/* * Copyright 2012-15 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "dcn20_mpc.h" #include "reg_helper.h" #include "dc.h" #include "mem_input.h" #include "dcn10/dcn10_cm_common.h" #define REG(reg)\ mpc20->mpc_regs->reg #define IND_REG(index) \ (index) #define CTX \ mpc20->base.ctx #undef FN #define FN(reg_name, field_name) \ mpc20->mpc_shift->field_name, mpc20->mpc_mask->field_name #define NUM_ELEMENTS(a) (sizeof(a) / sizeof((a)[0])) void mpc2_update_blending( struct mpc *mpc, struct mpcc_blnd_cfg *blnd_cfg, int mpcc_id) { struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); struct mpcc *mpcc = mpc1_get_mpcc(mpc, mpcc_id); REG_UPDATE_7(MPCC_CONTROL[mpcc_id], MPCC_ALPHA_BLND_MODE, blnd_cfg->alpha_mode, MPCC_ALPHA_MULTIPLIED_MODE, blnd_cfg->pre_multiplied_alpha, MPCC_BLND_ACTIVE_OVERLAP_ONLY, blnd_cfg->overlap_only, MPCC_GLOBAL_ALPHA, blnd_cfg->global_alpha, MPCC_GLOBAL_GAIN, blnd_cfg->global_gain, MPCC_BG_BPC, blnd_cfg->background_color_bpc, MPCC_BOT_GAIN_MODE, blnd_cfg->bottom_gain_mode); REG_SET(MPCC_TOP_GAIN[mpcc_id], 0, MPCC_TOP_GAIN, blnd_cfg->top_gain); REG_SET(MPCC_BOT_GAIN_INSIDE[mpcc_id], 0, MPCC_BOT_GAIN_INSIDE, blnd_cfg->bottom_inside_gain); REG_SET(MPCC_BOT_GAIN_OUTSIDE[mpcc_id], 0, MPCC_BOT_GAIN_OUTSIDE, blnd_cfg->bottom_outside_gain); mpcc->blnd_cfg = *blnd_cfg; } void mpc2_set_denorm( struct mpc *mpc, int opp_id, enum dc_color_depth output_depth) { struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); int denorm_mode = 0; switch (output_depth) { case COLOR_DEPTH_666: denorm_mode = 1; break; case COLOR_DEPTH_888: denorm_mode = 2; break; case COLOR_DEPTH_999: denorm_mode = 3; break; case COLOR_DEPTH_101010: denorm_mode = 4; break; case COLOR_DEPTH_111111: denorm_mode = 5; break; case COLOR_DEPTH_121212: denorm_mode = 6; break; case COLOR_DEPTH_141414: case COLOR_DEPTH_161616: default: /* not valid used case! */ break; } REG_UPDATE(DENORM_CONTROL[opp_id], MPC_OUT_DENORM_MODE, denorm_mode); } void mpc2_set_denorm_clamp( struct mpc *mpc, int opp_id, struct mpc_denorm_clamp denorm_clamp) { struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); REG_UPDATE_2(DENORM_CONTROL[opp_id], MPC_OUT_DENORM_CLAMP_MAX_R_CR, denorm_clamp.clamp_max_r_cr, MPC_OUT_DENORM_CLAMP_MIN_R_CR, denorm_clamp.clamp_min_r_cr); REG_UPDATE_2(DENORM_CLAMP_G_Y[opp_id], MPC_OUT_DENORM_CLAMP_MAX_G_Y, denorm_clamp.clamp_max_g_y, MPC_OUT_DENORM_CLAMP_MIN_G_Y, denorm_clamp.clamp_min_g_y); REG_UPDATE_2(DENORM_CLAMP_B_CB[opp_id], MPC_OUT_DENORM_CLAMP_MAX_B_CB, denorm_clamp.clamp_max_b_cb, MPC_OUT_DENORM_CLAMP_MIN_B_CB, denorm_clamp.clamp_min_b_cb); } void mpc2_set_output_csc( struct mpc *mpc, int opp_id, const uint16_t *regval, enum mpc_output_csc_mode ocsc_mode) { uint32_t cur_mode; struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); struct color_matrices_reg