/* * Copyright 2012-15 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include #include "dc_bios_types.h" #include "dcn10_stream_encoder.h" #include "reg_helper.h" #include "hw_shared.h" #define DC_LOGGER \ enc1->base.ctx->logger #define REG(reg)\ (enc1->regs->reg) #undef FN #define FN(reg_name, field_name) \ enc1->se_shift->field_name, enc1->se_mask->field_name #define VBI_LINE_0 0 #define DP_BLANK_MAX_RETRY 20 #define HDMI_CLOCK_CHANNEL_RATE_MORE_340M 340000 enum { DP_MST_UPDATE_MAX_RETRY = 50 }; #define CTX \ enc1->base.ctx void enc1_update_generic_info_packet( struct dcn10_stream_encoder *enc1, uint32_t packet_index, const struct dc_info_packet *info_packet) { uint32_t regval; /* TODOFPGA Figure out a proper number for max_retries polling for lock * use 50 for now. */ uint32_t max_retries = 50; /*we need turn on clock before programming AFMT block*/ REG_UPDATE(AFMT_CNTL, AFMT_AUDIO_CLOCK_EN, 1); if (packet_index >= 8) ASSERT(0); /* poll dig_update_lock is not locked -> asic internal signal * assume otg master lock will unlock it */ /* REG_WAIT(AFMT_VBI_PACKET_CONTROL, AFMT_GENERIC_LOCK_STATUS, 0, 10, max_retries);*/ /* check if HW reading GSP memory */ REG_WAIT(AFMT_VBI_PACKET_CONTROL, AFMT_GENERIC_CONFLICT, 0, 10, max_retries); /* HW does is not reading GSP memory not reading too long -> * something wrong. clear GPS memory access and notify? * hw SW is writing to GSP memory */ REG_UPDATE(AFMT_VBI_PACKET_CONTROL, AFMT_GENERIC_CONFLICT_CLR, 1); /* choose which generic packet to use */ regval = REG_READ(AFMT_VBI_PACKET_CONTROL); REG_UPDATE(AFMT_VBI_PACKET_CONTROL, AFMT_GENERIC_INDEX, packet_index); /* write generic packet header * (4th byte is for GENERIC0 only) */ REG_SET_4(AFMT_GENERIC_HDR, 0, AFMT_GENERIC_HB0, info_packet->hb0, AFMT_GENERIC_HB1, info_packet->hb1, AFMT_GENERIC_HB2, info_packet->hb2, AFMT_GENERIC_HB3, info_packet->hb3); /* write generic packet contents * (we never use last 4 bytes) * there are 8 (0-7) mmDIG0_AFMT_GENERIC0_x registers */ { const uint32_t *content = (const uint32_t *) &info_packet->sb[0]; REG_WRITE(AFMT_GENERIC_0, *content++); REG_WRITE(AFMT_GENERIC_1, *content++); REG_WRITE(AFMT_GENERIC_2, *content++); REG_WRITE(AFMT_GENERIC_3, *content++); REG_WRITE(AFMT_GENERIC_4, *content++); REG_WRITE(AFMT_GENERIC_5, *content++); REG_WRITE(AFMT_GENERIC_6, *content++); REG_WRITE(AFMT_GENERIC_7, *content); } switch (packet_index) { case 0: REG_UPDATE(AFMT_VBI_PACKET_CONTROL1, AFMT_GENERIC0_IMMEDIATE_UPDATE, 1); break; case 1: REG_UPDATE(AFMT_VBI_PACKET_CONTROL1, AFMT_GENERIC1_IMMEDIATE_UPDATE, 1); break; case 2: REG_UPDATE(AFMT_VBI_PACKET_CONTROL1, AFMT_GENERIC2_IMMEDIATE_UPDATE, 1); break; case 3: REG_UPDATE(AFMT_VBI_PACKET_CONTROL1, AFMT_GENERIC3_IMMEDIATE_UPDATE, 1); break; case 4: REG_UPDATE(AFMT_VBI_PACKET_CONTROL1, AFMT_GENERIC4_IMMEDIATE_UPDATE, 1); break; case 5: REG_UPDATE(AFMT_VBI_PACKET_CONTROL1, AFMT_GENERIC5_IMMEDIATE_UPDATE, 1); break; case 6: REG_UPDATE(AFMT_VBI_PACKET_CONTROL1, AFMT_GENERIC6_IMMEDIATE_UPDATE, 1); break; case 7: REG_UPDATE(AFMT_VBI_PACKET_CONTROL1, AFMT_GENERIC7_IMMEDIATE_UPDATE, 1); break; default: break; } } static void enc1_update_hdmi_info_packet( struct dcn10_stream_encoder *enc1, uint32_t packet_index, const struct dc_info_packet *info_packet) { uint32_t cont, send, line; if (info_packet->valid) { enc1_update_generic_info_packet( enc1, packet_index, info_packet); /* enable transmission of packet(s) - * packet transmission begins on the next frame */ cont = 1; /* send packet(s) every frame */ send = 1; /* select line number to send packets on */ line = 2; } else { cont = 0; send = 0; line = 0; } /* choose which generic packet control to use */ switch (packet_index) { case 0: REG_UPDATE_3(HDMI_GENERIC_PACKET_CONTROL0, HDMI_GENERIC0_CONT, cont, HDMI_GENERIC0_SEND, send, HDMI_GENERIC0_LINE, line); break; case 1: REG_UPDATE_3(HDMI_GENERIC_PACKET_CONTROL0, HDMI_GENERIC1_CONT, cont, HDMI_GENERIC1_SEND, send, HDMI_GENERIC1_LINE, line); break; case 2: REG_UPDATE_3(HDMI_GENERIC_PACKET_CONTROL1, HDMI_GENERIC0_CONT, cont, HDMI_GENERIC0_SEND, send, HDMI_GENERIC0_LINE, line); break; case 3: REG_UPDATE_3(HDMI_GENERIC_PACKET_CONTROL1, HDMI_GENERIC1_CONT, cont, HDMI_GENERIC1_SEND, send, HDMI_GENERIC1_LINE, line); break; case 4: REG_UPDATE_3(HDMI_GENERIC_PACKET_CONTROL2, HDMI_GENERIC0_CONT, cont, HDMI_GENERIC0_SEND, send, HDMI_GENERIC0_LINE, line); break; case 5: REG_UPDATE_3(HDMI_GENERIC_PACKET_CONTROL2, HDMI_GENERIC1_CONT, cont, HDMI_GENERIC1_SEND, send, HDMI_GENERIC1_LINE, line); break; case 6: REG_UPDATE_3(HDMI_GENERIC_PACKET_CONTROL3, HDMI_GENERIC0_CONT, cont, HDMI_GENERIC0_SEND, send, HDMI_GENERIC0_LINE, line); break; case 7: REG_UPDATE_3(HDMI_GENERIC_PACKET_CONTROL3, HDMI_GENERIC1_CONT, cont, HDMI_GENERIC1_SEND, send, HDMI_GENERIC1_LINE, line); break; default: /* invalid HW packet index */ DC_LOG_WARNING( "Invalid HW packet index: %s()\n", __func__); return; } } /* setup stream encoder in dp mode */ void enc1_stream_encoder_dp_set_stream_attribute( struct stream_encoder *enc, struct dc_crtc_timing *crtc_timing, enum dc_color_space output_color_space, bool use_vsc_sdp_for_colorimetry, uint32_t enable_sdp_splitting) { uint32_t h_active_start; uint32_t v_active_start; uint32_t misc0 = 0; uint32_t misc1 = 0; uint32_t h_blank; uint32_t h_back_porch; uint8_t synchronous_clock = 0; /* asynchronous