r2_r && r1_b <= r2_b) return true; } return false; } void dcn10_set_cursor_position(struct pipe_ctx *pipe_ctx) { struct dc_cursor_position pos_cpy = pipe_ctx->stream->cursor_position; struct hubp *hubp = pipe_ctx->plane_res.hubp; struct dpp *dpp = pipe_ctx->plane_res.dpp; struct dc_cursor_mi_param param = { .pixel_clk_khz = pipe_ctx->stream->timing.pix_clk_100hz / 10, .ref_clk_khz = pipe_ctx->stream->ctx->dc->res_pool->ref_clocks.dchub_ref_clock_inKhz, .viewport = pipe_ctx->plane_res.scl_data.viewport, .h_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.horz, .v_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.vert, .rotation = pipe_ctx->plane_state->rotation, .mirror = pipe_ctx->plane_state->horizontal_mirror }; bool pipe_split_on = (pipe_ctx->top_pipe != NULL) || (pipe_ctx->bottom_pipe != NULL); bool odm_combine_on = (pipe_ctx->next_odm_pipe != NULL) || (pipe_ctx->prev_odm_pipe != NULL); int x_plane = pipe_ctx->plane_state->dst_rect.x; int y_plane = pipe_ctx->plane_state->dst_rect.y; int x_pos = pos_cpy.x; int y_pos = pos_cpy.y; /** * DC cursor is stream space, HW cursor is plane space and drawn * as part of the framebuffer. * * Cursor position can't be negative, but hotspot can be used to * shift cursor out of the plane bounds. Hotspot must be smaller * than the cursor size. */ /** * Translate cursor from stream space to plane space. * * If the cursor is scaled then we need to scale the position * to be in the approximately correct place. We can't do anything * about the actual size being incorrect, that's a limitation of * the hardware. */ if (param.rotation == ROTATION_ANGLE_90 || param.rotation == ROTATION_ANGLE_270) { x_pos = (x_pos - x_plane) * pipe_ctx->plane_state->src_rect.height / pipe_ctx->plane_state->dst_rect.width; y_pos = (y_pos - y_plane) * pipe_ctx->plane_state->src_rect.width / pipe_ctx->plane_state->dst_rect.height; } else { x_pos = (x_pos - x_plane) * pipe_ctx->plane_state->src_rect.width / pipe_ctx->plane_state->dst_rect.width; y_pos = (y_pos - y_plane) * pipe_ctx->plane_state->src_rect.height / pipe_ctx->plane_state->dst_rect.height; } /** * If the cursor's source viewport is clipped then we need to * translate the cursor to appear in the correct position on * the screen. * * This translation isn't affected by scaling so it needs to be * done *after* we adjust the position for the scale factor. * * This is only done by opt-in for now since there are still * some usecases like tiled display that might enable the * cursor on both streams while expecting dc to clip it. */ if (pos_cpy.translate_by_source) { x_pos += pipe_ctx->plane_state->src_rect.x; y_pos += pipe_ctx->plane_state->src_rect.y; } /** * If the position is negative then we need to add to the hotspot * to shift the cursor outside the plane. */ if (x_pos < 0) { pos_cpy.x_hotspot -= x_pos; x_pos = 0; } if (y_pos < 0) { pos_cpy.y_hotspot -= y_pos; y_pos = 0; } pos_cpy.x = (uint32_t)x_pos; pos_cpy.y = (uint32_t)y_pos; if (pipe_ctx->plane_state->address.type == PLN_ADDR_TYPE_VIDEO_PROGRESSIVE) pos_cpy.enable = false; if (pos_cpy.enable && dcn10_can_pipe_disable_cursor(pipe_ctx)) pos_cpy.enable = false; // Swap axis and mirror horizontally if (param.rotation == ROTATION_ANGLE_90) { uint32_t temp_x = pos_cpy.x; pos_cpy.x = pipe_ctx->plane_res.scl_data.viewport.width - (pos_cpy.y - pipe_ctx->plane_res.scl_data.viewport.x) + pipe_ctx->plane_res.scl_data.viewport.x; pos_cpy.y = temp_x; } // Swap axis and mirror vertically else if (param.rotation == ROTATION_ANGLE_270) { uint32_t temp_y = pos_cpy.y; int viewport_height = pipe_ctx->plane_res.scl_data.viewport.height; int viewport_y = pipe_ctx->plane_res.scl_data.viewport.y; /** * Display groups that are 1xnY, have pos_cpy.x > 2 * viewport.height * For pipe split cases: * - apply offset of viewport.y to normalize pos_cpy.x * - calculate the pos_cpy.y as before * - shift pos_cpy.y back by same offset to get final value * - since we iterate through both pipes, use the lower * viewport.y for offset * For non pipe split cases, use the same calculation for * pos_cpy.y as the 180 degree rotation case below, * but use pos_cpy.x as our input because we are rotating * 270 degrees */ if (pipe_split_on || odm_combine_on) { int pos_cpy_x_offset; int other_pipe_viewport_y; if (pipe_split_on) { if (pipe_ctx->bottom_pipe) { other_pipe_viewport_y = pipe_ctx->bottom_pipe->plane_res.scl_data.viewport.y; } else { other_pipe_viewport_y = pipe_ctx->top_pipe->plane_res.scl_data.viewport.y; } } else { if (pipe_ctx->next_odm_pipe) { other_pipe_viewport_y = pipe_ctx->next_odm_pipe->plane_res.scl_data.viewport.y; } else { other_pipe_viewport_y = pipe_ctx->prev_odm_pipe->plane_res.scl_data.viewport.y; } } pos_cpy_x_offset = (viewport_y > other_pipe_viewport_y) ? other_pipe_viewport_y : viewport_y; pos_cpy.x -= pos_cpy_x_offset; if (pos_cpy.x > viewport_height) { pos_cpy.x = pos_cpy.x - viewport_height; pos_cpy.y = viewport_height - pos_cpy.x; } else { pos_cpy.y = 2 * viewport_height - pos_cpy.x; } pos_cpy.y += pos_cpy_x_offset; } else { pos_cpy.y = (2 * viewport_y) + viewport_height - pos_cpy.x; } pos_cpy.x = temp_y; } // Mirror horizontally and vertically else if (param.rotation == ROTATION_ANGLE_180) { int viewport_width = pipe_ctx->plane_res.scl_data.viewport.width; int viewport_x = pipe_ctx->plane_res.scl_data.viewport.x; if (pipe_split_on || odm_combine_on) { if (pos_cpy.x >= viewport_width + viewport_x) { pos_cpy.x = 2 * viewport_width - pos_cpy.x + 2 * viewport_x; } else { uint32_t temp_x = pos_cpy.x; pos_cpy.x = 2 * viewport_x - pos_cpy.x; if (temp_x >= viewport_x + (int)hubp->curs_attr.width || pos_cpy.x <= (int)hubp->curs_attr.width + pipe_ctx->plane_state->src_rect.x) { pos_cpy.x = temp_x + viewport_width; } } } else { pos_cpy.x = viewport_width - pos_cpy.x + 2 * viewport_x; } /** * Display groups that are 1xnY, have pos_cpy.y > viewport.height * Calculation: * delta_from_bottom = viewport.y + viewport.height - pos_cpy.y * pos_cpy.y_new = viewport.y + delta_from_bottom * Simplify it as: * pos_cpy.y = viewport.y * 2 + viewport.height - pos_cpy.y */ pos_cpy.y = (2 * pipe_ctx->plane_res.scl_data.viewport.y) + pipe_ctx->plane_res.scl_data.viewport.height - pos_cpy.y; } hubp->funcs->set_cursor_position(hubp, &pos_cpy, ¶m); dpp->funcs->set_cursor_position(dpp, &pos_cpy, ¶m, hubp->curs_attr.width, hubp->curs_attr.height); } void dcn10_set_cursor_attribute(struct pipe_ctx *pipe_ctx) { struct dc_cursor_attributes *attributes = &pipe_ctx->stream->cursor_attributes; pipe_ctx->plane_res.hubp->funcs->set_cursor_attributes( pipe_ctx->plane_res.hubp, attributes); pipe_ctx->plane_res.dpp->funcs->set_cursor_attributes( pipe_ctx->plane_res.dpp, attributes); } void