/* * Copyright 2019 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #define SWSMU_CODE_LAYER_L1 #include #include #include "amdgpu.h" #include "amdgpu_smu.h" #include "smu_internal.h" #include "atom.h" #include "arcturus_ppt.h" #include "navi10_ppt.h" #include "sienna_cichlid_ppt.h" #include "renoir_ppt.h" #include "vangogh_ppt.h" #include "aldebaran_ppt.h" #include "yellow_carp_ppt.h" #include "cyan_skillfish_ppt.h" #include "amd_pcie.h" /* * DO NOT use these for err/warn/info/debug messages. * Use dev_err, dev_warn, dev_info and dev_dbg instead. * They are more MGPU friendly. */ #undef pr_err #undef pr_warn #undef pr_info #undef pr_debug static const struct amd_pm_funcs swsmu_pm_funcs; static int smu_force_smuclk_levels(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t mask); static int smu_handle_task(struct smu_context *smu, enum amd_dpm_forced_level level, enum amd_pp_task task_id, bool lock_needed); static int smu_reset(struct smu_context *smu); static int smu_set_fan_speed_pwm(void *handle, u32 speed); static int smu_set_fan_control_mode(struct smu_context *smu, int value); static int smu_set_power_limit(void *handle, uint32_t limit); static int smu_set_fan_speed_rpm(void *handle, uint32_t speed); static int smu_set_gfx_cgpg(struct smu_context *smu, bool enabled); static int smu_sys_get_pp_feature_mask(void *handle, char *buf) { struct smu_context *smu = handle; int size = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; mutex_lock(&smu->mutex); size = smu_get_pp_feature_mask(smu, buf); mutex_unlock(&smu->mutex); return size; } static int smu_sys_set_pp_feature_mask(void *handle, uint64_t new_mask) { struct smu_context *smu = handle; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; mutex_lock(&smu->mutex); ret = smu_set_pp_feature_mask(smu, new_mask); mutex_unlock(&smu->mutex); return ret; } int smu_get_status_gfxoff(struct amdgpu_device *adev, uint32_t *value) { int ret = 0; struct smu_context *smu = &adev->smu; if (is_support_sw_smu(adev) && smu->ppt_funcs->get_gfx_off_status) *value = smu_get_gfx_off_status(smu); else ret = -EINVAL; return ret; } int smu_set_soft_freq_range(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t min, uint32_t max) { int ret = 0; mutex_lock(&smu->mutex); if (smu->ppt_funcs->set_soft_freq_limited_range) ret = smu->ppt_funcs->set_soft_freq_limited_range(smu, clk_type, min, max); mutex_unlock(&smu->mutex); return ret; } int smu_get_dpm_freq_range(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t *min, uint32_t *max) { int ret = -ENOTSUPP; if (!min && !max) return -EINVAL; mutex_lock(&smu->mutex); if (smu->ppt_funcs->get_dpm_ultimate_freq) ret = smu->ppt_funcs->get_dpm_ultimate_freq(smu, clk_type, min, max); mutex_unlock(&smu->mutex); return ret; } static u32 smu_get_mclk(void *handle, bool low) { struct smu_context *smu = handle; uint32_t clk_freq; int ret = 0; ret = smu_get_dpm_freq_range(smu, SMU_UCLK, low ? &clk_freq : NULL, !low ? &clk_freq : NULL); if (ret) return 0; return clk_freq * 100; } static u32 smu_get_sclk(void *handle, bool low) { struct smu_context *smu = handle; uint32_t clk_freq; int ret = 0; ret = smu_get_dpm_freq_range(smu, SMU_GFXCLK, low ? &clk_freq : NULL, !low ? &clk_freq : NULL); if (ret) return 0; return clk_freq * 100; } static int smu_dpm_set_vcn_enable_locked(struct smu_context *smu, bool enable) { struct smu_power_context *smu_power = &smu->smu_power; struct smu_power_gate *power_gate = &smu_power->power_gate; int ret = 0; if (!smu->ppt_funcs->dpm_set_vcn_enable) return 0; if (atomic_read(&power_gate->vcn_gated) ^ enable) return 0; ret = smu->ppt_funcs->dpm_set_vcn_enable(smu, enable); if (!ret) atomic_set(&power_gate->vcn_gated, !enable); return ret; } static int smu_dpm_set_vcn_enable(struct smu_context *smu, bool enable) { struct smu_power_context *smu_power = &smu->smu_power; struct smu_power_gate *power_gate = &smu_power->power_gate; int ret = 0; mutex_lock(&power_gate->vcn_gate_lock); ret = smu_dpm_set_vcn_enable_locked(smu, enable); mutex_unlock(&power_gate->vcn_gate_lock); return ret; } static int smu_dpm_set_jpeg_enable_locked(struct smu_context *smu, bool enable) { struct smu_power_context *smu_power = &smu->smu_power; struct smu_power_gate *power_gate = &smu_power->power_gate; int ret = 0; if (!smu->ppt_funcs->dpm_set_jpeg_enable) return 0; if (atomic_read(&power_gate->jpeg_gated) ^ enable) return 0; ret = smu->ppt_funcs->dpm_set_jpeg_enable(smu, enable); if (!ret) atomic_set(&power_gate->jpeg_gated, !enable); return ret; } static int smu_dpm_set_jpeg_enable(struct smu_context *smu, bool enable) { struct smu_power_context *smu_power = &smu->smu_power; struct smu_power_gate *power_gate = &smu_power->power_gate; int ret = 0; mutex_lock(&power_gate->jpeg_gate_lock); ret = smu_dpm_set_jpeg_enable_locked(smu, enable); mutex_unlock(&power_gate->jpeg_gate_lock); return ret; } /** * smu_dpm_set_power_gate - power gate/ungate the specific IP block * * @handle: smu_context pointer * @block_type: the IP block to power gate/ungate * @gate: to power gate if true, ungate otherwise * * This API uses no smu->mutex lock protection due to: * 1. It is either called by other IP block(gfx/sdma/vcn/uvd/vce). * This is guarded to be race condition free by the caller. * 2. Or get called on user setting request of power_dpm_force_performance_level. * Under this case, the smu->mutex lock protection is already enforced on * the parent API smu_force_performance_level of the call path. */ static int smu_dpm_set_power_gate(void *handle, uint32_t block_type, bool gate) { struct smu_context *smu = handle; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; switch (block_type) { /* * Some legacy code of amdgpu_vcn.c and vcn_v2*.c still uses * AMD_IP_BLOCK_TYPE_UVD for VCN. So, here both of them are kept. */ case AMD_IP_BLOCK_TYPE_UVD: case AMD_IP_BLOCK_TYPE_VCN: ret = smu_dpm_set_vcn_enable(smu, !gate); if (ret) dev_err(smu->adev->dev, "Failed to power %s VCN!\n", gate ? "gate" : "ungate"); break; case AMD_IP_BLOCK_TYPE_GFX: ret = smu_gfx_off_control(smu, gate); if (ret) dev_err(smu->adev->dev, "Failed to %s gfxoff!\n", gate ? "enable" : "disable"); break; case AMD_IP_BLOCK_TYPE_SDMA: ret = smu_powergate_sdma(smu, gate); if (ret) dev_err(smu->adev->dev, "Failed to power %s SDMA!\n", gate ? "gate" : "ungate"); break; case AMD_IP_BLOCK_TYPE_JPEG: ret = smu_dpm_set_jpeg_enable(smu, !gate); if (ret) dev_err(smu->adev->dev, "Failed to power %s JPEG!\n", gate ? "gate" : "ungate"); break; default: dev_err(smu->adev->dev, "Unsupported block type!\n"); return -EINVAL; } return ret; } /** * smu_set_user_clk_dependencies - set user profile clock dependencies * * @smu: smu_context pointer * @clk: enum smu_clk_type type * * Enable/Disable the clock dependency for the @clk type. */ static void smu_set_user_clk_dependencies(struct smu_context *smu, enum smu_clk_type clk) { if (smu->adev->in_suspend) return; if (clk == SMU_MCLK) { smu->user_dpm_profile.clk_dependency = 0; smu->user_dpm_profile.clk_dependency = BIT(SMU_FCLK) | BIT(SMU_SOCCLK); } else if (clk == SMU_FCLK) { /* MCLK takes precedence over FCLK */ if (smu->user_dpm_profile.clk_dependency == (BIT(SMU_FCLK) | BIT(SMU_SOCCLK))) return; smu->user_dpm_profile.clk_dependency = 0; smu->user_dpm_profile.clk_dependency = BIT(SMU_MCLK) | BIT(SMU_SOCCLK); } else if (clk == SMU_SOCCLK) { /* MCLK takes precedence over SOCCLK */ if (smu->user_dpm_profile.clk_dependency == (BIT(SMU_FCLK) | BIT(SMU_SOCCLK))) return; smu->user_dpm_profile.clk_dependency = 0; smu->user_dpm_profile.clk_dependency = BIT(SMU_MCLK) | BIT(SMU_FCLK); } else /* Add clk dependencies here, if any */ return; } /** * smu_restore_dpm_user_profile - reinstate user dpm profile * * @smu: smu_context pointer * * Restore the saved user power configurations include power limit, * clock frequencies, fan control mode and fan speed. */ static void smu_restore_dpm_user_profile(struct smu_context *smu) { struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm); int ret = 0; if (!smu->adev->in_suspend) return; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return; /* Enable restore flag */ smu->user_dpm_profile.flags |= SMU_DPM_USER_PROFILE_RESTORE; /* set the user dpm power limit */ if (smu->user_dpm_profile.power_limit) { ret = smu_set_power_limit(smu, smu->user_dpm_profile.power_limit); if (ret) dev_err(smu->adev->dev, "Failed to set power limit value\n"); } /* set the user dpm clock configurations */ if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_MANUAL) { enum smu_clk_type clk_type; for (clk_type = 0; clk_type < SMU_CLK_COUNT; clk_type++) { /* * Iterate over smu clk type and force the saved user clk * configs, skip if clock dependency is enabled */ if (!