mode */ uint8_t colorimetry_bpc; uint8_t dynamic_range_rgb = 0; /*full range*/ uint8_t dynamic_range_ycbcr = 1; /*bt709*/ uint8_t dp_pixel_encoding = 0; uint8_t dp_component_depth = 0; struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc); struct dc_crtc_timing hw_crtc_timing = *crtc_timing; if (hw_crtc_timing.flags.INTERLACE) { /*the input timing is in VESA spec format with Interlace flag =1*/ hw_crtc_timing.v_total /= 2; hw_crtc_timing.v_border_top /= 2; hw_crtc_timing.v_addressable /= 2; hw_crtc_timing.v_border_bottom /= 2; hw_crtc_timing.v_front_porch /= 2; hw_crtc_timing.v_sync_width /= 2; } /* set pixel encoding */ switch (hw_crtc_timing.pixel_encoding) { case PIXEL_ENCODING_YCBCR422: dp_pixel_encoding = DP_PIXEL_ENCODING_TYPE_YCBCR422; break; case PIXEL_ENCODING_YCBCR444: dp_pixel_encoding = DP_PIXEL_ENCODING_TYPE_YCBCR444; if (hw_crtc_timing.flags.Y_ONLY) if (hw_crtc_timing.display_color_depth != COLOR_DEPTH_666) /* HW testing only, no use case yet. * Color depth of Y-only could be * 8, 10, 12, 16 bits */ dp_pixel_encoding = DP_PIXEL_ENCODING_TYPE_Y_ONLY; /* Note: DP_MSA_MISC1 bit 7 is the indicator * of Y-only mode. * This bit is set in HW if register * DP_PIXEL_ENCODING is programmed to 0x4 */ break; case PIXEL_ENCODING_YCBCR420: dp_pixel_encoding = DP_PIXEL_ENCODING_TYPE_YCBCR420; break; default: dp_pixel_encoding = DP_PIXEL_ENCODING_TYPE_RGB444; break; } misc1 = REG_READ(DP_MSA_MISC); /* For YCbCr420 and BT2020 Colorimetry Formats, VSC SDP shall be used. * When MISC1, bit 6, is Set to 1, a Source device uses a VSC SDP to indicate the * Pixel Encoding/Colorimetry Format and that a Sink device shall ignore MISC1, bit 7, * and MISC0, bits 7:1 (MISC1, bit 7, and MISC0, bits 7:1, become "don't care"). */ if (use_vsc_sdp_for_colorimetry) misc1 = misc1 | 0x40; else misc1 = misc1 & ~0x40; /* set color depth */ switch (hw_crtc_timing.display_color_depth) { case COLOR_DEPTH_666: dp_component_depth = DP_COMPONENT_PIXEL_DEPTH_6BPC; break; case COLOR_DEPTH_888: dp_component_depth = DP_COMPONENT_PIXEL_DEPTH_8BPC; break; case COLOR_DEPTH_101010: dp_component_depth = DP_COMPONENT_PIXEL_DEPTH_10BPC; break; case COLOR_DEPTH_121212: dp_component_depth = DP_COMPONENT_PIXEL_DEPTH_12BPC; break; case COLOR_DEPTH_161616: dp_component_depth = DP_COMPONENT_PIXEL_DEPTH_16BPC; break; default: dp_component_depth = DP_COMPONENT_PIXEL_DEPTH_6BPC; break; } /* Set DP pixel encoding and component depth */ REG_UPDATE_2(DP_PIXEL_FORMAT, DP_PIXEL_ENCODING, dp_pixel_encoding, DP_COMPONENT_DEPTH, dp_component_depth); /* set dynamic range and YCbCr range */ switch (hw_crtc_timing.display_color_depth) { case COLOR_DEPTH_666: colorimetry_bpc = 0; break; case COLOR_DEPTH_888: colorimetry_bpc = 1; break; case COLOR_DEPTH_101010: colorimetry_bpc = 2; break; case COLOR_DEPTH_121212: colorimetry_bpc = 3; break; default: colorimetry_bpc = 0; break; } misc0 = misc0 | synchronous_clock; misc0 = colorimetry_bpc << 5; switch (output_color_space) { case COLOR_SPACE_SRGB: misc1 = misc1 & ~0x80; /* bit7 = 0*/ dynamic_range_rgb = 0; /*full range*/ break; case COLOR_SPACE_SRGB_LIMITED: misc0 = misc0 | 0x8; /* bit3=1 */ misc1 = misc1 & ~0x80; /* bit7 = 0*/ dynamic_range_rgb = 1; /*limited range*/ break; case COLOR_SPACE_YCBCR601: case COLOR_SPACE_YCBCR601_LIMITED: misc0 = misc0 | 0x8; /* bit3=1, bit4=0 */ misc1 = misc1 & ~0x80; /* bit7 = 0*/ dynamic_range_ycbcr = 0; /*bt601*/ if (hw_crtc_timing.pixel_encoding == PIXEL_ENCODING_YCBCR422) misc0 = misc0 | 0x2; /* bit2=0, bit1=1 */ else if (hw_crtc_timing.pixel_encoding == PIXEL_ENCODING_YCBCR444) misc0 = misc0 | 0x4; /* bit2=1, bit1=0 */ break; case COLOR_SPACE_YCBCR709: case COLOR_SPACE_YCBCR709_LIMITED: misc0 = misc0 | 0x18; /* bit3=1, bit4=1 */ misc1 = misc1 & ~0x80; /* bit7 = 0*/ dynamic_range_ycbcr = 1; /*bt709*/ if (hw_crtc_timing.pixel_encoding == PIXEL_ENCODING_YCBCR422) misc0 = misc0 | 0x2; /* bit2=0, bit1=1 */ else if (hw_crtc_timing.pixel_encoding == PIXEL_ENCODING_YCBCR444) misc0 = misc0 | 0x4; /* bit2=1, bit1=0 */ break; case COLOR_SPACE_2020_RGB_LIMITEDRANGE: dynamic_range_rgb = 1; /*limited range*/ break; case COLOR_SPACE_2020_RGB_FULLRANGE: case COLOR_SPACE_2020_YCBCR: case COLOR_SPACE_XR_RGB: case COLOR_SPACE_MSREF_SCRGB: case COLOR_SPACE_ADOBERGB: case COLOR_SPACE_DCIP3: case COLOR_SPACE_XV_YCC_709: case COLOR_SPACE_XV_YCC_601: case COLOR_SPACE_DISPLAYNATIVE: case COLOR_SPACE_DOLBYVISION: case COLOR_SPACE_APPCTRL: case COLOR_SPACE_CUSTOMPOINTS: case COLOR_SPACE_UNKNOWN: case COLOR_SPACE_YCBCR709_BLACK: /* do nothing */ break; } REG_SET(DP_MSA_COLORIMETRY, 0, DP_MSA_MISC0, misc0); REG_WRITE(DP_MSA_MISC, misc1); /* MSA_MISC1 */ /* dcn new register * dc_crtc_timing is vesa dmt struct. data from edid */ REG_SET_2(DP_MSA_TIMING_PARAM1, 0, DP_MSA_HTOTAL, hw_crtc_timing.h_total, DP_MSA_VTOTAL, hw_crtc_timing.v_total); /* calculate from vesa timing parameters * h_active_start related to leading edge of sync */ h_blank = hw_crtc_timing.h_total - hw_crtc_timing.h_border_left - hw_crtc_timing.h_addressable - hw_crtc_timing.h_border_right; h_back_porch = h_blank - hw_crtc_timing.h_front_porch - hw_crtc_timing.h_sync_width; /* start at beginning of left border */ h_active_start = hw_crtc_timing.h_sync_width + h_back_porch; v_active_start = hw_crtc_timing.v_total - hw_crtc_timing.v_border_top - hw_crtc_timing.v_addressable - hw_crtc_timing.v_border_bottom - hw_crtc_timing.v_front_porch; /* start at beginning of left border */ REG_SET_2(DP_MSA_TIMING_PARAM2, 0, DP_MSA_HSTART, h_active_start, DP_MSA_VSTART, v_active_start); REG_SET_4(DP_MSA_TIMING_PARAM3, 0, DP_MSA_HSYNCWIDTH, hw_crtc_timing.h_sync_width, DP_MSA_HSYNCPOLARITY, !hw_crtc_timing.flags.HSYNC_POSITIVE_POLARITY, DP_MSA_VSYNCWIDTH, hw_crtc_timing.v_sync_width, DP_MSA_VSYNCPOLARITY, !hw_crtc_timing.flags.VSYNC_POSITIVE_POLARITY); /* HWDITH include border or overscan */ REG_SET_2(DP_MSA_TIMING_PARAM4, 0, DP_MSA_HWIDTH, hw_crtc_timing.h_border_left + hw_crtc_timing.h_addressable + hw_crtc_timing.h_border_right, DP_MSA_VHEIGHT, hw_crtc_timing.v_border_top + hw_crtc_timing.v_addressable + hw_crtc_timing.v_border_bottom); } void enc1_stream_encoder_set_stream_attribute_helper( struct dcn10_stream_encoder *enc1, struct dc_crtc_timing *crtc_timing) { switch (crtc_timing->pixel_encoding) { case PIXEL_ENCODING_YCBCR422: REG_UPDATE(DIG_FE_CNTL, TMDS_PIXEL_ENCODING, 1); break; default: REG_UPDATE(DIG_FE_CNTL, TMDS_PIXEL_ENCODING, 0); break; } REG_UPDATE(DIG_FE_CNTL, TMDS_COLOR_FORMAT, 0); } /* setup stream encoder in hdmi mode */ void enc1_stream_encoder_hdmi_set_stream_attribute( struct stream_encoder *enc, struct dc_crtc_timing *crtc_timing, int actual_pix_clk_khz, bool enable_audio) { struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc); struct bp_encoder_control cntl = {0}; cntl.action = ENCODER_CONTROL_SETUP; cntl.engine_id = enc1->base.id; cntl.signal = SIGNAL_TYPE_HDMI_TYPE_A; cntl.enable_dp_audio = enable_audio; cntl.pixel_clock = actual_pix_clk_khz; cntl.lanes_number = LANE_COUNT_FOUR; if (enc1->base.bp->funcs->encoder_control( enc1->base.bp, &cntl) != BP_RESULT_OK) return; enc1_stream_encoder_set_stream_attribute_helper(enc1, crtc_timing); /* setup HDMI engine */ REG_UPDATE_6(HDMI_CONTROL, HDMI_PACKET_GEN_VERSION, 1, HDMI_KEEPOUT_MODE, 1, HDMI_DEEP_COLOR_ENABLE, 0, HDMI_DATA_SCRAMBLE_EN, 0, HDMI_NO_EXTRA_NULL_PACKET_FILLED, 1, HDMI_CLOCK_CHANNEL_RATE, 0); switch (crtc_timing->display_color_depth) { case COLOR_DEPTH_888: REG_UPDATE(HDMI_CONTROL, HDMI_DEEP_COLOR_DEPTH, 0); DC_LOG_DEBUG("HDMI source set to 24BPP deep color depth\n"); break; case COLOR_DEPTH_101010: if (crtc_timing->pixel_encoding == PIXEL_ENCODING_YCBCR422) { REG_UPDATE_2(HDMI_CONTROL, HDMI_DEEP_COLOR_DEPTH, 1, HDMI_DEEP_COLOR_ENABLE, 0); DC_LOG_DEBUG("HDMI source 30BPP deep color depth" \ "disabled for YCBCR422 pixel encoding\n"); } else { REG_UPDATE_2(HDMI_CONTROL, HDMI_DEEP_COLOR_DEPTH, 1, HDMI_DEEP_COLOR_ENABLE, 1); DC_LOG_DEBUG("HDMI source 30BPP deep color depth" \ "enabled for YCBCR422 non-pixel encoding\n"); } break; case COLOR_DEPTH_121212: if (crtc_timing->pixel_encoding == PIXEL_ENCODING_YCBCR422) { REG_UPDATE_2(HDMI_CONTROL, HDMI_DEEP_COLOR_DEPTH, 2, HDMI_DEEP_COLOR_ENABLE, 0); DC_LOG_DEBUG("HDMI source 36BPP deep color depth" \ "disabled for YCBCR422 pixel encoding\n"); } else { REG_UPDATE_2(HDMI_CONTROL, HDMI_DEEP_COLOR_DEPTH, 2, HDMI_DEEP_COLOR_ENABLE, 1); DC_LOG_DEBUG("HDMI source 36BPP deep color depth" \ "enabled for non-pixel YCBCR422 encoding\n"); } break; case COLOR_DEPTH_161616: REG_UPDATE_2(HDMI_CONTROL, HDMI_DEEP_COLOR_DEPTH, 3, HDMI_DEEP_COLOR_ENABLE, 1); DC_LOG_DEBUG("HDMI source deep color depth enabled in" \ "reserved mode\n"); break; default: break; } if (actual_pix_clk_khz >= HDMI_CLOCK_CHANNEL_RATE_MORE_340M) { /* enable HDMI data scrambler * HDMI_CLOCK_CHANNEL_RATE_MORE_340M * Clock channel frequency is 1/4 of character rate. */ REG_UPDATE_2(HDMI_CONTROL, HDMI_DATA_SCRAMBLE_EN, 1, HDMI_CLOCK_CHANNEL_RATE, 1); } else if (crtc_timing->flags.LTE_340MCSC_SCRAMBLE) { /* TODO: New feature for DCE11, still need to implement */ /* enable HDMI data scrambler * HDMI_CLOCK_CHANNEL_FREQ_EQUAL_TO_CHAR_RATE * Clock channel frequency is the same * as character rate */ REG_UPDATE_2(HDMI_CONTROL, HDMI_DATA_SCRAMBLE_EN, 1, HDMI_CLOCK_CHANNEL_RATE, 0); } REG_UPDATE_3(HDMI_VBI_PACKET_CONTROL, HDMI_GC_CONT, 1, HDMI_GC_SEND, 1, HDMI_NULL_SEND, 1); /* following belongs to audio */ REG_UPDATE(HDMI_INFOFRAME_CONTROL0, HDMI_AUDIO_INFO_SEND, 1); REG_UPDATE(AFMT_INFOFRAME_CONTROL0, AFMT_AUDIO_INFO_UPDATE, 1); REG_UPDATE(HDMI_INFOFRAME_CONTROL1, HDMI_AUDIO_INFO_LINE, VBI_LINE_0 + 2); REG_UPDATE(HDMI_GC, HDMI_GC_AVMUTE, 0); } /* setup stream encoder in dvi mode */ void enc1_stream_encoder_dvi_set_stream_attribute( struct stream_encoder *enc, struct dc_crtc_timing *crtc_timing, bool is_dual_link) { struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc); struct bp_encoder_control cntl = {0}; cntl.action = ENCODER_CONTROL_SETUP; cntl.engine_id = enc1->base.id; cntl.signal = is_dual_link ? SIGNAL_TYPE_DVI_DUAL_LINK : SIGNAL_TYPE_DVI_SINGLE_LINK; cntl.enable_dp_audio = false; cntl.pixel_clock = crtc_timing->pix_clk_100hz / 10; cntl.lanes_number = (is_dual_link) ? LANE_COUNT_EIGHT : LANE_COUNT_FOUR; if (enc1->base.bp->funcs->encoder_control( enc1->base.bp, &cntl) != BP_RESULT_OK) return; ASSERT(crtc_timing->pixel_encoding == PIXEL_ENCODING_RGB); ASSERT(crtc_timing->display_color_depth == COLOR_DEPTH_888); enc1_stream_encoder_set_stream_attribute_helper(enc1, crtc_timing); } void enc1_stream_encoder_set_throttled_vcp_size( struct stream_encoder *enc, struct fixed31_32 avg_time_slots_per_mtp) { struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc); uint32_t