ocsc_regs; if (ocsc_mode == MPC_OUTPUT_CSC_DISABLE) { REG_SET(CSC_MODE[opp_id], 0, MPC_OCSC_MODE, ocsc_mode); return; } if (regval == NULL) { BREAK_TO_DEBUGGER(); return; } /* determine which CSC coefficients (A or B) we are using * currently. select the alternate set to double buffer * the CSC update so CSC is updated on frame boundary */ IX_REG_GET(MPC_OCSC_TEST_DEBUG_INDEX, MPC_OCSC_TEST_DEBUG_DATA, MPC_OCSC_TEST_DEBUG_DATA_STATUS_IDX, MPC_OCSC_TEST_DEBUG_DATA_OCSC_MODE, &cur_mode); if (cur_mode != MPC_OUTPUT_CSC_COEF_A) ocsc_mode = MPC_OUTPUT_CSC_COEF_A; else ocsc_mode = MPC_OUTPUT_CSC_COEF_B; ocsc_regs.shifts.csc_c11 = mpc20->mpc_shift->MPC_OCSC_C11_A; ocsc_regs.masks.csc_c11 = mpc20->mpc_mask->MPC_OCSC_C11_A; ocsc_regs.shifts.csc_c12 = mpc20->mpc_shift->MPC_OCSC_C12_A; ocsc_regs.masks.csc_c12 = mpc20->mpc_mask->MPC_OCSC_C12_A; if (ocsc_mode == MPC_OUTPUT_CSC_COEF_A) { ocsc_regs.csc_c11_c12 = REG(CSC_C11_C12_A[opp_id]); ocsc_regs.csc_c33_c34 = REG(CSC_C33_C34_A[opp_id]); } else { ocsc_regs.csc_c11_c12 = REG(CSC_C11_C12_B[opp_id]); ocsc_regs.csc_c33_c34 = REG(CSC_C33_C34_B[opp_id]); } cm_helper_program_color_matrices( mpc20->base.ctx, regval, &ocsc_regs); REG_SET(CSC_MODE[opp_id], 0, MPC_OCSC_MODE, ocsc_mode); } void mpc2_set_ocsc_default( struct mpc *mpc, int opp_id, enum dc_color_space color_space, enum mpc_output_csc_mode ocsc_mode) { uint32_t cur_mode; struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); uint32_t arr_size; struct color_matrices_reg ocsc_regs; const uint16_t *regval = NULL; if (ocsc_mode == MPC_OUTPUT_CSC_DISABLE) { REG_SET(CSC_MODE[opp_id], 0, MPC_OCSC_MODE, ocsc_mode); return; } regval = find_color_matrix(color_space, &arr_size); if (regval == NULL) { BREAK_TO_DEBUGGER(); return; } /* determine which CSC coefficients (A or B) we are using * currently. select the alternate set to double buffer * the CSC update so CSC is updated on frame boundary */ IX_REG_GET(MPC_OCSC_TEST_DEBUG_INDEX, MPC_OCSC_TEST_DEBUG_DATA, MPC_OCSC_TEST_DEBUG_DATA_STATUS_IDX, MPC_OCSC_TEST_DEBUG_DATA_OCSC_MODE, &cur_mode); if (cur_mode != MPC_OUTPUT_CSC_COEF_A) ocsc_mode = MPC_OUTPUT_CSC_COEF_A; else ocsc_mode = MPC_OUTPUT_CSC_COEF_B; ocsc_regs.shifts.csc_c11 = mpc20->mpc_shift->MPC_OCSC_C11_A; ocsc_regs.masks.csc_c11 = mpc20->mpc_mask->MPC_OCSC_C11_A; ocsc_regs.shifts.csc_c12 = mpc20->mpc_shift->MPC_OCSC_C12_A; ocsc_regs.masks.csc_c12 = mpc20->mpc_mask->MPC_OCSC_C12_A; if (ocsc_mode == MPC_OUTPUT_CSC_COEF_A) { ocsc_regs.csc_c11_c12 = REG(CSC_C11_C12_A[opp_id]); ocsc_regs.csc_c33_c34 = REG(CSC_C33_C34_A[opp_id]); } else { ocsc_regs.csc_c11_c12 = REG(CSC_C11_C12_B[opp_id]); ocsc_regs.csc_c33_c34 = REG(CSC_C33_C34_B[opp_id]); } cm_helper_program_color_matrices( mpc20->base.ctx, regval, &ocsc_regs); REG_SET(CSC_MODE[opp_id], 