(smu->user_dpm_profile.clk_dependency & BIT(clk_type)) && smu->user_dpm_profile.clk_mask[clk_type]) { ret = smu_force_smuclk_levels(smu, clk_type, smu->user_dpm_profile.clk_mask[clk_type]); if (ret) dev_err(smu->adev->dev, "Failed to set clock type = %d\n", clk_type); } } } /* set the user dpm fan configurations */ if (smu->user_dpm_profile.fan_mode == AMD_FAN_CTRL_MANUAL || smu->user_dpm_profile.fan_mode == AMD_FAN_CTRL_NONE) { ret = smu_set_fan_control_mode(smu, smu->user_dpm_profile.fan_mode); if (ret) { smu->user_dpm_profile.fan_speed_pwm = 0; smu->user_dpm_profile.fan_speed_rpm = 0; smu->user_dpm_profile.fan_mode = AMD_FAN_CTRL_AUTO; dev_err(smu->adev->dev, "Failed to set manual fan control mode\n"); } if (smu->user_dpm_profile.fan_speed_pwm) { ret = smu_set_fan_speed_pwm(smu, smu->user_dpm_profile.fan_speed_pwm); if (ret) dev_err(smu->adev->dev, "Failed to set manual fan speed in pwm\n"); } if (smu->user_dpm_profile.fan_speed_rpm) { ret = smu_set_fan_speed_rpm(smu, smu->user_dpm_profile.fan_speed_rpm); if (ret) dev_err(smu->adev->dev, "Failed to set manual fan speed in rpm\n"); } } /* Restore user customized OD settings */ if (smu->user_dpm_profile.user_od) { if (smu->ppt_funcs->restore_user_od_settings) { ret = smu->ppt_funcs->restore_user_od_settings(smu); if (ret) dev_err(smu->adev->dev, "Failed to upload customized OD settings\n"); } } /* Disable restore flag */ smu->user_dpm_profile.flags &= ~SMU_DPM_USER_PROFILE_RESTORE; } static int smu_get_power_num_states(void *handle, struct pp_states_info *state_info) { if (!state_info) return -EINVAL; /* not support power state */ memset(state_info, 0, sizeof(struct pp_states_info)); state_info->nums = 1; state_info->states[0] = POWER_STATE_TYPE_DEFAULT; return 0; } bool is_support_sw_smu(struct amdgpu_device *adev) { if (adev->asic_type >= CHIP_ARCTURUS) return true; return false; } bool is_support_cclk_dpm(struct amdgpu_device *adev) { struct smu_context *smu = &adev->smu; if (!is_support_sw_smu(adev)) return false; if (!smu_feature_is_enabled(smu, SMU_FEATURE_CCLK_DPM_BIT)) return false; return true; } static int smu_sys_get_pp_table(void *handle, char **table) { struct smu_context *smu = handle; struct smu_table_context *smu_table = &smu->smu_table; uint32_t powerplay_table_size; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (!smu_table->power_play_table && !smu_table->hardcode_pptable) return -EINVAL; mutex_lock(&smu->mutex); if (smu_table->hardcode_pptable) *table = smu_table->hardcode_pptable; else *table = smu_table->power_play_table; powerplay_table_size = smu_table->power_play_table_size; mutex_unlock(&smu->mutex); return powerplay_table_size; } static int smu_sys_set_pp_table(void *handle, const char *buf, size_t size) { struct smu_context *smu = handle; struct smu_table_context *smu_table = &smu->smu_table; ATOM_COMMON_TABLE_HEADER *header = (ATOM_COMMON_TABLE_HEADER *)buf; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (header->usStructureSize != size) { dev_err(smu->adev->dev, "pp table size not matched !\n"); return -EIO; } mutex_lock(&smu->mutex); if (!smu_table->hardcode_pptable) smu_table->hardcode_pptable = kzalloc(size, GFP_KERNEL); if (!smu_table->hardcode_pptable) { ret = -ENOMEM; goto failed; } memcpy(smu_table->hardcode_pptable, buf, size); smu_table->power_play_table = smu_table->hardcode_pptable; smu_table->power_play_table_size = size; /* * Special hw_fini action(for Navi1x, the DPMs disablement will be * skipped) may be needed for custom pptable uploading. */ smu->uploading_custom_pp_table = true; ret = smu_reset(smu); if (ret) dev_info(smu->adev->dev, "smu reset failed, ret = %d\n", ret); smu->uploading_custom_pp_table = false; failed: mutex_unlock(&smu->mutex); return ret; } static int smu_get_driver_allowed_feature_mask(struct smu_context *smu) { struct smu_feature *feature = &smu->smu_feature; int ret = 0; uint32_t allowed_feature_mask[SMU_FEATURE_MAX/32]; bitmap_zero(feature->allowed, SMU_FEATURE_MAX); ret = smu_get_allowed_feature_mask(smu, allowed_feature_mask, SMU_FEATURE_MAX/32); if (ret) return ret; bitmap_or(feature->allowed, feature->allowed, (unsigned long *)allowed_feature_mask, feature->feature_num); return ret; } static int smu_set_funcs(struct amdgpu_device *adev) { struct smu_context *smu = &adev->smu; if (adev->pm.pp_feature & PP_OVERDRIVE_MASK) smu->od_enabled = true; switch (adev->asic_type) { case CHIP_NAVI10: case CHIP_NAVI14: case CHIP_NAVI12: navi10_set_ppt_funcs(smu); break; case CHIP_ARCTURUS: adev->pm.pp_feature &= ~PP_GFXOFF_MASK; arcturus_set_ppt_funcs(smu); /* OD is not supported on Arcturus */ smu->od_enabled =false; break; case CHIP_SIENNA_CICHLID: case CHIP_NAVY_FLOUNDER: case CHIP_DIMGREY_CAVEFISH: case CHIP_BEIGE_GOBY: sienna_cichlid_set_ppt_funcs(smu); break; case CHIP_ALDEBARAN: aldebaran_set_ppt_funcs(smu); /* Enable pp_od_clk_voltage node */ smu->od_enabled = true; break; case CHIP_RENOIR: renoir_set_ppt_funcs(smu); break; case CHIP_VANGOGH: vangogh_set_ppt_funcs(smu); break; case CHIP_YELLOW_CARP: yellow_carp_set_ppt_funcs(smu); break; case CHIP_CYAN_SKILLFISH: cyan_skillfish_set_ppt_funcs(smu); break; default: return -EINVAL; } return 0; } static int smu_early_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct smu_context *smu = &adev->smu; smu->adev = adev; smu->pm_enabled = !!amdgpu_dpm; smu->is_apu = false; mutex_init(&smu->mutex); mutex_init(&smu->smu_baco.mutex); smu->smu_baco.state = SMU_BACO_STATE_EXIT; smu->smu_baco.platform_support = false; smu->user_dpm_profile.fan_mode = -1; adev->powerplay.pp_handle = smu; adev->powerplay.pp_funcs = &swsmu_pm_funcs; return smu_set_funcs(adev); } static int smu_set_default_dpm_table(struct smu_context *smu) { struct smu_power_context *smu_power = &smu->smu_power; struct smu_power_gate *power_gate = &smu_power->power_gate; int vcn_gate, jpeg_gate; int ret = 0; if (!smu->ppt_funcs->set_default_dpm_table) return 0; mutex_lock(&power_gate->vcn_gate_lock); mutex_lock(&power_gate->jpeg_gate_lock); vcn_gate = atomic_read(&power_gate->vcn_gated); jpeg_gate = atomic_read(&power_gate->jpeg_gated); ret = smu_dpm_set_vcn_enable_locked(smu, true); if (ret) goto err0_out; ret = smu_dpm_set_jpeg_enable_locked(smu, true); if (ret) goto err1_out; ret = smu->ppt_funcs->set_default_dpm_table(smu); if (ret) dev_err(smu->adev->dev, "Failed to setup default dpm clock tables!\n"); smu_dpm_set_jpeg_enable_locked(smu, !jpeg_gate); err1_out: smu_dpm_set_vcn_enable_locked(smu, !vcn_gate); err0_out: mutex_unlock(&power_gate->jpeg_gate_lock); mutex_unlock(&power_gate->vcn_gate_lock); return ret; } static int smu_late_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct smu_context *smu = &adev->smu; int ret = 0; smu_set_fine_grain_gfx_freq_parameters(smu); if (!smu->pm_enabled) return 0; ret = smu_post_init(smu); if (ret) { dev_err(adev->dev, "Failed to post smu init!\n"); return ret; } if (adev->asic_type == CHIP_YELLOW_CARP) return 0; if (!amdgpu_sriov_vf(adev) || smu->od_enabled) { ret = smu_set_default_od_settings(smu); if (ret) { dev_err(adev->dev, "Failed to setup default OD settings!\n"); return ret; } } ret = smu_populate_umd_state_clk(smu); if (ret) { dev_err(adev->dev, "Failed to populate UMD state clocks!\n"); return ret; } ret = smu_get_asic_power_limits(smu, &smu->current_power_limit, &smu->default_power_limit, &smu->max_power_limit); if (ret) { dev_err(adev->dev, "Failed to get asic power limits!\n"); return ret; } if (!amdgpu_sriov_vf(adev)) smu_get_unique_id(smu); smu_get_fan_parameters(smu); smu_handle_task(&adev->smu, smu->smu_dpm.dpm_level, AMD_PP_TASK_COMPLETE_INIT, false); smu_restore_dpm_user_profile(smu); return 0; } static int smu_init_fb_allocations(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; struct smu_table_context *smu_table = &smu->smu_table; struct smu_table *tables = smu_table->tables; struct smu_table *driver_table = &(smu_table->driver_table); uint32_t max_table_size = 0; int ret, i; /* VRAM allocation for tool table */ if (tables[SMU_TABLE_PMSTATUSLOG].size) { ret = amdgpu_bo_create_kernel(adev, tables[SMU_TABLE_PMSTATUSLOG].size, tables[SMU_TABLE_PMSTATUSLOG].align, tables[SMU_TABLE_PMSTATUSLOG].domain, &tables[SMU_TABLE_PMSTATUSLOG].bo, &tables[SMU_TABLE_PMSTATUSLOG].mc_address, &tables[SMU_TABLE_PMSTATUSLOG].cpu_addr); if (ret) { dev_err(adev->dev, "VRAM allocation for tool table failed!