x = dc_fixpt_floor( avg_time_slots_per_mtp); uint32_t y = dc_fixpt_ceil( dc_fixpt_shl( dc_fixpt_sub_int( avg_time_slots_per_mtp, x), 26)); REG_SET_2(DP_MSE_RATE_CNTL, 0, DP_MSE_RATE_X, x, DP_MSE_RATE_Y, y); /* wait for update to be completed on the link */ /* i.e. DP_MSE_RATE_UPDATE_PENDING field (read only) */ /* is reset to 0 (not pending) */ REG_WAIT(DP_MSE_RATE_UPDATE, DP_MSE_RATE_UPDATE_PENDING, 0, 10, DP_MST_UPDATE_MAX_RETRY); } static void enc1_stream_encoder_update_hdmi_info_packets( struct stream_encoder *enc, const struct encoder_info_frame *info_frame) { struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc); /* for bring up, disable dp double TODO */ REG_UPDATE(HDMI_DB_CONTROL, HDMI_DB_DISABLE, 1); enc1_update_hdmi_info_packet(enc1, 0, &info_frame->avi); enc1_update_hdmi_info_packet(enc1, 1, &info_frame->vendor); enc1_update_hdmi_info_packet(enc1, 2, &info_frame->gamut); enc1_update_hdmi_info_packet(enc1, 3, &info_frame->spd); enc1_update_hdmi_info_packet(enc1, 4, &info_frame->hdrsmd); } static void enc1_stream_encoder_stop_hdmi_info_packets( struct stream_encoder *enc) { struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc); /* stop generic packets 0 & 1 on HDMI */ REG_SET_6(HDMI_GENERIC_PACKET_CONTROL0, 0, HDMI_GENERIC1_CONT, 0, HDMI_GENERIC1_LINE, 0, HDMI_GENERIC1_SEND, 0, HDMI_GENERIC0_CONT, 0, HDMI_GENERIC0_LINE, 0, HDMI_GENERIC0_SEND, 0); /* stop generic packets 2 & 3 on HDMI */ REG_SET_6(HDMI_GENERIC_PACKET_CONTROL1, 0, HDMI_GENERIC0_CONT, 0, HDMI_GENERIC0_LINE, 0, HDMI_GENERIC0_SEND, 0, HDMI_GENERIC1_CONT, 0, HDMI_GENERIC1_LINE, 0, HDMI_GENERIC1_SEND, 0); /* stop generic packets 2 & 3 on HDMI */ REG_SET_6(HDMI_GENERIC_PACKET_CONTROL2, 0, HDMI_GENERIC0_CONT, 0, HDMI_GENERIC0_LINE, 0, HDMI_GENERIC0_SEND, 0, HDMI_GENERIC1_CONT, 0, HDMI_GENERIC1_LINE, 0, HDMI_GENERIC1_SEND, 0); REG_SET_6(HDMI_GENERIC_PACKET_CONTROL3, 0, HDMI_GENERIC0_CONT, 0, HDMI_GENERIC0_LINE, 0, HDMI_GENERIC0_SEND, 0, HDMI_GENERIC1_CONT, 0, HDMI_GENERIC1_LINE, 0, HDMI_GENERIC1_SEND, 0); } void enc1_stream_encoder_update_dp_info_packets( struct stream_encoder *enc, const struct encoder_info_frame *info_frame) { struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc); uint32_t value = 0; if (info_frame->vsc.valid) enc1_update_generic_info_packet( enc1, 0, /* packetIndex */ &info_frame->vsc); if (info_frame->spd.valid) enc1_update_generic_info_packet( enc1, 2, /* packetIndex */ &info_frame->spd); if (info_frame->hdrsmd.valid) enc1_update_generic_info_packet( enc1, 3, /* packetIndex */ &info_frame->hdrsmd); /* packetIndex 4 is used for send immediate sdp message, and please * use other packetIndex (such as 5,6) for other info packet */ /* enable/disable transmission of packet(s). * If enabled, packet transmission begins on the next frame */ REG_UPDATE(DP_SEC_CNTL, DP_SEC_GSP0_ENABLE, info_frame->vsc.valid); REG_UPDATE(DP_SEC_CNTL, DP_SEC_GSP2_ENABLE, info_frame->spd.valid); REG_UPDATE(DP_SEC_CNTL, DP_SEC_GSP3_ENABLE, info_frame->hdrsmd.valid); /* This bit is the master enable bit. * When enabling secondary stream engine, * this master bit must also be set. * This register shared with audio info frame. * Therefore we need to enable master bit * if at least on of the fields is not 0 */ value = REG_READ(DP_SEC_CNTL); if (value) REG_UPDATE(DP_SEC_CNTL, DP_SEC_STREAM_ENABLE, 1); } void enc1_stream_encoder_send_immediate_sdp_message( struct stream_encoder *enc, const uint8_t *custom_sdp_message, unsigned int sdp_message_size) { struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc); uint32_t value = 0; /* TODOFPGA Figure out a proper number for max_retries polling for lock * use 50 for now. */ uint32_t max_retries = 50; /* check if GSP4 is transmitted */ REG_WAIT(DP_SEC_CNTL2, DP_SEC_GSP4_SEND_PENDING, 0, 10, max_retries); /* disable GSP4 transmitting */ REG_UPDATE(DP_SEC_CNTL2, DP_SEC_GSP4_SEND, 0); /* transmit GSP4 at the earliest time in a frame */ REG_UPDATE(DP_SEC_CNTL2, DP_SEC_GSP4_SEND_ANY_LINE, 1); /*we need turn on clock before programming AFMT block*/ REG_UPDATE(AFMT_CNTL, AFMT_AUDIO_CLOCK_EN, 1); /* check if HW reading GSP memory */ REG_WAIT(AFMT_VBI_PACKET_CONTROL, AFMT_GENERIC_CONFLICT, 0, 10, max_retries); /* HW does is not reading GSP memory not reading too long -> * something wrong. clear GPS memory access and notify? * hw SW is writing to GSP memory */ REG_UPDATE(AFMT_VBI_PACKET_CONTROL, AFMT_GENERIC_CONFLICT_CLR, 1); /* use generic packet 4 for immediate sdp message */ REG_UPDATE(AFMT_VBI_PACKET_CONTROL, AFMT_GENERIC_INDEX, 4); /* write generic packet header * (4th byte is for GENERIC0 only) */ REG_SET_4(AFMT_GENERIC_HDR, 0, AFMT_GENERIC_HB0, custom_sdp_message[0], AFMT_GENERIC_HB1, custom_sdp_message[1], AFMT_GENERIC_HB2, custom_sdp_message[2], AFMT_GENERIC_HB3, custom_sdp_message[3]); /* write generic packet contents * (we never use last 4 bytes) * there are 8 (0-7) mmDIG0_AFMT_GENERIC0_x registers */ { const uint32_t *content = (const uint32_t *) &custom_sdp_message[4]; REG_WRITE(AFMT_GENERIC_0, *content++); REG_WRITE(AFMT_GENERIC_1, *content++); REG_WRITE(AFMT_GENERIC_2, *content++); REG_WRITE(AFMT_GENERIC_3, *content++); REG_WRITE(AFMT_GENERIC_4, *content++); REG_WRITE(AFMT_GENERIC_5, *content++); REG_WRITE(AFMT_GENERIC_6, *content++); REG_WRITE(AFMT_GENERIC_7, *content); } /* check