0, MPC_OCSC_MODE, ocsc_mode); } static void mpc2_ogam_get_reg_field( struct mpc *mpc, struct xfer_func_reg *reg) { struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); reg->shifts.exp_region0_lut_offset = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION0_LUT_OFFSET; reg->masks.exp_region0_lut_offset = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION0_LUT_OFFSET; reg->shifts.exp_region0_num_segments = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION0_NUM_SEGMENTS; reg->masks.exp_region0_num_segments = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION0_NUM_SEGMENTS; reg->shifts.exp_region1_lut_offset = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION1_LUT_OFFSET; reg->masks.exp_region1_lut_offset = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION1_LUT_OFFSET; reg->shifts.exp_region1_num_segments = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION1_NUM_SEGMENTS; reg->masks.exp_region1_num_segments = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION1_NUM_SEGMENTS; reg->shifts.field_region_end = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_END_B; reg->masks.field_region_end = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_END_B; reg->shifts.field_region_end_slope = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_END_SLOPE_B; reg->masks.field_region_end_slope = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_END_SLOPE_B; reg->shifts.field_region_end_base = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_END_BASE_B; reg->masks.field_region_end_base = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_END_BASE_B; reg->shifts.field_region_linear_slope = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_LINEAR_SLOPE_B; reg->masks.field_region_linear_slope = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_LINEAR_SLOPE_B; reg->shifts.exp_region_start = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_START_B; reg->masks.exp_region_start = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_START_B; reg->shifts.exp_resion_start_segment = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_START_SEGMENT_B; reg->masks.exp_resion_start_segment = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_START_SEGMENT_B; } void mpc20_power_on_ogam_lut( struct mpc *mpc, int mpcc_id, bool power_on) { struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); REG_SET(MPCC_MEM_PWR_CTRL[mpcc_id], 0, MPCC_OGAM_MEM_PWR_DIS, power_on == true ? 1:0); } static void mpc20_configure_ogam_lut( struct mpc *mpc, int mpcc_id, bool is_ram_a) { struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); REG_UPDATE_2(MPCC_OGAM_LUT_RAM_CONTROL[mpcc_id], MPCC_OGAM_LUT_WRITE_EN_MASK, 7, MPCC_OGAM_LUT_RAM_SEL, is_ram_a == true ? 