\n"); return ret; } } /* VRAM allocation for driver table */ for (i = 0; i < SMU_TABLE_COUNT; i++) { if (tables[i].size == 0) continue; if (i == SMU_TABLE_PMSTATUSLOG) continue; if (max_table_size < tables[i].size) max_table_size = tables[i].size; } driver_table->size = max_table_size; driver_table->align = PAGE_SIZE; driver_table->domain = AMDGPU_GEM_DOMAIN_VRAM; ret = amdgpu_bo_create_kernel(adev, driver_table->size, driver_table->align, driver_table->domain, &driver_table->bo, &driver_table->mc_address, &driver_table->cpu_addr); if (ret) { dev_err(adev->dev, "VRAM allocation for driver table failed!\n"); if (tables[SMU_TABLE_PMSTATUSLOG].mc_address) amdgpu_bo_free_kernel(&tables[SMU_TABLE_PMSTATUSLOG].bo, &tables[SMU_TABLE_PMSTATUSLOG].mc_address, &tables[SMU_TABLE_PMSTATUSLOG].cpu_addr); } return ret; } static int smu_fini_fb_allocations(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; struct smu_table *tables = smu_table->tables; struct smu_table *driver_table = &(smu_table->driver_table); if (tables[SMU_TABLE_PMSTATUSLOG].mc_address) amdgpu_bo_free_kernel(&tables[SMU_TABLE_PMSTATUSLOG].bo, &tables[SMU_TABLE_PMSTATUSLOG].mc_address, &tables[SMU_TABLE_PMSTATUSLOG].cpu_addr); amdgpu_bo_free_kernel(&driver_table->bo, &driver_table->mc_address, &driver_table->cpu_addr); return 0; } /** * smu_alloc_memory_pool - allocate memory pool in the system memory * * @smu: amdgpu_device pointer * * This memory pool will be used for SMC use and msg SetSystemVirtualDramAddr * and DramLogSetDramAddr can notify it changed. * * Returns 0 on success, error on failure. */ static int smu_alloc_memory_pool(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; struct smu_table_context *smu_table = &smu->smu_table; struct smu_table *memory_pool = &smu_table->memory_pool; uint64_t pool_size = smu->pool_size; int ret = 0; if (pool_size == SMU_MEMORY_POOL_SIZE_ZERO) return ret; memory_pool->size = pool_size; memory_pool->align = PAGE_SIZE; memory_pool->domain = AMDGPU_GEM_DOMAIN_GTT; switch (pool_size) { case SMU_MEMORY_POOL_SIZE_256_MB: case SMU_MEMORY_POOL_SIZE_512_MB: case SMU_MEMORY_POOL_SIZE_1_GB: case SMU_MEMORY_POOL_SIZE_2_GB: ret = amdgpu_bo_create_kernel(adev, memory_pool->size, memory_pool->align, memory_pool->domain, &memory_pool->bo, &memory_pool->mc_address, &memory_pool->cpu_addr); if (ret) dev_err(adev->dev, "VRAM allocation for dramlog failed!\n"); break; default: break; } return ret; } static int smu_free_memory_pool(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; struct smu_table *memory_pool = &smu_table->memory_pool; if (memory_pool->size == SMU_MEMORY_POOL_SIZE_ZERO) return 0; amdgpu_bo_free_kernel(&memory_pool->bo, &memory_pool->mc_address, &memory_pool->cpu_addr); memset(memory_pool, 0, sizeof(struct smu_table)); return 0; } static int smu_alloc_dummy_read_table(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; struct smu_table *dummy_read_1_table = &smu_table->dummy_read_1_table; struct amdgpu_device *adev = smu->adev; int ret = 0; dummy_read_1_table->size = 0x40000; dummy_read_1_table->align = PAGE_SIZE; dummy_read_1_table->domain = AMDGPU_GEM_DOMAIN_VRAM; ret = amdgpu_bo_create_kernel(adev, dummy_read_1_table->size, dummy_read_1_table->align, dummy_read_1_table->domain, &dummy_read_1_table->bo, &dummy_read_1_table->mc_address, &dummy_read_1_table->cpu_addr); if (ret) dev_err(adev->dev, "VRAM allocation for dummy read table failed!\n"); return ret; } static void smu_free_dummy_read_table(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; struct smu_table *dummy_read_1_table = &smu_table->dummy_read_1_table; amdgpu_bo_free_kernel(&dummy_read_1_table->bo, &dummy_read_1_table->mc_address, &dummy_read_1_table->cpu_addr); memset(dummy_read_1_table, 0, sizeof(struct smu_table)); } static int smu_smc_table_sw_init(struct smu_context *smu) { int ret; /** * Create smu_table structure, and init smc tables such as * TABLE_PPTABLE, TABLE_WATERMARKS, TABLE_SMU_METRICS, and etc. */ ret = smu_init_smc_tables(smu); if (ret) { dev_err(smu->adev->dev, "Failed to init smc tables!\n"); return ret; } /** * Create smu_power_context structure, and allocate smu_dpm_context and * context size to fill the smu_power_context data. */ ret = smu_init_power(smu); if (ret) { dev_err(smu->adev->dev, "Failed to init smu_init_power!\n"); return ret; } /* * allocate vram bos to store smc table contents. */ ret = smu_init_fb_allocations(smu); if (ret) return ret; ret = smu_alloc_memory_pool(smu); if (ret) return ret; ret = smu_alloc_dummy_read_table(smu); if (ret) return ret; ret = smu_i2c_init(smu, &smu->adev->pm.smu_i2c); if (ret) return ret; return 0; } static int smu_smc_table_sw_fini(struct smu_context *smu) { int ret; smu_i2c_fini(smu, &smu->adev->pm.smu_i2c); smu_free_dummy_read_table(smu); ret = smu_free_memory_pool(smu); if (ret) return ret; ret = smu_fini_fb_allocations(smu); if (ret) return ret; ret = smu_fini_power(smu); if (ret) { dev_err(smu->adev->dev, "Failed to init smu_fini_power!\n"); return ret; } ret = smu_fini_smc_tables(smu); if (ret) { dev_err(smu->adev->dev, "Failed to smu_fini_smc_tables!\n"); return ret; } return 0; } static void smu_throttling_logging_work_fn(struct work_struct *work) { struct smu_context *smu = container_of(work, struct smu_context, throttling_logging_work); smu_log_thermal_throttling(smu); } static void smu_interrupt_work_fn(struct work_struct *work) { struct smu_context *smu = container_of(work, struct smu_context, interrupt_work); mutex_lock(&smu->mutex); if (smu->ppt_funcs && smu->ppt_funcs->interrupt_work) smu->ppt_funcs->interrupt_work(smu); mutex_unlock(&smu->mutex); } static int smu_sw_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct smu_context *smu = &adev->smu; int ret; smu->pool_size = adev->pm.smu_prv_buffer_size; smu->smu_feature.feature_num = SMU_FEATURE_MAX; mutex_init(&smu->smu_feature.mutex); bitmap_zero(smu->smu_feature.supported, SMU_FEATURE_MAX); bitmap_zero(smu->smu_feature.enabled, SMU_FEATURE_MAX); bitmap_zero(smu->smu_feature.allowed, SMU_FEATURE_MAX); mutex_init(&smu->sensor_lock); mutex_init(&smu->metrics_lock); mutex_init(&smu->message_lock); INIT_WORK(&smu->throttling_logging_work, smu_throttling_logging_work_fn); INIT_WORK(&smu->interrupt_work, smu_interrupt_work_fn); atomic64_set(&smu->throttle_int_counter, 0); smu->watermarks_bitmap = 0; smu->power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT; smu->default_power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT; atomic_set(&smu->smu_power.power_gate.vcn_gated, 1); atomic_set(&smu->smu_power.power_gate.jpeg_gated, 1); mutex_init(&smu->smu_power.power_gate.vcn_gate_lock); mutex_init(&smu->smu_power.power_gate.jpeg_gate_lock); smu->workload_mask = 1 << smu->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT]; smu->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT] = 0; smu->workload_prority[PP_SMC_POWER_PROFILE_FULLSCREEN3D] = 1; smu->workload_prority[PP_SMC_POWER_PROFILE_POWERSAVING] = 2; smu->workload_prority[PP_SMC_POWER_PROFILE_VIDEO] = 3; smu->workload_prority[PP_SMC_POWER_PROFILE_VR] = 4; smu->workload_prority[PP_SMC_POWER_PROFILE_COMPUTE] = 5; smu->workload_prority[PP_SMC_POWER_PROFILE_CUSTOM] = 6; smu->workload_setting[0] = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT; smu->workload_setting[1] = PP_SMC_POWER_PROFILE_FULLSCREEN3D; smu->workload_setting[2] = PP_SMC_POWER_PROFILE_POWERSAVING; smu->workload_setting[3] = PP_SMC_POWER_PROFILE_VIDEO; smu->workload_setting[4] = PP_SMC_POWER_PROFILE_VR; smu->workload_setting[5] = PP_SMC_POWER_PROFILE_COMPUTE; smu->workload_setting[6] = PP_SMC_POWER_PROFILE_CUSTOM; smu->display_config = &adev->pm.pm_display_cfg; smu->smu_dpm.dpm_level = AMD_DPM_FORCED_LEVEL_AUTO; smu->smu_dpm.requested_dpm_level = AMD_DPM_FORCED_LEVEL_AUTO; ret = smu_init_microcode(smu); if (ret) { dev_err(adev->dev, "Failed to load smu firmware!\n"); return ret; } ret = smu_smc_table_sw_init(smu); if (ret) { dev_err(adev->dev, "Failed to sw init smc table!\n"); return ret; } ret = smu_register_irq_handler(smu); if (ret) { dev_err(adev->dev, "Failed to register smc irq handler!\n"); return ret; } /* If there is no way to query fan control mode, fan control is not supported */ if (!smu->ppt_funcs->get_fan_control_mode) smu->adev->pm.no_fan = true; return 0; } static int smu_sw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct smu_context *smu = &adev->smu; int ret; ret = smu_smc_table_sw_fini(smu); if (ret) { dev_err(adev->dev, "Failed to sw fini smc table!