whether GENERIC4 registers double buffer update in immediate mode * is pending */ REG_WAIT(AFMT_VBI_PACKET_CONTROL1, AFMT_GENERIC4_IMMEDIATE_UPDATE_PENDING, 0, 10, max_retries); /* atomically update double-buffered GENERIC4 registers in immediate mode * (update immediately) */ REG_UPDATE(AFMT_VBI_PACKET_CONTROL1, AFMT_GENERIC4_IMMEDIATE_UPDATE, 1); /* enable GSP4 transmitting */ REG_UPDATE(DP_SEC_CNTL2, DP_SEC_GSP4_SEND, 1); /* This bit is the master enable bit. * When enabling secondary stream engine, * this master bit must also be set. * This register shared with audio info frame. * Therefore we need to enable master bit * if at least on of the fields is not 0 */ value = REG_READ(DP_SEC_CNTL); if (value) REG_UPDATE(DP_SEC_CNTL, DP_SEC_STREAM_ENABLE, 1); } void enc1_stream_encoder_stop_dp_info_packets( struct stream_encoder *enc) { /* stop generic packets on DP */ struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc); uint32_t value = 0; REG_SET_10(DP_SEC_CNTL, 0, DP_SEC_GSP0_ENABLE, 0, DP_SEC_GSP1_ENABLE, 0, DP_SEC_GSP2_ENABLE, 0, DP_SEC_GSP3_ENABLE, 0, DP_SEC_GSP4_ENABLE, 0, DP_SEC_GSP5_ENABLE, 0, DP_SEC_GSP6_ENABLE, 0, DP_SEC_GSP7_ENABLE, 0, DP_SEC_MPG_ENABLE, 0, DP_SEC_STREAM_ENABLE, 0); /* this register shared with audio info frame. * therefore we need to keep master enabled * if at least one of the fields is not 0 */ value = REG_READ(DP_SEC_CNTL); if (value) REG_UPDATE(DP_SEC_CNTL, DP_SEC_STREAM_ENABLE, 1); } void enc1_stream_encoder_dp_blank( struct stream_encoder *enc) { struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc); uint32_t reg1 = 0; uint32_t max_retries = DP_BLANK_MAX_RETRY * 10; /* Note: For CZ, we are changing driver default to disable * stream deferred to next VBLANK. If results are positive, we * will make the same change to all DCE versions. There are a * handful of panels that cannot handle disable stream at * HBLANK and will result in a white line flash across the * screen on stream disable. */ REG_GET(DP_VID_STREAM_CNTL, DP_VID_STREAM_ENABLE, ®1); if ((reg1 & 0x1) == 0) /*stream not enabled*/ return; /* Specify the video stream disable point * (2 = start of the next vertical blank) */ REG_UPDATE(DP_VID_STREAM_CNTL, DP_VID_STREAM_DIS_DEFER, 2); /* Larger delay to wait until VBLANK - use max retry of * 10us*10200=102ms. This covers 100.0ms of minimum 10 Hz mode + * a little more because we may not trust delay accuracy. */ max_retries = DP_BLANK_MAX_RETRY * 501; /* disable DP stream */ REG_UPDATE(DP_VID_STREAM_CNTL, DP_VID_STREAM_ENABLE, 0); /* the encoder stops sending the video stream * at the start of the vertical blanking. * Poll for DP_VID_STREAM_STATUS == 0 */ REG_WAIT(DP_VID_STREAM_CNTL, DP_VID_STREAM_STATUS, 0, 10, max_retries); /* Tell the DP encoder to ignore timing from CRTC, must be done after * the polling. If we set DP_STEER_FIFO_RESET before DP stream blank is * complete, stream status will be stuck in video stream enabled state, * i.e. DP_VID_STREAM_STATUS stuck at 1. */ REG_UPDATE(DP_STEER_FIFO, DP_STEER_FIFO_RESET, true); } /* output video stream to link encoder */ void enc1_stream_encoder_dp_unblank( struct stream_encoder *enc, const struct encoder_unblank_param *param) { struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc); if (param->link_settings.link_rate != LINK_RATE_UNKNOWN) { uint32_t n_vid = 0x8000; uint32_t m_vid; uint32_t n_multiply = 0; uint64_t m_vid_l = n_vid; /* YCbCr 4:2:0 : Computed VID_M will be 2X the input rate */ if (param->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420) { /*this param->pixel_clk_khz is half of 444 rate for 420 already*/ n_multiply = 1; } /* M / N = Fstream / Flink * m_vid / n_vid = pixel rate / link rate */ m_vid_l *= param->timing.pix_clk_100hz / 10; m_vid_l = div_u64(m_vid_l, param->link_settings.link_rate * LINK_RATE_REF_FREQ_IN_KHZ); m_vid = (uint32_t) m_vid_l; /* enable auto measurement */ REG_UPDATE(DP_VID_TIMING, DP_VID_M_N_GEN_EN, 0); /* auto measurement need 1 full 0x8000 symbol cycle to kick in, * therefore program initial value for Mvid and Nvid */ REG_UPDATE(DP_VID_N, DP_VID_N, n_vid); REG_UPDATE(DP_VID_M, DP_VID_M, m_vid); REG_UPDATE_2(DP_VID_TIMING, DP_VID_M_N_GEN_EN, 1, DP_VID_N_MUL, n_multiply); } /* set DIG_START to 0x1 to resync FIFO */ REG_UPDATE(DIG_FE_CNTL, DIG_START, 1); /* switch DP encoder to CRTC data */ REG_UPDATE(DP_STEER_FIFO, DP_STEER_FIFO_RESET, 0); /* wait 100us for DIG/DP logic to prime * (i.e. a few video lines) */ udelay(100); /* the hardware would start sending video at the start of the next DP * frame (i.e. rising edge of the vblank). * NOTE: We used to program DP_VID_STREAM_DIS_DEFER = 2 here, but this * register has no effect on enable transition! HW always guarantees * VID_STREAM enable at start of next frame, and this is not * programmable */ REG_UPDATE(DP_VID_STREAM_CNTL, DP_VID_STREAM_ENABLE, true); } void enc1_stream_encoder_set_avmute( struct stream_encoder *enc, bool enable) { struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc); unsigned int value = enable ? 