0:1); REG_SET(MPCC_OGAM_LUT_INDEX[mpcc_id], 0, MPCC_OGAM_LUT_INDEX, 0); } static enum dc_lut_mode mpc20_get_ogam_current(struct mpc *mpc, int mpcc_id) { enum dc_lut_mode mode; uint32_t state_mode; struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); REG_GET(MPCC_OGAM_LUT_RAM_CONTROL[mpcc_id], MPCC_OGAM_CONFIG_STATUS, &state_mode); switch (state_mode) { case 0: mode = LUT_BYPASS; break; case 1: mode = LUT_RAM_A; break; case 2: mode = LUT_RAM_B; break; default: mode = LUT_BYPASS; break; } return mode; } static void mpc2_program_lutb(struct mpc *mpc, int mpcc_id, const struct pwl_params *params) { struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); struct xfer_func_reg gam_regs; mpc2_ogam_get_reg_field(mpc, &gam_regs); gam_regs.start_cntl_b = REG(MPCC_OGAM_RAMB_START_CNTL_B[mpcc_id]); gam_regs.start_cntl_g = REG(MPCC_OGAM_RAMB_START_CNTL_G[mpcc_id]); gam_regs.start_cntl_r = REG(MPCC_OGAM_RAMB_START_CNTL_R[mpcc_id]); gam_regs.start_slope_cntl_b = REG(MPCC_OGAM_RAMB_SLOPE_CNTL_B[mpcc_id]); gam_regs.start_slope_cntl_g = REG(MPCC_OGAM_RAMB_SLOPE_CNTL_G[mpcc_id]); gam_regs.start_slope_cntl_r = REG(MPCC_OGAM_RAMB_SLOPE_CNTL_R[mpcc_id]); gam_regs.start_end_cntl1_b = REG(MPCC_OGAM_RAMB_END_CNTL1_B[mpcc_id]); gam_regs.start_end_cntl2_b = REG(MPCC_OGAM_RAMB_END_CNTL2_B[mpcc_id]); gam_regs.start_end_cntl1_g = REG(MPCC_OGAM_RAMB_END_CNTL1_G[mpcc_id]); gam_regs.start_end_cntl2_g = REG(MPCC_OGAM_RAMB_END_CNTL2_G[mpcc_id]); gam_regs.start_end_cntl1_r = REG(MPCC_OGAM_RAMB_END_CNTL1_R[mpcc_id]); gam_regs.start_end_cntl2_r = REG(MPCC_OGAM_RAMB_END_CNTL2_R[mpcc_id]); gam_regs.region_start = REG(MPCC_OGAM_RAMB_REGION_0_1[mpcc_id]); gam_regs.region_end = REG(MPCC_OGAM_RAMB_REGION_32_33[mpcc_id]); cm_helper_program_xfer_func(mpc20->base.ctx, params, &gam_regs); } static void mpc2_program_luta(struct mpc *mpc, int mpcc_id, const struct pwl_params *params) { struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); struct xfer_func_reg gam_regs; mpc2_ogam_get_reg_field(mpc, &gam_regs); gam_regs.start_cntl_b = REG(MPCC_OGAM_RAMA_START_CNTL_B[mpcc_id]); gam_regs.start_cntl_g = REG(MPCC_OGAM_RAMA_START_CNTL_G[mpcc_id]); gam_regs.start_cntl_r = REG(MPCC_OGAM_RAMA_START_CNTL_R[mpcc_id]); gam_regs.start_slope_cntl_b = REG(MPCC_OGAM_RAMA_SLOPE_CNTL_B[mpcc_id]); gam_regs.start_slope_cntl_g = REG(MPCC_OGAM_RAMA_SLOPE_CNTL_G[mpcc_id]); gam_regs.start_slope_cntl_r = REG(MPCC_OGAM_RAMA_SLOPE_CNTL_R[mpcc_id]); gam_regs.start_end_cntl1_b = REG(MPCC_OGAM_RAMA_END_CNTL1_B[mpcc_id]); gam_regs.start_end_cntl2_b = REG(MPCC_OGAM_RAMA_END_CNTL2_B[mpcc_id]); gam_regs.start_end_cntl1_g = REG(MPCC_OGAM_RAMA_END_CNTL1_G[mpcc_id]); gam_regs.start_end_cntl2_g = REG(MPCC_OGAM_RAMA_END_CNTL2_G[mpcc_id]); gam_regs.start_end_cntl1_r = REG(MPCC_OGAM_RAMA_END_CNTL1_R[mpcc_id]); gam_regs.start_end_cntl2_r = REG(MPCC_OGAM_RAMA_END_CNTL2_R[mpcc_id]); gam_regs.region_start = REG(MPCC_OGAM_RAMA_REGION_0_1[mpcc_id]); gam_regs.region_end = REG(MPCC_OGAM_RAMA_REGION_32_33[mpcc_id]); cm_helper_program_xfer_func(mpc20->base.ctx, params, &gam_regs); } static void mpc20_program_ogam_pwl( struct mpc *mpc, int mpcc_id, const struct pwl_result_data *rgb, uint32_t num) { uint32_t i; struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); PERF_TRACE(); REG_SEQ_START(); for (i = 0 ; i < num; i++) { REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, rgb[i].red_reg); REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, rgb[i].green_reg); REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, rgb[i].blue_reg); REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, rgb[i].delta_red_reg); REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, rgb[i].delta_green_reg); REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, rgb[i].delta_blue_reg); } } void apply_DEDCN20_305_wa( struct mpc *mpc, int mpcc_id, enum dc_lut_mode current_mode, enum dc_lut_mode next_mode) { struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); if (mpc->ctx->dc->debug.cm_in_bypass) { REG_SET(MPCC_OGAM_MODE[mpcc_id], 0, MPCC_OGAM_MODE, 0); return; } if (mpc->ctx->dc->work_arounds.dedcn20_305_wa == false) { /*hw fixed in new review*/ return; } if (current_mode == LUT_BYPASS) /*this will only work if OTG is locked. *if we were to support OTG unlock case, *the workaround will be more complex */ REG_SET(MPCC_OGAM_MODE[mpcc_id], 0, MPCC_OGAM_MODE, next_mode == LUT_RAM_A ? 1:2); } void mpc2_set_output_gamma( struct mpc *mpc, int mpcc_id, const struct pwl_params *params) { enum dc_lut_mode current_mode; enum dc_lut_mode next_mode; struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); if (mpc->ctx->dc->debug.cm_in_bypass) { REG_SET(MPCC_OGAM_MODE[mpcc_id], 0, MPCC_OGAM_MODE, 0); return; } if (params == NULL) { REG_SET(MPCC_OGAM_MODE[mpcc_id], 0, MPCC_OGAM_MODE, 0); return; } current_mode = mpc20_get_ogam_current(mpc, mpcc_id); if (current_mode == LUT_BYPASS || current_mode == LUT_RAM_A) next_mode = LUT_RAM_B; else next_mode = LUT_RAM_A; mpc20_power_on_ogam_lut(mpc, mpcc_id, true); mpc20_configure_ogam_lut(mpc, mpcc_id, next_mode == LUT_RAM_A); if (next_mode == LUT_RAM_A) mpc2_program_luta(mpc, mpcc_id, params); else mpc2_program_lutb(mpc, mpcc_id, params); apply_DEDCN20_305_wa(mpc, mpcc_id, current_mode, next_mode); mpc20_program_ogam_pwl( mpc, mpcc_id, params->rgb_resulted, params->hw_points_num); REG_SET(MPCC_OGAM_MODE[mpcc_id], 0, MPCC_OGAM_MODE, next_mode == LUT_RAM_A ? 1:2); } void mpc2_assert_idle_mpcc(struct mpc *mpc, int id) { struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); unsigned int mpc_disabled; ASSERT(!