\n"); return ret; } smu_fini_microcode(smu); return 0; } static int smu_get_thermal_temperature_range(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; struct smu_temperature_range *range = &smu->thermal_range; int ret = 0; if (!smu->ppt_funcs->get_thermal_temperature_range) return 0; ret = smu->ppt_funcs->get_thermal_temperature_range(smu, range); if (ret) return ret; adev->pm.dpm.thermal.min_temp = range->min; adev->pm.dpm.thermal.max_temp = range->max; adev->pm.dpm.thermal.max_edge_emergency_temp = range->edge_emergency_max; adev->pm.dpm.thermal.min_hotspot_temp = range->hotspot_min; adev->pm.dpm.thermal.max_hotspot_crit_temp = range->hotspot_crit_max; adev->pm.dpm.thermal.max_hotspot_emergency_temp = range->hotspot_emergency_max; adev->pm.dpm.thermal.min_mem_temp = range->mem_min; adev->pm.dpm.thermal.max_mem_crit_temp = range->mem_crit_max; adev->pm.dpm.thermal.max_mem_emergency_temp = range->mem_emergency_max; return ret; } static int smu_smc_hw_setup(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; uint32_t pcie_gen = 0, pcie_width = 0; int ret = 0; if (adev->in_suspend && smu_is_dpm_running(smu)) { dev_info(adev->dev, "dpm has been enabled\n"); /* this is needed specifically */ if ((adev->asic_type >= CHIP_SIENNA_CICHLID) && (adev->asic_type <= CHIP_DIMGREY_CAVEFISH)) ret = smu_system_features_control(smu, true); return ret; } ret = smu_init_display_count(smu, 0); if (ret) { dev_info(adev->dev, "Failed to pre-set display count as 0!\n"); return ret; } ret = smu_set_driver_table_location(smu); if (ret) { dev_err(adev->dev, "Failed to SetDriverDramAddr!\n"); return ret; } /* * Set PMSTATUSLOG table bo address with SetToolsDramAddr MSG for tools. */ ret = smu_set_tool_table_location(smu); if (ret) { dev_err(adev->dev, "Failed to SetToolsDramAddr!\n"); return ret; } /* * Use msg SetSystemVirtualDramAddr and DramLogSetDramAddr can notify * pool location. */ ret = smu_notify_memory_pool_location(smu); if (ret) { dev_err(adev->dev, "Failed to SetDramLogDramAddr!\n"); return ret; } /* smu_dump_pptable(smu); */ /* * Copy pptable bo in the vram to smc with SMU MSGs such as * SetDriverDramAddr and TransferTableDram2Smu. */ ret = smu_write_pptable(smu); if (ret) { dev_err(adev->dev, "Failed to transfer pptable to SMC!\n"); return ret; } /* issue Run*Btc msg */ ret = smu_run_btc(smu); if (ret) return ret; ret = smu_feature_set_allowed_mask(smu); if (ret) { dev_err(adev->dev, "Failed to set driver allowed features mask!\n"); return ret; } ret = smu_system_features_control(smu, true); if (ret) { dev_err(adev->dev, "Failed to enable requested dpm features!\n"); return ret; } if (!smu_is_dpm_running(smu)) dev_info(adev->dev, "dpm has been disabled\n"); if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4) pcie_gen = 3; else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3) pcie_gen = 2; else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2) pcie_gen = 1; else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1) pcie_gen = 0; /* Bit 31:16: LCLK DPM level. 0 is DPM0, and 1 is DPM1 * Bit 15:8: PCIE GEN, 0 to 3 corresponds to GEN1 to GEN4 * Bit 7:0: PCIE lane width, 1 to 7 corresponds is x1 to x32 */ if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X16) pcie_width = 6; else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X12) pcie_width = 5; else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X8) pcie_width = 4; else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X4) pcie_width = 3; else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X2) pcie_width = 2; else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X1) pcie_width = 1; ret = smu_update_pcie_parameters(smu, pcie_gen, pcie_width); if (ret) { dev_err(adev->dev, "Attempt to override pcie params failed!\n"); return ret; } ret = smu_get_thermal_temperature_range(smu); if (ret) { dev_err(adev->dev, "Failed to get thermal temperature ranges!\n"); return ret; } ret = smu_enable_thermal_alert(smu); if (ret) { dev_err(adev->dev, "Failed to enable thermal alert!\n"); return ret; } /* * Set initialized values (get from vbios) to dpm tables context such as * gfxclk, memclk, dcefclk, and etc. And enable the DPM feature for each * type of clks. */ ret = smu_set_default_dpm_table(smu); if (ret) { dev_err(adev->dev, "Failed to setup default dpm clock tables!\n"); return ret; } ret = smu_notify_display_change(smu); if (ret) return ret; /* * Set min deep sleep dce fclk with bootup value from vbios via * SetMinDeepSleepDcefclk MSG. */ ret = smu_set_min_dcef_deep_sleep(smu, smu->smu_table.boot_values.dcefclk / 100); if (ret) return ret; return ret; } static int smu_start_smc_engine(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; int ret = 0; if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) { if (adev->asic_type < CHIP_NAVI10) { if (smu->ppt_funcs->load_microcode) { ret = smu->ppt_funcs->load_microcode(smu); if (ret) return ret; } } } if (smu->ppt_funcs->check_fw_status) { ret = smu->ppt_funcs->check_fw_status(smu); if (ret) { dev_err(adev->dev, "SMC is not ready\n"); return ret; } } /* * Send msg GetDriverIfVersion to check if the return value is equal * with DRIVER_IF_VERSION of smc header. */ ret = smu_check_fw_version(smu); if (ret) return ret; return ret; } static int smu_hw_init(void *handle) { int ret; struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct smu_context *smu = &adev->smu; if (amdgpu_sriov_vf(adev) && !amdgpu_sriov_is_pp_one_vf(adev)) { smu->pm_enabled = false; return 0; } ret = smu_start_smc_engine(smu); if (ret) { dev_err(adev->dev, "SMC engine is not correctly up!\n"); return ret; } if (smu->is_apu) { smu_powergate_sdma(&adev->smu, false); smu_dpm_set_vcn_enable(smu, true); smu_dpm_set_jpeg_enable(smu, true); smu_set_gfx_cgpg(&adev->smu, true); } if (!smu->pm_enabled) return 0; /* get boot_values from vbios to set revision, gfxclk, and etc. */ ret = smu_get_vbios_bootup_values(smu); if (ret) { dev_err(adev->dev, "Failed to get VBIOS boot clock values!\n"); return ret; } ret = smu_setup_pptable(smu); if (ret) { dev_err(adev->dev, "Failed to setup pptable!\n"); return ret; } ret = smu_get_driver_allowed_feature_mask(smu); if (ret) return ret; ret = smu_smc_hw_setup(smu); if (ret) { dev_err(adev->dev, "Failed to setup smc hw!\n"); return ret; } /* * Move maximum sustainable clock retrieving here considering * 1. It is not needed on resume(from S3). * 2. DAL settings come between .hw_init and .late_init of SMU. * And DAL needs to know the maximum sustainable clocks. Thus * it cannot be put in .late_init(). */ ret = smu_init_max_sustainable_clocks(smu); if (ret) { dev_err(adev->dev, "Failed to init max sustainable clocks!\n"); return ret; } adev->pm.dpm_enabled = true; dev_info(adev->dev, "SMU is initialized successfully!\n"); return 0; } static int smu_disable_dpms(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; int ret = 0; bool use_baco = !smu->is_apu && ((amdgpu_in_reset(adev) && (amdgpu_asic_reset_method(adev) == AMD_RESET_METHOD_BACO)) || ((adev->in_runpm || adev->in_s4) && amdgpu_asic_supports_baco(adev))); /* * For custom pptable uploading, skip the DPM features * disable process on Navi1x ASICs. * - As the gfx related features are under control of * RLC on those ASICs. RLC reinitialization will be * needed to reenable them. That will cost much more * efforts. * * - SMU firmware can handle the DPM reenablement * properly. */ if (smu->uploading_custom_pp_table && (adev->asic_type >= CHIP_NAVI10) && (adev->asic_type <= CHIP_BEIGE_GOBY)) return smu_disable_all_features_with_exception(smu, true, SMU_FEATURE_COUNT); /* * For Sienna_Cichlid, PMFW will handle the features disablement properly * on BACO in. Driver involvement is unnecessary. */ if (((adev->asic_type == CHIP_SIENNA_CICHLID) || ((adev->asic_type >= CHIP_NAVI10) && (adev->asic_type <= CHIP_NAVI12))) && use_baco) return smu_disable_all_features_with_exception(smu, true, SMU_FEATURE_BACO_BIT); /* * For gpu reset, runpm and hibernation through BACO, * BACO feature has to be kept enabled. */ if (use_baco && smu_feature_is_enabled(smu, SMU_FEATURE_BACO_BIT)) { ret = smu_disable_all_features_with_exception(smu, false, SMU_FEATURE_BACO_BIT); if (ret) dev_err(adev->dev, "Failed to disable smu features except BACO.\n"); } else { ret = smu_system_features_control(smu, false); if (ret) dev_err(adev->dev, "Failed to disable smu features.\n"); } if (adev->asic_type >= CHIP_NAVI10 && adev->gfx.rlc.funcs->stop) adev->gfx.rlc.funcs->stop(adev); return ret; } static int smu_smc_hw_cleanup(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; int ret = 0; cancel_work_sync(&smu->throttling_logging_work); cancel_work_sync(&smu->interrupt_work); ret = smu_disable_thermal_alert(smu); if (ret) { dev_err(adev->dev, "Fail to disable thermal alert!\n"); return ret; } ret = smu_disable_dpms(smu); if (ret) { dev_err(adev->dev, "Fail to disable dpm features!