/* * Copyright 2020 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #define SWSMU_CODE_LAYER_L2 #include "amdgpu.h" #include "amdgpu_smu.h" #include "smu_v11_0.h" #include "smu11_driver_if_vangogh.h" #include "vangogh_ppt.h" #include "smu_v11_5_ppsmc.h" #include "smu_v11_5_pmfw.h" #include "smu_cmn.h" #include "soc15_common.h" #include "asic_reg/gc/gc_10_3_0_offset.h" #include "asic_reg/gc/gc_10_3_0_sh_mask.h" #include /* * DO NOT use these for err/warn/info/debug messages. * Use dev_err, dev_warn, dev_info and dev_dbg instead. * They are more MGPU friendly. */ #undef pr_err #undef pr_warn #undef pr_info #undef pr_debug #define FEATURE_MASK(feature) (1ULL << feature) #define SMC_DPM_FEATURE ( \ FEATURE_MASK(FEATURE_CCLK_DPM_BIT) | \ FEATURE_MASK(FEATURE_VCN_DPM_BIT) | \ FEATURE_MASK(FEATURE_FCLK_DPM_BIT) | \ FEATURE_MASK(FEATURE_SOCCLK_DPM_BIT) | \ FEATURE_MASK(FEATURE_MP0CLK_DPM_BIT) | \ FEATURE_MASK(FEATURE_LCLK_DPM_BIT) | \ FEATURE_MASK(FEATURE_SHUBCLK_DPM_BIT) | \ FEATURE_MASK(FEATURE_DCFCLK_DPM_BIT)| \ FEATURE_MASK(FEATURE_GFX_DPM_BIT)) static struct cmn2asic_msg_mapping vangogh_message_map[SMU_MSG_MAX_COUNT] = { MSG_MAP(TestMessage, PPSMC_MSG_TestMessage, 0), MSG_MAP(GetSmuVersion, PPSMC_MSG_GetSmuVersion, 0), MSG_MAP(GetDriverIfVersion, PPSMC_MSG_GetDriverIfVersion, 0), MSG_MAP(EnableGfxOff, PPSMC_MSG_EnableGfxOff, 0), MSG_MAP(AllowGfxOff, PPSMC_MSG_AllowGfxOff, 0), MSG_MAP(DisallowGfxOff, PPSMC_MSG_DisallowGfxOff, 0), MSG_MAP(PowerDownIspByTile, PPSMC_MSG_PowerDownIspByTile, 0), MSG_MAP(PowerUpIspByTile, PPSMC_MSG_PowerUpIspByTile, 0), MSG_MAP(PowerDownVcn, PPSMC_MSG_PowerDownVcn, 0), MSG_MAP(PowerUpVcn, PPSMC_MSG_PowerUpVcn, 0), MSG_MAP(RlcPowerNotify, PPSMC_MSG_RlcPowerNotify, 0), MSG_MAP(SetHardMinVcn, PPSMC_MSG_SetHardMinVcn, 0), MSG_MAP(SetSoftMinGfxclk, PPSMC_MSG_SetSoftMinGfxclk, 0), MSG_MAP(ActiveProcessNotify, PPSMC_MSG_ActiveProcessNotify, 0), MSG_MAP(SetHardMinIspiclkByFreq, PPSMC_MSG_SetHardMinIspiclkByFreq, 0), MSG_MAP(SetHardMinIspxclkByFreq, PPSMC_MSG_SetHardMinIspxclkByFreq, 0), MSG_MAP(SetDriverDramAddrHigh, PPSMC_MSG_SetDriverDramAddrHigh, 0), MSG_MAP(SetDriverDramAddrLow, PPSMC_MSG_SetDriverDramAddrLow, 0), MSG_MAP(TransferTableSmu2Dram, PPSMC_MSG_TransferTableSmu2Dram, 0), MSG_MAP(TransferTableDram2Smu, PPSMC_MSG_TransferTableDram2Smu, 0), MSG_MAP(GfxDeviceDriverReset, PPSMC_MSG_GfxDeviceDriverReset, 0), MSG_MAP(GetEnabledSmuFeatures, PPSMC_MSG_GetEnabledSmuFeatures, 0), MSG_MAP(SetHardMinSocclkByFreq, PPSMC_MSG_SetHardMinSocclkByFreq, 0), MSG_MAP(SetSoftMinFclk, PPSMC_MSG_SetSoftMinFclk, 0), MSG_MAP(SetSoftMinVcn, PPSMC_MSG_SetSoftMinVcn, 