1 : 0; REG_UPDATE(HDMI_GC, HDMI_GC_AVMUTE, value); } void enc1_reset_hdmi_stream_attribute( struct stream_encoder *enc) { struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc); REG_UPDATE_5(HDMI_CONTROL, HDMI_PACKET_GEN_VERSION, 1, HDMI_KEEPOUT_MODE, 1, HDMI_DEEP_COLOR_ENABLE, 0, HDMI_DATA_SCRAMBLE_EN, 0, HDMI_CLOCK_CHANNEL_RATE, 0); } #define DP_SEC_AUD_N__DP_SEC_AUD_N__DEFAULT 0x8000 #define DP_SEC_TIMESTAMP__DP_SEC_TIMESTAMP_MODE__AUTO_CALC 1 #include "include/audio_types.h" /* 25.2MHz/1.001*/ /* 25.2MHz/1.001*/ /* 25.2MHz*/ /* 27MHz */ /* 27MHz*1.001*/ /* 27MHz*1.001*/ /* 54MHz*/ /* 54MHz*1.001*/ /* 74.25MHz/1.001*/ /* 74.25MHz*/ /* 148.5MHz/1.001*/ /* 148.5MHz*/ static const struct audio_clock_info audio_clock_info_table[16] = { {2517, 4576, 28125, 7007, 31250, 6864, 28125}, {2518, 4576, 28125, 7007, 31250, 6864, 28125}, {2520, 4096, 25200, 6272, 28000, 6144, 25200}, {2700, 4096, 27000, 6272, 30000, 6144, 27000}, {2702, 4096, 27027, 6272, 30030, 6144, 27027}, {2703, 4096, 27027, 6272, 30030, 6144, 27027}, {5400, 4096, 54000, 6272, 60000, 6144, 54000}, {5405, 4096, 54054, 6272, 60060, 6144, 54054}, {7417, 11648, 210937, 17836, 234375, 11648, 140625}, {7425, 4096, 74250, 6272, 82500, 6144, 74250}, {14835, 11648, 421875, 8918, 234375, 5824, 140625}, {14850, 4096, 148500, 6272, 165000, 6144, 148500}, {29670, 5824, 421875, 4459, 234375, 5824, 281250}, {29700, 3072, 222750, 4704, 247500, 5120, 247500}, {59340, 5824, 843750, 8918, 937500, 5824, 562500}, {59400, 3072, 445500, 9408, 990000, 6144, 594000} }; static const struct audio_clock_info audio_clock_info_table_36bpc[14] = { {2517, 9152, 84375, 7007, 48875, 9152, 56250}, {2518, 9152, 84375, 7007, 48875, 9152, 56250}, {2520, 4096, 37800, 6272, 42000, 6144, 37800}, {2700, 4096, 40500, 6272, 45000, 6144, 40500}, {2702, 8192, 81081, 6272, 45045, 8192, 54054}, {2703, 8192, 81081, 6272, 45045, 8192, 54054}, {5400, 4096, 81000, 6272, 90000, 6144, 81000}, {5405, 4096, 81081, 6272, 90090, 6144, 81081}, {7417, 11648, 316406, 17836, 351562, 11648, 210937}, {7425, 4096, 111375, 6272, 123750, 6144, 111375}, {14835, 11648, 632812, 17836, 703125, 11648, 421875}, {14850, 4096, 222750, 6272, 247500, 6144, 222750}, {29670, 5824, 632812, 8918, 703125, 5824, 421875}, {29700, 4096, 445500, 4704, 371250, 5120, 371250} }; static const struct audio_clock_info audio_clock_info_table_48bpc[14] = { {2517, 4576, 56250, 7007, 62500, 6864, 56250}, {2518, 4576, 56250, 7007, 62500, 6864, 56250}, {2520, 4096, 50400, 6272, 56000, 6144, 50400}, {2700, 4096, 54000, 6272, 60000, 6144, 54000}, {2702, 4096, 54054, 6267, 60060, 8192, 54054}, {2703, 4096, 54054, 6272, 60060, 8192, 54054}, {5400, 4096, 108000, 6272, 120000, 6144, 108000}, {5405, 4096, 108108, 6272, 120120, 6144, 108108}, {7417, 11648, 421875, 17836, 468750, 11648, 281250}, {7425, 4096, 148500, 6272, 165000, 6144, 148500}, {14835, 11648, 843750, 8918, 468750, 11648, 281250}, {14850, 4096, 297000, 6272, 330000, 6144, 297000}, {29670, 5824, 843750, 4459, 468750, 5824, 562500}, {29700, 3072, 445500, 4704, 495000, 5120, 495000} }; static union audio_cea_channels speakers_to_channels( struct audio_speaker_flags speaker_flags) { union audio_cea_channels cea_channels = {0}; /* these are one to one */ cea_channels.channels.FL = speaker_flags.FL_FR; cea_channels.channels.FR = speaker_flags.FL_FR; cea_channels.channels.LFE = speaker_flags.LFE; cea_channels.channels.FC = speaker_flags.FC; /* if Rear Left and Right exist move RC speaker to channel 7 * otherwise to channel 5 */ if (speaker_flags.RL_RR) { cea_channels.channels.RL_RC = speaker_flags.RL_RR; cea_channels.channels.RR = speaker_flags.RL_RR; cea_channels.channels.RC_RLC_FLC = speaker_flags.RC; } else { cea_channels.channels.RL_RC = speaker_flags.RC; } /* FRONT Left Right Center and REAR Left Right Center are exclusive */ if (speaker_flags.FLC_FRC) { cea_channels.channels.RC_RLC_FLC = speaker_flags.FLC_FRC; cea_channels.channels.RRC_FRC = speaker_flags.FLC_FRC; } else { cea_channels.channels.RC_RLC_FLC = speaker_flags.RLC_RRC; cea_channels.channels.RRC_FRC = speaker_flags.RLC_RRC; } return cea_channels; } void get_audio_clock_info( enum dc_color_depth color_depth, uint32_t crtc_pixel_clock_100Hz, uint32_t actual_pixel_clock_100Hz, struct audio_clock_info *audio_clock_info) { const struct audio_clock_info *clock_info; uint32_t index; uint32_t crtc_pixel_clock_in_10khz = crtc_pixel_clock_100Hz / 100; uint32_t audio_array_size; switch (color_depth) { case COLOR_DEPTH_161616: clock_info = audio_clock_info_table_48bpc; audio_array_size = ARRAY_SIZE( audio_clock_info_table_48bpc); break; case COLOR_DEPTH_121212: clock_info = audio_clock_info_table_36bpc; audio_array_size = ARRAY_SIZE( audio_clock_info_table_36bpc); break; default: clock_info = audio_clock_info_table; audio_array_size = ARRAY_SIZE( audio_clock_info_table); break; } if (clock_info != NULL) { /* search for exact pixel clock in table */ for (index = 0; index < audio_array_size; index++) { if (clock_info[index].pixel_clock_in_10khz > crtc_pixel_clock_in_10khz) break; /* not match */ else if (clock_info[index].pixel_clock_in_10khz == crtc_pixel_clock_in_10khz) { /* match found */ *audio_clock_info = clock_info[index]; return; } } } /* not found */ if (actual_pixel_clock_100Hz == 0) actual_pixel_clock_100Hz = crtc_pixel_clock_100Hz; /* See HDMI spec the table entry under * pixel clock of "Other". */ audio_clock_info->pixel_clock_in_10khz = actual_pixel_clock_100Hz / 100; audio_clock_info->cts_32khz = actual_pixel_clock_100Hz / 10; audio_clock_info->cts_44khz = actual_pixel_clock_100Hz / 10; audio_clock_info->cts_48khz = actual_pixel_clock_100Hz / 