dcn10_set_cursor_sdr_white_level(struct pipe_ctx *pipe_ctx) { uint32_t sdr_white_level = pipe_ctx->stream->cursor_attributes.sdr_white_level; struct fixed31_32 multiplier; struct dpp_cursor_attributes opt_attr = { 0 }; uint32_t hw_scale = 0x3c00; // 1.0 default multiplier struct custom_float_format fmt; if (!pipe_ctx->plane_res.dpp->funcs->set_optional_cursor_attributes) return; fmt.exponenta_bits = 5; fmt.mantissa_bits = 10; fmt.sign = true; if (sdr_white_level > 80) { multiplier = dc_fixpt_from_fraction(sdr_white_level, 80); convert_to_custom_float_format(multiplier, &fmt, &hw_scale); } opt_attr.scale = hw_scale; opt_attr.bias = 0; pipe_ctx->plane_res.dpp->funcs->set_optional_cursor_attributes( pipe_ctx->plane_res.dpp, &opt_attr); } /* * apply_front_porch_workaround TODO FPGA still need? * * This is a workaround for a bug that has existed since R5xx and has not been * fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive. */ static void apply_front_porch_workaround( struct dc_crtc_timing *timing) { if (timing->flags.INTERLACE == 1) { if (timing->v_front_porch < 2) timing->v_front_porch = 2; } else { if (timing->v_front_porch < 1) timing->v_front_porch = 1; } } int dcn10_get_vupdate_offset_from_vsync(struct pipe_ctx *pipe_ctx) { const struct dc_crtc_timing *dc_crtc_timing = &pipe_ctx->stream->timing; struct dc_crtc_timing patched_crtc_timing; int vesa_sync_start; int asic_blank_end; int interlace_factor; int vertical_line_start; patched_crtc_timing = *dc_crtc_timing; apply_front_porch_workaround(&patched_crtc_timing); interlace_factor = patched_crtc_timing.flags.INTERLACE ? 2 : 1; vesa_sync_start = patched_crtc_timing.v_addressable + patched_crtc_timing.v_border_bottom + patched_crtc_timing.v_front_porch; asic_blank_end = (patched_crtc_timing.v_total - vesa_sync_start - patched_crtc_timing.v_border_top) * interlace_factor; vertical_line_start = asic_blank_end - pipe_ctx->pipe_dlg_param.vstartup_start + 1; return vertical_line_start; } void dcn10_calc_vupdate_position( struct dc *dc, struct pipe_ctx *pipe_ctx, uint32_t *start_line, uint32_t *end_line) { const struct dc_crtc_timing *dc_crtc_timing = &pipe_ctx->stream->timing; int vline_int_offset_from_vupdate = pipe_ctx->stream->periodic_interrupt.lines_offset; int vupdate_offset_from_vsync = dc->hwss.get_vupdate_offset_from_vsync(pipe_ctx); int start_position; if (vline_int_offset_from_vupdate > 0) vline_int_offset_from_vupdate--; else if (vline_int_offset_from_vupdate < 0) vline_int_offset_from_vupdate++; start_position = vline_int_offset_from_vupdate + vupdate_offset_from_vsync; if (start_position >= 0) *start_line = start_position; else *start_line = dc_crtc_timing->v_total + start_position - 1; *end_line = *start_line + 2; if (*end_line >= dc_crtc_timing->v_total) *end_line = 2; } static void dcn10_cal_vline_position( struct dc *dc, struct pipe_ctx *pipe_ctx, uint32_t *start_line, uint32_t *end_line) { switch (pipe_ctx->stream->periodic_interrupt.ref_point) { case START_V_UPDATE: dcn10_calc_vupdate_position( dc, pipe_ctx, start_line, end_line); break; case START_V_SYNC: // vsync is line 0 so start_line is just the requested line offset *start_line = pipe_ctx->stream->periodic_interrupt.lines_offset; *end_line = *start_line + 2; break; default: ASSERT(0); break; } } void