0), MSG_MAP(EnablePostCode, PPSMC_MSG_EnablePostCode, 0), MSG_MAP(GetGfxclkFrequency, PPSMC_MSG_GetGfxclkFrequency, 0), MSG_MAP(GetFclkFrequency, PPSMC_MSG_GetFclkFrequency, 0), MSG_MAP(SetSoftMaxGfxClk, PPSMC_MSG_SetSoftMaxGfxClk, 0), MSG_MAP(SetHardMinGfxClk, PPSMC_MSG_SetHardMinGfxClk, 0), MSG_MAP(SetSoftMaxSocclkByFreq, PPSMC_MSG_SetSoftMaxSocclkByFreq, 0), MSG_MAP(SetSoftMaxFclkByFreq, PPSMC_MSG_SetSoftMaxFclkByFreq, 0), MSG_MAP(SetSoftMaxVcn, PPSMC_MSG_SetSoftMaxVcn, 0), MSG_MAP(SetPowerLimitPercentage, PPSMC_MSG_SetPowerLimitPercentage, 0), MSG_MAP(PowerDownJpeg, PPSMC_MSG_PowerDownJpeg, 0), MSG_MAP(PowerUpJpeg, PPSMC_MSG_PowerUpJpeg, 0), MSG_MAP(SetHardMinFclkByFreq, PPSMC_MSG_SetHardMinFclkByFreq, 0), MSG_MAP(SetSoftMinSocclkByFreq, PPSMC_MSG_SetSoftMinSocclkByFreq, 0), MSG_MAP(PowerUpCvip, PPSMC_MSG_PowerUpCvip, 0), MSG_MAP(PowerDownCvip, PPSMC_MSG_PowerDownCvip, 0), MSG_MAP(GetPptLimit, PPSMC_MSG_GetPptLimit, 0), MSG_MAP(GetThermalLimit, PPSMC_MSG_GetThermalLimit, 0), MSG_MAP(GetCurrentTemperature, PPSMC_MSG_GetCurrentTemperature, 0), MSG_MAP(GetCurrentPower, PPSMC_MSG_GetCurrentPower, 0), MSG_MAP(GetCurrentVoltage, PPSMC_MSG_GetCurrentVoltage, 0), MSG_MAP(GetCurrentCurrent, PPSMC_MSG_GetCurrentCurrent, 0), MSG_MAP(GetAverageCpuActivity, PPSMC_MSG_GetAverageCpuActivity, 0), MSG_MAP(GetAverageGfxActivity, PPSMC_MSG_GetAverageGfxActivity, 0), MSG_MAP(GetAveragePower, PPSMC_MSG_GetAveragePower, 0), MSG_MAP(GetAverageTemperature, PPSMC_MSG_GetAverageTemperature, 0), MSG_MAP(SetAveragePowerTimeConstant, PPSMC_MSG_SetAveragePowerTimeConstant, 0), MSG_MAP(SetAverageActivityTimeConstant, PPSMC_MSG_SetAverageActivityTimeConstant, 0), MSG_MAP(SetAverageTemperatureTimeConstant, PPSMC_MSG_SetAverageTemperatureTimeConstant, 0), MSG_MAP(SetMitigationEndHysteresis, PPSMC_MSG_SetMitigationEndHysteresis, 0), MSG_MAP(GetCurrentFreq, PPSMC_MSG_GetCurrentFreq, 0), MSG_MAP(SetReducedPptLimit, PPSMC_MSG_SetReducedPptLimit, 0), MSG_MAP(SetReducedThermalLimit, PPSMC_MSG_SetReducedThermalLimit, 0), MSG_MAP(DramLogSetDramAddr, PPSMC_MSG_DramLogSetDramAddr, 0), MSG_MAP(StartDramLogging, PPSMC_MSG_StartDramLogging, 0), MSG_MAP(StopDramLogging, PPSMC_MSG_StopDramLogging, 0), MSG_MAP(SetSoftMinCclk, PPSMC_MSG_SetSoftMinCclk, 0), MSG_MAP(SetSoftMaxCclk, PPSMC_MSG_SetSoftMaxCclk, 0), MSG_MAP(RequestActiveWgp, PPSMC_MSG_RequestActiveWgp, 0), MSG_MAP(SetFastPPTLimit, PPSMC_MSG_SetFastPPTLimit, 0), MSG_MAP(SetSlowPPTLimit, PPSMC_MSG_SetSlowPPTLimit, 0), MSG_MAP(GetFastPPTLimit, PPSMC_MSG_GetFastPPTLimit, 0), MSG_MAP(GetSlowPPTLimit, PPSMC_MSG_GetSlowPPTLimit, 