\n"); return ret; } return 0; } static int smu_hw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct smu_context *smu = &adev->smu; if (amdgpu_sriov_vf(adev)&& !amdgpu_sriov_is_pp_one_vf(adev)) return 0; if (smu->is_apu) { smu_powergate_sdma(&adev->smu, true); } smu_dpm_set_vcn_enable(smu, false); smu_dpm_set_jpeg_enable(smu, false); adev->vcn.cur_state = AMD_PG_STATE_GATE; adev->jpeg.cur_state = AMD_PG_STATE_GATE; if (!smu->pm_enabled) return 0; adev->pm.dpm_enabled = false; return smu_smc_hw_cleanup(smu); } static int smu_reset(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; int ret; amdgpu_gfx_off_ctrl(smu->adev, false); ret = smu_hw_fini(adev); if (ret) return ret; ret = smu_hw_init(adev); if (ret) return ret; ret = smu_late_init(adev); if (ret) return ret; amdgpu_gfx_off_ctrl(smu->adev, true); return 0; } static int smu_suspend(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct smu_context *smu = &adev->smu; int ret; if (amdgpu_sriov_vf(adev)&& !amdgpu_sriov_is_pp_one_vf(adev)) return 0; if (!smu->pm_enabled) return 0; adev->pm.dpm_enabled = false; ret = smu_smc_hw_cleanup(smu); if (ret) return ret; smu->watermarks_bitmap &= ~(WATERMARKS_LOADED); smu_set_gfx_cgpg(&adev->smu, false); return 0; } static int smu_resume(void *handle) { int ret; struct amdgpu_device *adev = (struct amdgpu_device *)handle; struct smu_context *smu = &adev->smu; if (amdgpu_sriov_vf(adev)&& !amdgpu_sriov_is_pp_one_vf(adev)) return 0; if (!smu->pm_enabled) return 0; dev_info(adev->dev, "SMU is resuming...\n"); ret = smu_start_smc_engine(smu); if (ret) { dev_err(adev->dev, "SMC engine is not correctly up!\n"); return ret; } ret = smu_smc_hw_setup(smu); if (ret) { dev_err(adev->dev, "Failed to setup smc hw!\n"); return ret; } smu_set_gfx_cgpg(&adev->smu, true); smu->disable_uclk_switch = 0; adev->pm.dpm_enabled = true; dev_info(adev->dev, "SMU is resumed successfully!\n"); return 0; } static int smu_display_configuration_change(void *handle, const struct amd_pp_display_configuration *display_config) { struct smu_context *smu = handle; int index = 0; int num_of_active_display = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (!display_config) return -EINVAL; mutex_lock(&smu->mutex); smu_set_min_dcef_deep_sleep(smu, display_config->min_dcef_deep_sleep_set_clk / 100); for (index = 0; index < display_config->num_path_including_non_display; index++) { if (display_config->displays[index].controller_id != 0) num_of_active_display++; } mutex_unlock(&smu->mutex); return 0; } static int smu_set_clockgating_state(void *handle, enum amd_clockgating_state state) { return 0; } static int smu_set_powergating_state(void *handle, enum amd_powergating_state state) { return 0; } static int smu_enable_umd_pstate(void *handle, enum amd_dpm_forced_level *level) { uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD | AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK | AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK | AMD_DPM_FORCED_LEVEL_PROFILE_PEAK; struct smu_context *smu = (struct smu_context*)(handle); struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm); if (!smu->is_apu && !smu_dpm_ctx->dpm_context) return -EINVAL; if (!(smu_dpm_ctx->dpm_level & profile_mode_mask)) { /* enter umd pstate, save current level, disable gfx cg*/ if (*level & profile_mode_mask) { smu_dpm_ctx->saved_dpm_level = smu_dpm_ctx->dpm_level; smu_dpm_ctx->enable_umd_pstate = true; smu_gpo_control(smu, false); amdgpu_device_ip_set_powergating_state(smu->adev, AMD_IP_BLOCK_TYPE_GFX, AMD_PG_STATE_UNGATE); amdgpu_device_ip_set_clockgating_state(smu->adev, AMD_IP_BLOCK_TYPE_GFX, AMD_CG_STATE_UNGATE); smu_gfx_ulv_control(smu, false); smu_deep_sleep_control(smu, false); amdgpu_asic_update_umd_stable_pstate(smu->adev, true); } } else { /* exit umd pstate, restore level, enable gfx cg*/ if (!(*level & profile_mode_mask)) { if (*level == AMD_DPM_FORCED_LEVEL_PROFILE_EXIT) *level = smu_dpm_ctx->saved_dpm_level; smu_dpm_ctx->enable_umd_pstate = false; amdgpu_asic_update_umd_stable_pstate(smu->adev, false); smu_deep_sleep_control(smu, true); smu_gfx_ulv_control(smu, true); amdgpu_device_ip_set_clockgating_state(smu->adev, AMD_IP_BLOCK_TYPE_GFX, AMD_CG_STATE_GATE); amdgpu_device_ip_set_powergating_state(smu->adev, AMD_IP_BLOCK_TYPE_GFX, AMD_PG_STATE_GATE); smu_gpo_control(smu, true); } } return 0; } static int smu_bump_power_profile_mode(struct smu_context *smu, long *param, uint32_t param_size) { int ret = 0; if (smu->ppt_funcs->set_power_profile_mode) ret = smu->ppt_funcs->set_power_profile_mode(smu, param, param_size); return ret; } static int smu_adjust_power_state_dynamic(struct smu_context *smu, enum amd_dpm_forced_level level, bool skip_display_settings) { int ret = 0; int index = 0; long workload; struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm); if (!skip_display_settings) { ret = smu_display_config_changed(smu); if (ret) { dev_err(smu->adev->dev, "Failed to change display config!"); return ret; } } ret = smu_apply_clocks_adjust_rules(smu); if (ret) { dev_err(smu->adev->dev, "Failed to apply clocks adjust rules!"); return ret; } if (!skip_display_settings) { ret = smu_notify_smc_display_config(smu); if (ret) { dev_err(smu->adev->dev, "Failed to notify smc display config!"); return ret; } } if (smu_dpm_ctx->dpm_level != level) { ret = smu_asic_set_performance_level(smu, level); if (ret) { dev_err(smu->adev->dev, "Failed to set performance level!"); return ret; } /* update the saved copy */ smu_dpm_ctx->dpm_level = level; } if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL && smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM) { index = fls(smu->workload_mask); index = index > 0 && index <= WORKLOAD_POLICY_MAX ? index - 1 : 0; workload = smu->workload_setting[index]; if (smu->power_profile_mode != workload) smu_bump_power_profile_mode(smu, &workload, 0); } return ret; } static int smu_handle_task(struct smu_context *smu, enum amd_dpm_forced_level level, enum amd_pp_task task_id, bool lock_needed) { int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (lock_needed) mutex_lock(&smu->mutex); switch (task_id) { case AMD_PP_TASK_DISPLAY_CONFIG_CHANGE: ret = smu_pre_display_config_changed(smu); if (ret) goto out; ret = smu_adjust_power_state_dynamic(smu, level, false); break; case AMD_PP_TASK_COMPLETE_INIT: case AMD_PP_TASK_READJUST_POWER_STATE: ret = smu_adjust_power_state_dynamic(smu, level, true); break; default: break; } out: if (lock_needed) mutex_unlock(&smu->mutex); return ret; } static int smu_handle_dpm_task(void *handle, enum amd_pp_task task_id, enum amd_pm_state_type *user_state) { struct smu_context *smu = handle; struct smu_dpm_context *smu_dpm = &smu->smu_dpm; return smu_handle_task(smu, smu_dpm->dpm_level, task_id, true); } static int smu_switch_power_profile(void *handle, enum PP_SMC_POWER_PROFILE type, bool en) { struct smu_context *smu = handle; struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm); long workload; uint32_t index; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (!(type < PP_SMC_POWER_PROFILE_CUSTOM)) return -EINVAL; mutex_lock(&smu->mutex); if (!en) { smu->workload_mask &= ~(1 << smu->workload_prority[type]); index = fls(smu->workload_mask); index = index > 0 && index <= WORKLOAD_POLICY_MAX ? index - 1 : 0; workload = smu->workload_setting[index]; } else { smu->workload_mask |= (1 << smu->workload_prority[type]); index = fls(smu->workload_mask); index = index <= WORKLOAD_POLICY_MAX ? index - 1 : 0; workload = smu->workload_setting[index]; } if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL && smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM) smu_bump_power_profile_mode(smu, &workload, 0); mutex_unlock(&smu->mutex); return 0; } static enum amd_dpm_forced_level smu_get_performance_level(void *handle) { struct smu_context *smu = handle; struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm); enum amd_dpm_forced_level level; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (!smu->is_apu && !smu_dpm_ctx->dpm_context) return -EINVAL; mutex_lock(&(smu->mutex)); level = smu_dpm_ctx->dpm_level; mutex_unlock(&(smu->mutex)); return level; } static int smu_force_performance_level(void *handle, enum amd_dpm_forced_level level) { struct smu_context *smu = handle; struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm); int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (!smu->is_apu && !smu_dpm_ctx->dpm_context) return -EINVAL; mutex_lock(&smu->mutex); ret = smu_enable_umd_pstate(smu, &level); if (ret) { mutex_unlock(&smu->mutex); return ret; } ret = smu_handle_task(smu, level, AMD_PP_TASK_READJUST_POWER_STATE, false); mutex_unlock(&smu->mutex); /* reset user dpm clock state */ if (!ret && smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) { memset(smu->user_dpm_profile.clk_mask, 0, sizeof(smu->user_dpm_profile.clk_mask)); smu->user_dpm_profile.clk_dependency = 0; } return ret; } static int smu_set_display_count(void *handle, uint32_t count) { struct smu_context *smu = handle; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; mutex_lock(&smu->mutex); ret = smu_init_display_count(smu, count); mutex_unlock(&smu->mutex); return ret; } static int smu_force_smuclk_levels(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t mask) { struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm); int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) { dev_dbg(smu->adev->dev, "force clock level is for dpm manual mode only.