(mpc20->mpcc_in_use_mask & 1 << id)); REG_GET(MPCC_STATUS[id], MPCC_DISABLED, &mpc_disabled); if (mpc_disabled) return; REG_WAIT(MPCC_STATUS[id], MPCC_IDLE, 1, 1, 100000); } void mpc2_assert_mpcc_idle_before_connect(struct mpc *mpc, int mpcc_id) { struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc); unsigned int top_sel, mpc_busy, mpc_idle, mpc_disabled; REG_GET(MPCC_TOP_SEL[mpcc_id], MPCC_TOP_SEL, &top_sel); REG_GET_3(MPCC_STATUS[mpcc_id], MPCC_BUSY, &mpc_busy, MPCC_IDLE, &mpc_idle, MPCC_DISABLED, &mpc_disabled); if (top_sel == 0xf) { ASSERT(!mpc_busy); ASSERT(mpc_idle); ASSERT(mpc_disabled); } else { ASSERT(!mpc_disabled); ASSERT(!mpc_idle); } REG_SEQ_SUBMIT(); PERF_TRACE(); REG_SEQ_WAIT_DONE(); PERF_TRACE(); } static void mpc2_init_mpcc(struct mpcc *mpcc, int mpcc_inst) { mpcc->mpcc_id = mpcc_inst; mpcc->dpp_id = 0xf; mpcc->mpcc_bot = NULL; mpcc->blnd_cfg.overlap_only = false; mpcc->blnd_cfg.global_alpha = 0xff; mpcc->blnd_cfg.global_gain = 0xff; mpcc->blnd_cfg.background_color_bpc = 4; mpcc->blnd_cfg.bottom_gain_mode = 0; mpcc->blnd_cfg.top_gain = 0x1f000; mpcc->blnd_cfg.bottom_inside_gain = 0x1f000; mpcc->blnd_cfg.bottom_outside_gain = 0x1f000; mpcc->sm_cfg.enable = false; } struct mpcc *mpc2_get_mpcc_for_dpp(struct mpc_tree *tree, int dpp_id) { struct mpcc *tmp_mpcc = tree->opp_list; while (tmp_mpcc != NULL) { if (tmp_mpcc->dpp_id == 0xf || tmp_mpcc->dpp_id == dpp_id) return tmp_mpcc; /* avoid circular linked list */ ASSERT(tmp_mpcc != tmp_mpcc->mpcc_bot); if (tmp_mpcc == tmp_mpcc->mpcc_bot) break; tmp_mpcc = tmp_mpcc->mpcc_bot; } return NULL; } const struct mpc_funcs dcn20_mpc_funcs = { .read_mpcc_state = mpc1_read_mpcc_state, .insert_plane = mpc1_insert_plane, .remove_mpcc = mpc1_remove_mpcc, .mpc_init = mpc1_mpc_init, .mpc_init_single_inst = mpc1_mpc_init_single_inst, .update_blending = mpc2_update_blending, .cursor_lock = mpc1_cursor_lock, .get_mpcc_for_dpp = mpc2_get_mpcc_for_dpp, .wait_for_idle = mpc2_assert_idle_mpcc, .assert_mpcc_idle_before_connect = mpc2_assert_mpcc_idle_before_connect, .init_mpcc_list_from_hw = mpc1_init_mpcc_list_from_hw, .set_denorm = mpc2_set_denorm, .set_denorm_clamp = mpc2_set_denorm_clamp, .set_output_csc = mpc2_set_output_csc, .set_ocsc_default = mpc2_set_ocsc_default, .set_output_gamma = mpc2_set_output_gamma, .power_on_mpc_mem_pwr = mpc20_power_on_ogam_lut, .get_mpc_out_mux = mpc1_get_mpc_out_mux, .set_bg_color = mpc1_set_bg_color, }; void dcn20_mpc_construct(struct dcn20_mpc *mpc20, struct dc_context *ctx, const struct dcn20_mpc_registers *mpc_regs, const struct dcn20_mpc_shift *mpc_shift, const struct dcn20_mpc_mask *mpc_mask, int num_mpcc) { int i; mpc20->base.ctx = ctx; mpc20->base.funcs = &dcn20_mpc_funcs; mpc20->mpc_regs = mpc_regs; mpc20->mpc_shift = mpc_shift; mpc20->mpc_mask = mpc_mask; mpc20->mpcc_in_use_mask = 0; mpc20->num_mpcc = num_mpcc; for (i = 0; i < MAX_MPCC; i++) mpc2_init_mpcc(&mpc20->base.mpcc_array[i], i); }