dcn10_setup_periodic_interrupt( struct dc *dc, struct pipe_ctx *pipe_ctx) { struct timing_generator *tg = pipe_ctx->stream_res.tg; uint32_t start_line = 0; uint32_t end_line = 0; dcn10_cal_vline_position(dc, pipe_ctx, &start_line, &end_line); tg->funcs->setup_vertical_interrupt0(tg, start_line, end_line); } void dcn10_setup_vupdate_interrupt(struct dc *dc, struct pipe_ctx *pipe_ctx) { struct timing_generator *tg = pipe_ctx->stream_res.tg; int start_line = dc->hwss.get_vupdate_offset_from_vsync(pipe_ctx); if (start_line < 0) { ASSERT(0); start_line = 0; } if (tg->funcs->setup_vertical_interrupt2) tg->funcs->setup_vertical_interrupt2(tg, start_line); } void dcn10_unblank_stream(struct pipe_ctx *pipe_ctx, struct dc_link_settings *link_settings) { struct encoder_unblank_param params = { { 0 } }; struct dc_stream_state *stream = pipe_ctx->stream; struct dc_link *link = stream->link; struct dce_hwseq *hws = link->dc->hwseq; /* only 3 items below are used by unblank */ params.timing = pipe_ctx->stream->timing; params.link_settings.link_rate = link_settings->link_rate; if (dc_is_dp_signal(pipe_ctx->stream->signal)) { if (params.timing.pixel_encoding == PIXEL_ENCODING_YCBCR420) params.timing.pix_clk_100hz /= 2; pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(pipe_ctx->stream_res.stream_enc, ¶ms); } if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) { hws->funcs.edp_backlight_control(link, true); } } void dcn10_send_immediate_sdp_message(struct pipe_ctx *pipe_ctx, const uint8_t *custom_sdp_message, unsigned int sdp_message_size) { if (dc_is_dp_signal(pipe_ctx->stream->signal)) { pipe_ctx->stream_res.stream_enc->funcs->send_immediate_sdp_message( pipe_ctx->stream_res.stream_enc, custom_sdp_message, sdp_message_size); } } enum dc_status dcn10_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping) { struct dc_state *context = dc->current_state; struct dc_clock_config clock_cfg = {0}; struct dc_clocks *current_clocks = &context->bw_ctx.bw.dcn.clk; if (!dc->clk_mgr || !dc->clk_mgr->funcs->get_clock) return DC_FAIL_UNSUPPORTED_1; dc->clk_mgr->funcs->get_clock(dc->clk_mgr, context, clock_type, &clock_cfg); if (clk_khz > clock_cfg.max_clock_khz) return DC_FAIL_CLK_EXCEED_MAX; if (clk_khz < clock_cfg.min_clock_khz) return DC_FAIL_CLK_BELOW_MIN; if (clk_khz < clock_cfg.bw_requirequired_clock_khz) return DC_FAIL_CLK_BELOW_CFG_REQUIRED; /*update internal request clock for update clock use*/ if (clock_type == DC_CLOCK_TYPE_DISPCLK) current_clocks->dispclk_khz = clk_khz; else if (clock_type == DC_CLOCK_TYPE_DPPCLK) current_clocks->dppclk_khz = clk_khz; else return DC_ERROR_UNEXPECTED; if (dc->clk_mgr->funcs->update_clocks) dc->clk_mgr->funcs->update_clocks(dc->clk_mgr, context, true); return DC_OK; } void dcn10_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg) { struct dc_state *context = dc->current_state; if (dc->clk_mgr && dc->clk_mgr->funcs->get_clock) dc->clk_mgr->funcs->get_clock(dc->clk_mgr, context, clock_type, clock_cfg); } void dcn10_get_dcc_en_bits(struct dc *dc, int *dcc_en_bits) { struct resource_pool *pool = dc->res_pool; int i; for (i = 0; i < pool->pipe_count; i++) { struct hubp *hubp = pool->hubps[i]; struct dcn_hubp_state *s = &(TO_DCN10_HUBP(hubp)->state); hubp->funcs->hubp_read_state(hubp); if (!s->blank_en) dcc_en_bits[i] = s->dcc_en ? 1 : 0; } }