\n"); return -EINVAL; } mutex_lock(&smu->mutex); if (smu->ppt_funcs && smu->ppt_funcs->force_clk_levels) { ret = smu->ppt_funcs->force_clk_levels(smu, clk_type, mask); if (!ret && !(smu->user_dpm_profile.flags & SMU_DPM_USER_PROFILE_RESTORE)) { smu->user_dpm_profile.clk_mask[clk_type] = mask; smu_set_user_clk_dependencies(smu, clk_type); } } mutex_unlock(&smu->mutex); return ret; } static int smu_force_ppclk_levels(void *handle, enum pp_clock_type type, uint32_t mask) { struct smu_context *smu = handle; enum smu_clk_type clk_type; switch (type) { case PP_SCLK: clk_type = SMU_SCLK; break; case PP_MCLK: clk_type = SMU_MCLK; break; case PP_PCIE: clk_type = SMU_PCIE; break; case PP_SOCCLK: clk_type = SMU_SOCCLK; break; case PP_FCLK: clk_type = SMU_FCLK; break; case PP_DCEFCLK: clk_type = SMU_DCEFCLK; break; case PP_VCLK: clk_type = SMU_VCLK; break; case PP_DCLK: clk_type = SMU_DCLK; break; case OD_SCLK: clk_type = SMU_OD_SCLK; break; case OD_MCLK: clk_type = SMU_OD_MCLK; break; case OD_VDDC_CURVE: clk_type = SMU_OD_VDDC_CURVE; break; case OD_RANGE: clk_type = SMU_OD_RANGE; break; default: return -EINVAL; } return smu_force_smuclk_levels(smu, clk_type, mask); } /* * On system suspending or resetting, the dpm_enabled * flag will be cleared. So that those SMU services which * are not supported will be gated. * However, the mp1 state setting should still be granted * even if the dpm_enabled cleared. */ static int smu_set_mp1_state(void *handle, enum pp_mp1_state mp1_state) { struct smu_context *smu = handle; int ret = 0; if (!smu->pm_enabled) return -EOPNOTSUPP; mutex_lock(&smu->mutex); if (smu->ppt_funcs && smu->ppt_funcs->set_mp1_state) ret = smu->ppt_funcs->set_mp1_state(smu, mp1_state); mutex_unlock(&smu->mutex); return ret; } static int smu_set_df_cstate(void *handle, enum pp_df_cstate state) { struct smu_context *smu = handle; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (!smu->ppt_funcs || !smu->ppt_funcs->set_df_cstate) return 0; mutex_lock(&smu->mutex); ret = smu->ppt_funcs->set_df_cstate(smu, state); if (ret) dev_err(smu->adev->dev, "[SetDfCstate] failed!\n"); mutex_unlock(&smu->mutex); return ret; } int smu_allow_xgmi_power_down(struct smu_context *smu, bool en) { int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (!smu->ppt_funcs || !smu->ppt_funcs->allow_xgmi_power_down) return 0; mutex_lock(&smu->mutex); ret = smu->ppt_funcs->allow_xgmi_power_down(smu, en); if (ret) dev_err(smu->adev->dev, "[AllowXgmiPowerDown] failed!\n"); mutex_unlock(&smu->mutex); return ret; } int smu_write_watermarks_table(struct smu_context *smu) { int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; mutex_lock(&smu->mutex); ret = smu_set_watermarks_table(smu, NULL); mutex_unlock(&smu->mutex); return ret; } static int smu_set_watermarks_for_clock_ranges(void *handle, struct pp_smu_wm_range_sets *clock_ranges) { struct smu_context *smu = handle; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (smu->disable_watermark) return 0; mutex_lock(&smu->mutex); ret = smu_set_watermarks_table(smu, clock_ranges); mutex_unlock(&smu->mutex); return ret; } int smu_set_ac_dc(struct smu_context *smu) { int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; /* controlled by firmware */ if (smu->dc_controlled_by_gpio) return 0; mutex_lock(&smu->mutex); ret = smu_set_power_source(smu, smu->adev->pm.ac_power ? SMU_POWER_SOURCE_AC : SMU_POWER_SOURCE_DC); if (ret) dev_err(smu->adev->dev, "Failed to switch to %s mode!\n", smu->adev->pm.ac_power ? "AC" : "DC"); mutex_unlock(&smu->mutex); return ret; } const struct amd_ip_funcs smu_ip_funcs = { .name = "smu", .early_init = smu_early_init, .late_init = smu_late_init, .sw_init = smu_sw_init, .sw_fini = smu_sw_fini, .hw_init = smu_hw_init, .hw_fini = smu_hw_fini, .suspend = smu_suspend, .resume = smu_resume, .is_idle = NULL, .check_soft_reset = NULL, .wait_for_idle = NULL, .soft_reset = NULL, .set_clockgating_state = smu_set_clockgating_state, .set_powergating_state = smu_set_powergating_state, .enable_umd_pstate = smu_enable_umd_pstate, }; const struct amdgpu_ip_block_version smu_v11_0_ip_block = { .type = AMD_IP_BLOCK_TYPE_SMC, .major = 11, .minor = 0, .rev = 0, .funcs = &smu_ip_funcs, }; const struct amdgpu_ip_block_version smu_v12_0_ip_block = { .type = AMD_IP_BLOCK_TYPE_SMC, .major = 12, .minor = 0, .rev = 0, .funcs = &smu_ip_funcs, }; const struct amdgpu_ip_block_version smu_v13_0_ip_block = { .type = AMD_IP_BLOCK_TYPE_SMC, .major = 13, .minor = 0, .rev = 0, .funcs = &smu_ip_funcs, }; static int smu_load_microcode(void *handle) { struct smu_context *smu = handle; struct amdgpu_device *adev = smu->adev; int ret = 0; if (!smu->pm_enabled) return -EOPNOTSUPP; /* This should be used for non PSP loading */ if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) return 0; if (smu->ppt_funcs->load_microcode) { ret = smu->ppt_funcs->load_microcode(smu); if (ret) { dev_err(adev->dev, "Load microcode failed\n"); return ret; } } if (smu->ppt_funcs->check_fw_status) { ret = smu->ppt_funcs->check_fw_status(smu); if (ret) { dev_err(adev->dev, "SMC is not ready\n"); return ret; } } return ret; } static int smu_set_gfx_cgpg(struct smu_context *smu, bool enabled) { int ret = 0; mutex_lock(&smu->mutex); if (smu->ppt_funcs->set_gfx_cgpg) ret = smu->ppt_funcs->set_gfx_cgpg(smu, enabled); mutex_unlock(&smu->mutex); return ret; } static int smu_set_fan_speed_rpm(void *handle, uint32_t speed) { struct smu_context *smu = handle; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; mutex_lock(&smu->mutex); if (smu->ppt_funcs->set_fan_speed_rpm) { ret = smu->ppt_funcs->set_fan_speed_rpm(smu, speed); if (!ret && !(smu->user_dpm_profile.flags & SMU_DPM_USER_PROFILE_RESTORE)) { smu->user_dpm_profile.flags |= SMU_CUSTOM_FAN_SPEED_RPM; smu->user_dpm_profile.fan_speed_rpm = speed; /* Override custom PWM setting as they cannot co-exist */ smu->user_dpm_profile.flags &= ~SMU_CUSTOM_FAN_SPEED_PWM; smu->user_dpm_profile.fan_speed_pwm = 0; } } mutex_unlock(&smu->mutex); return ret; } /** * smu_get_power_limit - Request one of the SMU Power Limits * * @handle: pointer to smu context * @limit: requested limit is written back to this variable * @pp_limit_level: &pp_power_limit_level which limit of the power to return * @pp_power_type: &pp_power_type type of power * Return: 0 on success, <0 on error * */ int smu_get_power_limit(void *handle, uint32_t *limit, enum pp_power_limit_level pp_limit_level, enum pp_power_type pp_power_type) { struct smu_context *smu = handle; enum smu_ppt_limit_level limit_level; uint32_t limit_type; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; switch(pp_power_type) { case PP_PWR_TYPE_SUSTAINED: limit_type = SMU_DEFAULT_PPT_LIMIT; break; case PP_PWR_TYPE_FAST: limit_type = SMU_FAST_PPT_LIMIT; break; default: return -EOPNOTSUPP; break; } switch(pp_limit_level){ case PP_PWR_LIMIT_CURRENT: limit_level = SMU_PPT_LIMIT_CURRENT; break; case PP_PWR_LIMIT_DEFAULT: limit_level = SMU_PPT_LIMIT_DEFAULT; break; case PP_PWR_LIMIT_MAX: limit_level = SMU_PPT_LIMIT_MAX; break; case PP_PWR_LIMIT_MIN: default: return -EOPNOTSUPP; break; } mutex_lock(&smu->mutex); if (limit_type != SMU_DEFAULT_PPT_LIMIT) { if (smu->ppt_funcs->get_ppt_limit) ret = smu->ppt_funcs->get_ppt_limit(smu, limit, limit_type, limit_level); } else { switch (limit_level) { case SMU_PPT_LIMIT_CURRENT: if ((smu->adev->asic_type == CHIP_ALDEBARAN) || (smu->adev->asic_type == CHIP_SIENNA_CICHLID) || (smu->adev->asic_type == CHIP_NAVY_FLOUNDER) || (smu->adev->asic_type == CHIP_DIMGREY_CAVEFISH) || (smu->adev->asic_type == CHIP_BEIGE_GOBY)) ret = smu_get_asic_power_limits(smu, &smu->current_power_limit, NULL, NULL); *limit = smu->current_power_limit; break; case SMU_PPT_LIMIT_DEFAULT: *limit = smu->default_power_limit; break; case SMU_PPT_LIMIT_MAX: *limit = smu->max_power_limit; break; default: break; } } mutex_unlock(&smu->mutex); return ret; } static int smu_set_power_limit(void *handle, uint32_t limit) { struct smu_context *smu = handle; uint32_t limit_type = limit >> 24; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; mutex_lock(&smu->mutex); if (limit_type != SMU_DEFAULT_PPT_LIMIT) if (smu->ppt_funcs->set_power_limit) { ret = smu->ppt_funcs->set_power_limit(smu, limit); goto out; } if (limit > smu->max_power_limit) { dev_err(smu->adev->dev, "New power limit (%d) is over the max allowed %d\n", limit, smu->max_power_limit); ret = -EINVAL; goto out; } if (!limit) limit = smu->current_power_limit; if (smu->ppt_funcs->set_power_limit) { ret = smu->ppt_funcs->set_power_limit(smu, limit); if (!ret && !