10; audio_clock_info->n_32khz = 4096; audio_clock_info->n_44khz = 6272; audio_clock_info->n_48khz = 6144; } static void enc1_se_audio_setup( struct stream_encoder *enc, unsigned int az_inst, struct audio_info *audio_info) { struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc); uint32_t channels = 0; ASSERT(audio_info); if (audio_info == NULL) /* This should not happen.it does so we don't get BSOD*/ return; channels = speakers_to_channels(audio_info->flags.speaker_flags).all; /* setup the audio stream source select (audio -> dig mapping) */ REG_SET(AFMT_AUDIO_SRC_CONTROL, 0, AFMT_AUDIO_SRC_SELECT, az_inst); /* Channel allocation */ REG_UPDATE(AFMT_AUDIO_PACKET_CONTROL2, AFMT_AUDIO_CHANNEL_ENABLE, channels); } static void enc1_se_setup_hdmi_audio( struct stream_encoder *enc, const struct audio_crtc_info *crtc_info) { struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc); struct audio_clock_info audio_clock_info = {0}; /* HDMI_AUDIO_PACKET_CONTROL */ REG_UPDATE(HDMI_AUDIO_PACKET_CONTROL, HDMI_AUDIO_DELAY_EN, 1); /* AFMT_AUDIO_PACKET_CONTROL */ REG_UPDATE(AFMT_AUDIO_PACKET_CONTROL, AFMT_60958_CS_UPDATE, 1); /* AFMT_AUDIO_PACKET_CONTROL2 */ REG_UPDATE_2(AFMT_AUDIO_PACKET_CONTROL2, AFMT_AUDIO_LAYOUT_OVRD, 0, AFMT_60958_OSF_OVRD, 0); /* HDMI_ACR_PACKET_CONTROL */ REG_UPDATE_3(HDMI_ACR_PACKET_CONTROL, HDMI_ACR_AUTO_SEND, 1, HDMI_ACR_SOURCE, 0, HDMI_ACR_AUDIO_PRIORITY, 0); /* Program audio clock sample/regeneration parameters */ get_audio_clock_info(crtc_info->color_depth, crtc_info->requested_pixel_clock_100Hz, crtc_info->calculated_pixel_clock_100Hz, &audio_clock_info); DC_LOG_HW_AUDIO( "\n%s:Input::requested_pixel_clock_100Hz = %d" \ "calculated_pixel_clock_100Hz = %d \n", __func__, \ crtc_info->requested_pixel_clock_100Hz, \ crtc_info->calculated_pixel_clock_100Hz); /* HDMI_ACR_32_0__HDMI_ACR_CTS_32_MASK */ REG_UPDATE(HDMI_ACR_32_0, HDMI_ACR_CTS_32, audio_clock_info.cts_32khz); /* HDMI_ACR_32_1__HDMI_ACR_N_32_MASK */ REG_UPDATE(HDMI_ACR_32_1, HDMI_ACR_N_32, audio_clock_info.n_32khz); /* HDMI_ACR_44_0__HDMI_ACR_CTS_44_MASK */ REG_UPDATE(HDMI_ACR_44_0, HDMI_ACR_CTS_44, audio_clock_info.cts_44khz); /* HDMI_ACR_44_1__HDMI_ACR_N_44_MASK */ REG_UPDATE(HDMI_ACR_44_1, HDMI_ACR_N_44, audio_clock_info.n_44khz); /* HDMI_ACR_48_0__HDMI_ACR_CTS_48_MASK */ REG_UPDATE(HDMI_ACR_48_0, HDMI_ACR_CTS_48, audio_clock_info.cts_48khz); /* HDMI_ACR_48_1__HDMI_ACR_N_48_MASK */ REG_UPDATE(HDMI_ACR_48_1, HDMI_ACR_N_48, audio_clock_info.n_48khz); /* Video driver cannot know in advance which sample rate will * be used by HD Audio driver * HDMI_ACR_PACKET_CONTROL__HDMI_ACR_N_MULTIPLE field is * programmed below in interruppt callback */ /* AFMT_60958_0__AFMT_60958_CS_CHANNEL_NUMBER_L_MASK & * AFMT_60958_0__AFMT_60958_CS_CLOCK_ACCURACY_MASK */ REG_UPDATE_2(AFMT_60958_0, AFMT_60958_CS_CHANNEL_NUMBER_L, 1, AFMT_60958_CS_CLOCK_ACCURACY, 0); /* AFMT_60958_1 AFMT_60958_CS_CHALNNEL_NUMBER_R */ REG_UPDATE(AFMT_60958_1, AFMT_60958_CS_CHANNEL_NUMBER_R, 2); /* AFMT_60958_2 now keep this settings until * Programming guide comes out */ REG_UPDATE_6(AFMT_60958_2, AFMT_60958_CS_CHANNEL_NUMBER_2, 3, AFMT_60958_CS_CHANNEL_NUMBER_3, 4, AFMT_60958_CS_CHANNEL_NUMBER_4, 5, AFMT_60958_CS_CHANNEL_NUMBER_5, 6, AFMT_60958_CS_CHANNEL_NUMBER_6, 7, AFMT_60958_CS_CHANNEL_NUMBER_7, 8); } static void enc1_se_setup_dp_audio( struct stream_encoder *enc) { struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc); /* --- DP Audio packet configurations --- */ /* ATP Configuration */ REG_SET(DP_SEC_AUD_N, 0, DP_SEC_AUD_N, DP_SEC_AUD_N__DP_SEC_AUD_N__DEFAULT); /* Async/auto-calc timestamp mode */ REG_SET(DP_SEC_TIMESTAMP, 0, DP_SEC_TIMESTAMP_MODE, DP_SEC_TIMESTAMP__DP_SEC_TIMESTAMP_MODE__AUTO_CALC); /* --- The following are the registers * copied from the SetupHDMI --- */ /* AFMT_AUDIO_PACKET_CONTROL */ REG_UPDATE(AFMT_AUDIO_PACKET_CONTROL, AFMT_60958_CS_UPDATE, 1); /* AFMT_AUDIO_PACKET_CONTROL2 */ /* Program the ATP and AIP next */ REG_UPDATE_2(AFMT_AUDIO_PACKET_CONTROL2, AFMT_AUDIO_LAYOUT_OVRD, 0, AFMT_60958_OSF_OVRD, 0); /* AFMT_INFOFRAME_CONTROL0 */ REG_UPDATE(AFMT_INFOFRAME_CONTROL0, AFMT_AUDIO_INFO_UPDATE, 1); /* AFMT_60958_0__AFMT_60958_CS_CLOCK_ACCURACY_MASK */ REG_UPDATE(AFMT_60958_0, AFMT_60958_CS_CLOCK_ACCURACY, 0); } void enc1_se_enable_audio_clock( struct stream_encoder *enc, bool enable) { struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc); if (REG(AFMT_CNTL) == 0) return; /* DCE8/10 does not have this register */ REG_UPDATE(AFMT_CNTL, AFMT_AUDIO_CLOCK_EN, !!enable); /* wait for AFMT clock to turn on, * expectation: this should complete in 1-2 reads * * REG_WAIT(AFMT_CNTL, AFMT_AUDIO_CLOCK_ON, !!enable, 1, 10); * * TODO: wait for clock_on does not work well. May need HW * program sequence. But audio seems work normally even without wait * for clock_on status change */ } void enc1_se_enable_dp_audio( struct stream_encoder *enc) { struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc); /* Enable Audio packets */ REG_UPDATE(DP_SEC_CNTL, DP_SEC_ASP_ENABLE, 1); /* Program the ATP and AIP next */ REG_UPDATE_2(DP_SEC_CNTL, DP_SEC_ATP_ENABLE, 1, DP_SEC_AIP_ENABLE, 1); /* Program STREAM_ENABLE after all the other enables. */ REG_UPDATE(DP_SEC_CNTL, DP_SEC_STREAM_ENABLE, 1); } static void enc1_se_disable_dp_audio( struct stream_encoder *enc) { struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc); uint32_t