(smu->user_dpm_profile.flags & SMU_DPM_USER_PROFILE_RESTORE)) smu->user_dpm_profile.power_limit = limit; } out: mutex_unlock(&smu->mutex); return ret; } static int smu_print_smuclk_levels(struct smu_context *smu, enum smu_clk_type clk_type, char *buf) { int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; mutex_lock(&smu->mutex); if (smu->ppt_funcs->print_clk_levels) ret = smu->ppt_funcs->print_clk_levels(smu, clk_type, buf); mutex_unlock(&smu->mutex); return ret; } static int smu_print_ppclk_levels(void *handle, enum pp_clock_type type, char *buf) { struct smu_context *smu = handle; enum smu_clk_type clk_type; switch (type) { case PP_SCLK: clk_type = SMU_SCLK; break; case PP_MCLK: clk_type = SMU_MCLK; break; case PP_PCIE: clk_type = SMU_PCIE; break; case PP_SOCCLK: clk_type = SMU_SOCCLK; break; case PP_FCLK: clk_type = SMU_FCLK; break; case PP_DCEFCLK: clk_type = SMU_DCEFCLK; break; case PP_VCLK: clk_type = SMU_VCLK; break; case PP_DCLK: clk_type = SMU_DCLK; break; case OD_SCLK: clk_type = SMU_OD_SCLK; break; case OD_MCLK: clk_type = SMU_OD_MCLK; break; case OD_VDDC_CURVE: clk_type = SMU_OD_VDDC_CURVE; break; case OD_RANGE: clk_type = SMU_OD_RANGE; break; case OD_VDDGFX_OFFSET: clk_type = SMU_OD_VDDGFX_OFFSET; break; case OD_CCLK: clk_type = SMU_OD_CCLK; break; default: return -EINVAL; } return smu_print_smuclk_levels(smu, clk_type, buf); } static int smu_od_edit_dpm_table(void *handle, enum PP_OD_DPM_TABLE_COMMAND type, long *input, uint32_t size) { struct smu_context *smu = handle; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; mutex_lock(&smu->mutex); if (smu->ppt_funcs->od_edit_dpm_table) { ret = smu->ppt_funcs->od_edit_dpm_table(smu, type, input, size); } mutex_unlock(&smu->mutex); return ret; } static int smu_read_sensor(void *handle, int sensor, void *data, int *size_arg) { struct smu_context *smu = handle; struct smu_umd_pstate_table *pstate_table = &smu->pstate_table; int ret = 0; uint32_t *size, size_val; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (!data || !size_arg) return -EINVAL; size_val = *size_arg; size = &size_val; mutex_lock(&smu->mutex); if (smu->ppt_funcs->read_sensor) if (!smu->ppt_funcs->read_sensor(smu, sensor, data, size)) goto unlock; switch (sensor) { case AMDGPU_PP_SENSOR_STABLE_PSTATE_SCLK: *((uint32_t *)data) = pstate_table->gfxclk_pstate.standard * 100; *size = 4; break; case AMDGPU_PP_SENSOR_STABLE_PSTATE_MCLK: *((uint32_t *)data) = pstate_table->uclk_pstate.standard * 100; *size = 4; break; case AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK: ret = smu_feature_get_enabled_mask(smu, (uint32_t *)data, 2); *size = 8; break; case AMDGPU_PP_SENSOR_UVD_POWER: *(uint32_t *)data = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UVD_BIT) ? 1 : 0; *size = 4; break; case AMDGPU_PP_SENSOR_VCE_POWER: *(uint32_t *)data = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_VCE_BIT) ? 1 : 0; *size = 4; break; case AMDGPU_PP_SENSOR_VCN_POWER_STATE: *(uint32_t *)data = atomic_read(&smu->smu_power.power_gate.vcn_gated) ? 0: 1; *size = 4; break; case AMDGPU_PP_SENSOR_MIN_FAN_RPM: *(uint32_t *)data = 0; *size = 4; break; default: *size = 0; ret = -EOPNOTSUPP; break; } unlock: mutex_unlock(&smu->mutex); // assign uint32_t to int *size_arg = size_val; return ret; } static int smu_get_power_profile_mode(void *handle, char *buf) { struct smu_context *smu = handle; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; mutex_lock(&smu->mutex); if (smu->ppt_funcs->get_power_profile_mode) ret = smu->ppt_funcs->get_power_profile_mode(smu, buf); mutex_unlock(&smu->mutex); return ret; } static int smu_set_power_profile_mode(void *handle, long *param, uint32_t param_size) { struct smu_context *smu = handle; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; mutex_lock(&smu->mutex); smu_bump_power_profile_mode(smu, param, param_size); mutex_unlock(&smu->mutex); return ret; } static u32 smu_get_fan_control_mode(void *handle) { struct smu_context *smu = handle; u32 ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return AMD_FAN_CTRL_NONE; mutex_lock(&smu->mutex); if (smu->ppt_funcs->get_fan_control_mode) ret = smu->ppt_funcs->get_fan_control_mode(smu); mutex_unlock(&smu->mutex); return ret; } static int smu_set_fan_control_mode(struct smu_context *smu, int value) { int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; mutex_lock(&smu->mutex); if (smu->ppt_funcs->set_fan_control_mode) { ret = smu->ppt_funcs->set_fan_control_mode(smu, value); if (!ret && !(smu->user_dpm_profile.flags & SMU_DPM_USER_PROFILE_RESTORE)) smu->user_dpm_profile.fan_mode = value; } mutex_unlock(&smu->mutex); /* reset user dpm fan speed */ if (!ret && value != AMD_FAN_CTRL_MANUAL && !(smu->user_dpm_profile.flags & SMU_DPM_USER_PROFILE_RESTORE)) { smu->user_dpm_profile.fan_speed_pwm = 0; smu->user_dpm_profile.fan_speed_rpm = 0; smu->user_dpm_profile.flags &= ~(SMU_CUSTOM_FAN_SPEED_RPM | SMU_CUSTOM_FAN_SPEED_PWM); } return ret; } static void smu_pp_set_fan_control_mode(void *handle, u32 value) { struct smu_context *smu = handle; smu_set_fan_control_mode(smu, value); } static int smu_get_fan_speed_pwm(void *handle, u32 *speed) { struct smu_context *smu = handle; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; mutex_lock(&smu->mutex); if (smu->ppt_funcs->get_fan_speed_pwm) ret = smu->ppt_funcs->get_fan_speed_pwm(smu, speed); mutex_unlock(&smu->mutex); return ret; } static int smu_set_fan_speed_pwm(void *handle, u32 speed) { struct smu_context *smu = handle; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; mutex_lock(&smu->mutex); if (smu->ppt_funcs->set_fan_speed_pwm) { ret = smu->ppt_funcs->set_fan_speed_pwm(smu, speed); if (!ret && !(smu->user_dpm_profile.flags & SMU_DPM_USER_PROFILE_RESTORE)) { smu->user_dpm_profile.flags |= SMU_CUSTOM_FAN_SPEED_PWM; smu->user_dpm_profile.fan_speed_pwm = speed; /* Override custom RPM setting as they cannot co-exist */ smu->user_dpm_profile.flags &= ~SMU_CUSTOM_FAN_SPEED_RPM; smu->user_dpm_profile.fan_speed_rpm = 0; } } mutex_unlock(&smu->mutex); return ret; } static int smu_get_fan_speed_rpm(void *handle, uint32_t *speed) { struct smu_context *smu = handle; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; mutex_lock(&smu->mutex); if (smu->ppt_funcs->get_fan_speed_rpm) ret = smu->ppt_funcs->get_fan_speed_rpm(smu, speed); mutex_unlock(&smu->mutex); return ret; } static int smu_set_deep_sleep_dcefclk(void *handle, uint32_t clk) { struct smu_context *smu = handle; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; mutex_lock(&smu->mutex); ret = smu_set_min_dcef_deep_sleep(smu, clk); mutex_unlock(&smu->mutex); return ret; } static int smu_get_clock_by_type_with_latency(void *handle, enum amd_pp_clock_type type, struct pp_clock_levels_with_latency *clocks) { struct smu_context *smu = handle; enum smu_clk_type clk_type; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; mutex_lock(&smu->mutex); if (smu->ppt_funcs->get_clock_by_type_with_latency) { switch (type) { case amd_pp_sys_clock: clk_type = SMU_GFXCLK; break; case amd_pp_mem_clock: clk_type = SMU_MCLK; break; case amd_pp_dcef_clock: clk_type = SMU_DCEFCLK; break; case amd_pp_disp_clock: clk_type = SMU_DISPCLK; break; default: dev_err(smu->adev->dev, "Invalid clock type!\n"); mutex_unlock(&smu->mutex); return -EINVAL; } ret = smu->ppt_funcs->get_clock_by_type_with_latency(smu, clk_type, clocks); } mutex_unlock(&smu->mutex); return ret; } static int smu_display_clock_voltage_request(void *handle, struct pp_display_clock_request *clock_req) { struct smu_context *smu = handle; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; mutex_lock(&smu->mutex); if (smu->ppt_funcs->display_clock_voltage_request) ret = smu->ppt_funcs->display_clock_voltage_request(smu, clock_req); mutex_unlock(&smu->mutex); return ret; } static int smu_display_disable_memory_clock_switch(void *handle, bool disable_memory_clock_switch) { struct smu_context *smu = handle; int ret = -EINVAL; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; mutex_lock(&smu->mutex); if (smu->ppt_funcs->display_disable_memory_clock_switch) ret = smu->ppt_funcs->display_disable_memory_clock_switch(smu, disable_memory_clock_switch); mutex_unlock(&smu->mutex); return ret; } static int smu_set_xgmi_pstate(void *handle, uint32_t pstate) { struct smu_context *smu = handle; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; mutex_lock(&smu->mutex); if (smu->ppt_funcs->set_xgmi_pstate) ret = smu->ppt_funcs->set_xgmi_pstate(smu, pstate); mutex_unlock(&smu->mutex); if(ret) dev_err(smu->adev->dev, "Failed to set XGMI pstate!