value = 0; /* Disable Audio packets */ REG_UPDATE_5(DP_SEC_CNTL, DP_SEC_ASP_ENABLE, 0, DP_SEC_ATP_ENABLE, 0, DP_SEC_AIP_ENABLE, 0, DP_SEC_ACM_ENABLE, 0, DP_SEC_STREAM_ENABLE, 0); /* This register shared with encoder info frame. Therefore we need to * keep master enabled if at least on of the fields is not 0 */ value = REG_READ(DP_SEC_CNTL); if (value != 0) REG_UPDATE(DP_SEC_CNTL, DP_SEC_STREAM_ENABLE, 1); } void enc1_se_audio_mute_control( struct stream_encoder *enc, bool mute) { struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc); REG_UPDATE(AFMT_AUDIO_PACKET_CONTROL, AFMT_AUDIO_SAMPLE_SEND, !mute); } void enc1_se_dp_audio_setup( struct stream_encoder *enc, unsigned int az_inst, struct audio_info *info) { enc1_se_audio_setup(enc, az_inst, info); } void enc1_se_dp_audio_enable( struct stream_encoder *enc) { enc1_se_enable_audio_clock(enc, true); enc1_se_setup_dp_audio(enc); enc1_se_enable_dp_audio(enc); } void enc1_se_dp_audio_disable( struct stream_encoder *enc) { enc1_se_disable_dp_audio(enc); enc1_se_enable_audio_clock(enc, false); } void enc1_se_hdmi_audio_setup( struct stream_encoder *enc, unsigned int az_inst, struct audio_info *info, struct audio_crtc_info *audio_crtc_info) { enc1_se_enable_audio_clock(enc, true); enc1_se_setup_hdmi_audio(enc, audio_crtc_info); enc1_se_audio_setup(enc, az_inst, info); } void enc1_se_hdmi_audio_disable( struct stream_encoder *enc) { enc1_se_enable_audio_clock(enc, false); } void enc1_setup_stereo_sync( struct stream_encoder *enc, int tg_inst, bool enable) { struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc); REG_UPDATE(DIG_FE_CNTL, DIG_STEREOSYNC_SELECT, tg_inst); REG_UPDATE(DIG_FE_CNTL, DIG_STEREOSYNC_GATE_EN, !enable); } void enc1_dig_connect_to_otg( struct stream_encoder *enc, int tg_inst) { struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc); REG_UPDATE(DIG_FE_CNTL, DIG_SOURCE_SELECT, tg_inst); } unsigned int enc1_dig_source_otg( struct stream_encoder *enc) { uint32_t tg_inst = 0; struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc); REG_GET(DIG_FE_CNTL, DIG_SOURCE_SELECT, &tg_inst); return tg_inst; } bool enc1_stream_encoder_dp_get_pixel_format( struct stream_encoder *enc, enum dc_pixel_encoding *encoding, enum dc_color_depth *depth) { uint32_t hw_encoding = 0; uint32_t hw_depth = 0; struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc); if (enc == NULL || encoding == NULL || depth == NULL) return false; REG_GET_2(DP_PIXEL_FORMAT, DP_PIXEL_ENCODING, &hw_encoding, DP_COMPONENT_DEPTH, &hw_depth); switch (hw_depth) { case DP_COMPONENT_PIXEL_DEPTH_6BPC: *depth = COLOR_DEPTH_666; break; case DP_COMPONENT_PIXEL_DEPTH_8BPC: *depth = COLOR_DEPTH_888; break; case DP_COMPONENT_PIXEL_DEPTH_10BPC: *depth = COLOR_DEPTH_101010; break; case DP_COMPONENT_PIXEL_DEPTH_12BPC: *depth = COLOR_DEPTH_121212; break; case DP_COMPONENT_PIXEL_DEPTH_16BPC: *depth = COLOR_DEPTH_161616; break; default: *depth = COLOR_DEPTH_UNDEFINED; break; } switch (hw_encoding) { case DP_PIXEL_ENCODING_TYPE_RGB444: *encoding = PIXEL_ENCODING_RGB; break; case DP_PIXEL_ENCODING_TYPE_YCBCR422: *encoding = PIXEL_ENCODING_YCBCR422; break; case DP_PIXEL_ENCODING_TYPE_YCBCR444: case DP_PIXEL_ENCODING_TYPE_Y_ONLY: *encoding = PIXEL_ENCODING_YCBCR444; break; case DP_PIXEL_ENCODING_TYPE_YCBCR420: *encoding = PIXEL_ENCODING_YCBCR420; break; default: *encoding = PIXEL_ENCODING_UNDEFINED; break; } return true; } static const struct stream_encoder_funcs dcn10_str_enc_funcs = { .dp_set_stream_attribute = enc1_stream_encoder_dp_set_stream_attribute, .hdmi_set_stream_attribute = enc1_stream_encoder_hdmi_set_stream_attribute, .dvi_set_stream_attribute = enc1_stream_encoder_dvi_set_stream_attribute, .set_throttled_vcp_size = enc1_stream_encoder_set_throttled_vcp_size, .update_hdmi_info_packets = enc1_stream_encoder_update_hdmi_info_packets, .stop_hdmi_info_packets = enc1_stream_encoder_stop_hdmi_info_packets, .update_dp_info_packets = enc1_stream_encoder_update_dp_info_packets, .send_immediate_sdp_message = enc1_stream_encoder_send_immediate_sdp_message, .stop_dp_info_packets = enc1_stream_encoder_stop_dp_info_packets, .dp_blank = enc1_stream_encoder_dp_blank, .dp_unblank = enc1_stream_encoder_dp_unblank, .audio_mute_control = enc1_se_audio_mute_control, .dp_audio_setup = enc1_se_dp_audio_setup, .dp_audio_enable = enc1_se_dp_audio_enable, .dp_audio_disable = enc1_se_dp_audio_disable, .hdmi_audio_setup = enc1_se_hdmi_audio_setup, .hdmi_audio_disable = enc1_se_hdmi_audio_disable, .setup_stereo_sync = enc1_setup_stereo_sync, .set_avmute = enc1_stream_encoder_set_avmute, .dig_connect_to_otg = enc1_dig_connect_to_otg, .hdmi_reset_stream_attribute = enc1_reset_hdmi_stream_attribute, .dig_source_otg = enc1_dig_source_otg, .dp_get_pixel_format = enc1_stream_encoder_dp_get_pixel_format, }; void dcn10_stream_encoder_construct( struct dcn10_stream_encoder *enc1, struct dc_context *ctx, struct dc_bios *bp, enum engine_id eng_id, const struct dcn10_stream_enc_registers *regs, const struct dcn10_stream_encoder_shift *se_shift, const struct dcn10_stream_encoder_mask *se_mask) { enc1->base.funcs = &dcn10_str_enc_funcs; enc1->base.ctx = ctx; enc1->base.id = eng_id; enc1->base.bp = bp; enc1->regs = regs; enc1->se_shift = se_shift; enc1->se_mask = se_mask; enc1->base.stream_enc_inst = eng_id - ENGINE_ID_DIGA; }