\n"); return ret; } static int smu_get_baco_capability(void *handle, bool *cap) { struct smu_context *smu = handle; int ret = 0; *cap = false; if (!smu->pm_enabled) return 0; mutex_lock(&smu->mutex); if (smu->ppt_funcs && smu->ppt_funcs->baco_is_support) *cap = smu->ppt_funcs->baco_is_support(smu); mutex_unlock(&smu->mutex); return ret; } static int smu_baco_set_state(void *handle, int state) { struct smu_context *smu = handle; int ret = 0; if (!smu->pm_enabled) return -EOPNOTSUPP; if (state == 0) { mutex_lock(&smu->mutex); if (smu->ppt_funcs->baco_exit) ret = smu->ppt_funcs->baco_exit(smu); mutex_unlock(&smu->mutex); } else if (state == 1) { mutex_lock(&smu->mutex); if (smu->ppt_funcs->baco_enter) ret = smu->ppt_funcs->baco_enter(smu); mutex_unlock(&smu->mutex); } else { return -EINVAL; } if (ret) dev_err(smu->adev->dev, "Failed to %s BACO state!\n", (state)?"enter":"exit"); return ret; } bool smu_mode1_reset_is_support(struct smu_context *smu) { bool ret = false; if (!smu->pm_enabled) return false; mutex_lock(&smu->mutex); if (smu->ppt_funcs && smu->ppt_funcs->mode1_reset_is_support) ret = smu->ppt_funcs->mode1_reset_is_support(smu); mutex_unlock(&smu->mutex); return ret; } bool smu_mode2_reset_is_support(struct smu_context *smu) { bool ret = false; if (!smu->pm_enabled) return false; mutex_lock(&smu->mutex); if (smu->ppt_funcs && smu->ppt_funcs->mode2_reset_is_support) ret = smu->ppt_funcs->mode2_reset_is_support(smu); mutex_unlock(&smu->mutex); return ret; } int smu_mode1_reset(struct smu_context *smu) { int ret = 0; if (!smu->pm_enabled) return -EOPNOTSUPP; mutex_lock(&smu->mutex); if (smu->ppt_funcs->mode1_reset) ret = smu->ppt_funcs->mode1_reset(smu); mutex_unlock(&smu->mutex); return ret; } static int smu_mode2_reset(void *handle) { struct smu_context *smu = handle; int ret = 0; if (!smu->pm_enabled) return -EOPNOTSUPP; mutex_lock(&smu->mutex); if (smu->ppt_funcs->mode2_reset) ret = smu->ppt_funcs->mode2_reset(smu); mutex_unlock(&smu->mutex); if (ret) dev_err(smu->adev->dev, "Mode2 reset failed!\n"); return ret; } static int smu_get_max_sustainable_clocks_by_dc(void *handle, struct pp_smu_nv_clock_table *max_clocks) { struct smu_context *smu = handle; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; mutex_lock(&smu->mutex); if (smu->ppt_funcs->get_max_sustainable_clocks_by_dc) ret = smu->ppt_funcs->get_max_sustainable_clocks_by_dc(smu, max_clocks); mutex_unlock(&smu->mutex); return ret; } static int smu_get_uclk_dpm_states(void *handle, unsigned int *clock_values_in_khz, unsigned int *num_states) { struct smu_context *smu = handle; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; mutex_lock(&smu->mutex); if (smu->ppt_funcs->get_uclk_dpm_states) ret = smu->ppt_funcs->get_uclk_dpm_states(smu, clock_values_in_khz, num_states); mutex_unlock(&smu->mutex); return ret; } static enum amd_pm_state_type smu_get_current_power_state(void *handle) { struct smu_context *smu = handle; enum amd_pm_state_type pm_state = POWER_STATE_TYPE_DEFAULT; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; mutex_lock(&smu->mutex); if (smu->ppt_funcs->get_current_power_state) pm_state = smu->ppt_funcs->get_current_power_state(smu); mutex_unlock(&smu->mutex); return pm_state; } static int smu_get_dpm_clock_table(void *handle, struct dpm_clocks *clock_table) { struct smu_context *smu = handle; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; mutex_lock(&smu->mutex); if (smu->ppt_funcs->get_dpm_clock_table) ret = smu->ppt_funcs->get_dpm_clock_table(smu, clock_table); mutex_unlock(&smu->mutex); return ret; } static ssize_t smu_sys_get_gpu_metrics(void *handle, void **table) { struct smu_context *smu = handle; ssize_t size; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; if (!smu->ppt_funcs->get_gpu_metrics) return -EOPNOTSUPP; mutex_lock(&smu->mutex); size = smu->ppt_funcs->get_gpu_metrics(smu, table); mutex_unlock(&smu->mutex); return size; } static int smu_enable_mgpu_fan_boost(void *handle) { struct smu_context *smu = handle; int ret = 0; if (!smu->pm_enabled || !smu->adev->pm.dpm_enabled) return -EOPNOTSUPP; mutex_lock(&smu->mutex); if (smu->ppt_funcs->enable_mgpu_fan_boost) ret = smu->ppt_funcs->enable_mgpu_fan_boost(smu); mutex_unlock(&smu->mutex); return ret; } static int smu_gfx_state_change_set(void *handle, uint32_t state) { struct smu_context *smu = handle; int ret = 0; mutex_lock(&smu->mutex); if (smu->ppt_funcs->gfx_state_change_set) ret = smu->ppt_funcs->gfx_state_change_set(smu, state); mutex_unlock(&smu->mutex); return ret; } int smu_set_light_sbr(struct smu_context *smu, bool enable) { int ret = 0; mutex_lock(&smu->mutex); if (smu->ppt_funcs->set_light_sbr) ret = smu->ppt_funcs->set_light_sbr(smu, enable); mutex_unlock(&smu->mutex); return ret; } static int smu_get_prv_buffer_details(void *handle, void **addr, size_t *size) { struct smu_context *smu = handle; struct smu_table_context *smu_table = &smu->smu_table; struct smu_table *memory_pool = &smu_table->memory_pool; if (!addr || !size) return -EINVAL; *addr = NULL; *size = 0; mutex_lock(&smu->mutex); if (memory_pool->bo) { *addr = memory_pool->cpu_addr; *size = memory_pool->size; } mutex_unlock(&smu->mutex); return 0; } static const struct amd_pm_funcs swsmu_pm_funcs = { /* export for sysfs */ .set_fan_control_mode = smu_pp_set_fan_control_mode, .get_fan_control_mode = smu_get_fan_control_mode, .set_fan_speed_pwm = smu_set_fan_speed_pwm, .get_fan_speed_pwm = smu_get_fan_speed_pwm, .force_clock_level = smu_force_ppclk_levels, .print_clock_levels = smu_print_ppclk_levels, .force_performance_level = smu_force_performance_level, .read_sensor = smu_read_sensor, .get_performance_level = smu_get_performance_level, .get_current_power_state = smu_get_current_power_state, .get_fan_speed_rpm = smu_get_fan_speed_rpm, .set_fan_speed_rpm = smu_set_fan_speed_rpm, .get_pp_num_states = smu_get_power_num_states, .get_pp_table = smu_sys_get_pp_table, .set_pp_table = smu_sys_set_pp_table, .switch_power_profile = smu_switch_power_profile, /* export to amdgpu */ .dispatch_tasks = smu_handle_dpm_task, .load_firmware = smu_load_microcode, .set_powergating_by_smu = smu_dpm_set_power_gate, .set_power_limit = smu_set_power_limit, .get_power_limit = smu_get_power_limit, .get_power_profile_mode = smu_get_power_profile_mode, .set_power_profile_mode = smu_set_power_profile_mode, .odn_edit_dpm_table = smu_od_edit_dpm_table, .set_mp1_state = smu_set_mp1_state, .gfx_state_change_set = smu_gfx_state_change_set, /* export to DC */ .get_sclk = smu_get_sclk, .get_mclk = smu_get_mclk, .display_configuration_change = smu_display_configuration_change, .get_clock_by_type_with_latency = smu_get_clock_by_type_with_latency, .display_clock_voltage_request = smu_display_clock_voltage_request, .enable_mgpu_fan_boost = smu_enable_mgpu_fan_boost, .set_active_display_count = smu_set_display_count, .set_min_deep_sleep_dcefclk = smu_set_deep_sleep_dcefclk, .get_asic_baco_capability = smu_get_baco_capability, .set_asic_baco_state = smu_baco_set_state, .get_ppfeature_status = smu_sys_get_pp_feature_mask, .set_ppfeature_status = smu_sys_set_pp_feature_mask, .asic_reset_mode_2 = smu_mode2_reset, .set_df_cstate = smu_set_df_cstate, .set_xgmi_pstate = smu_set_xgmi_pstate, .get_gpu_metrics = smu_sys_get_gpu_metrics, .set_watermarks_for_clock_ranges = smu_set_watermarks_for_clock_ranges, .display_disable_memory_clock_switch = smu_display_disable_memory_clock_switch, .get_max_sustainable_clocks_by_dc = smu_get_max_sustainable_clocks_by_dc, .get_uclk_dpm_states = smu_get_uclk_dpm_states, .get_dpm_clock_table = smu_get_dpm_clock_table, .get_smu_prv_buf_details = smu_get_prv_buffer_details, }; int smu_wait_for_event(struct amdgpu_device *adev, enum smu_event_type event, uint64_t event_arg) { int ret = -EINVAL; struct smu_context *smu = &adev->smu; if (smu->ppt_funcs->wait_for_event) { mutex_lock(&smu->mutex); ret = smu->ppt_funcs->wait_for_event(smu, event, event_arg); mutex_unlock(&smu->mutex); } return ret; }