0), }; static struct cmn2asic_mapping vangogh_feature_mask_map[SMU_FEATURE_COUNT] = { FEA_MAP(PPT), FEA_MAP(TDC), FEA_MAP(THERMAL), FEA_MAP(DS_GFXCLK), FEA_MAP(DS_SOCCLK), FEA_MAP(DS_LCLK), FEA_MAP(DS_FCLK), FEA_MAP(DS_MP1CLK), FEA_MAP(DS_MP0CLK), FEA_MAP(ATHUB_PG), FEA_MAP(CCLK_DPM), FEA_MAP(FAN_CONTROLLER), FEA_MAP(ULV), FEA_MAP(VCN_DPM), FEA_MAP(LCLK_DPM), FEA_MAP(SHUBCLK_DPM), FEA_MAP(DCFCLK_DPM), FEA_MAP(DS_DCFCLK), FEA_MAP(S0I2), FEA_MAP(SMU_LOW_POWER), FEA_MAP(GFX_DEM), FEA_MAP(PSI), FEA_MAP(PROCHOT), FEA_MAP(CPUOFF), FEA_MAP(STAPM), FEA_MAP(S0I3), FEA_MAP(DF_CSTATES), FEA_MAP(PERF_LIMIT), FEA_MAP(CORE_DLDO), FEA_MAP(RSMU_LOW_POWER), FEA_MAP(SMN_LOW_POWER), FEA_MAP(THM_LOW_POWER), FEA_MAP(SMUIO_LOW_POWER), FEA_MAP(MP1_LOW_POWER), FEA_MAP(DS_VCN), FEA_MAP(CPPC), FEA_MAP(OS_CSTATES), FEA_MAP(ISP_DPM), FEA_MAP(A55_DPM), FEA_MAP(CVIP_DSP_DPM), FEA_MAP(MSMU_LOW_POWER), FEA_MAP_REVERSE(SOCCLK), FEA_MAP_REVERSE(FCLK), FEA_MAP_HALF_REVERSE(GFX), }; static struct cmn2asic_mapping vangogh_table_map[SMU_TABLE_COUNT] = { TAB_MAP_VALID(WATERMARKS), TAB_MAP_VALID(SMU_METRICS), TAB_MAP_VALID(CUSTOM_DPM), TAB_MAP_VALID(DPMCLOCKS), }; static struct cmn2asic_mapping vangogh_workload_map[PP_SMC_POWER_PROFILE_COUNT] = { WORKLOAD_MAP(PP_SMC_POWER_PROFILE_FULLSCREEN3D, WORKLOAD_PPLIB_FULL_SCREEN_3D_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_VIDEO, WORKLOAD_PPLIB_VIDEO_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_VR, WORKLOAD_PPLIB_VR_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_COMPUTE, WORKLOAD_PPLIB_COMPUTE_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_CUSTOM, WORKLOAD_PPLIB_CUSTOM_BIT), }; static const uint8_t vangogh_throttler_map[] = { [THROTTLER_STATUS_BIT_SPL] = (SMU_THROTTLER_SPL_BIT), [THROTTLER_STATUS_BIT_FPPT] = (SMU_THROTTLER_FPPT_BIT), [THROTTLER_STATUS_BIT_SPPT] = (SMU_THROTTLER_SPPT_BIT), [THROTTLER_STATUS_BIT_SPPT_APU] = (SMU_THROTTLER_SPPT_APU_BIT), [THROTTLER_STATUS_BIT_THM_CORE] = (SMU_THROTTLER_TEMP_CORE_BIT), [THROTTLER_STATUS_BIT_THM_GFX] = (SMU_THROTTLER_TEMP_GPU_BIT), [THROTTLER_STATUS_BIT_THM_SOC] = (SMU_THROTTLER_TEMP_SOC_BIT), [THROTTLER_STATUS_BIT_TDC_VDD] = (SMU_THROTTLER_TDC_VDD_BIT), [THROTTLER_STATUS_BIT_TDC_SOC] = (SMU_THROTTLER_TDC_SOC_BIT), [THROTTLER_STATUS_BIT_TDC_GFX] = (SMU_THROTTLER_TDC_GFX_BIT), [THROTTLER_STATUS_BIT_TDC_CVIP] = (SMU_THROTTLER_TDC_CVIP_BIT), }; static int vangogh_tables_init(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; struct smu_table *tables = smu_table->tables; struct amdgpu_device *adev = smu->adev; uint32_t if_version; uint32_t ret = 0; ret = smu_cmn_get_smc_version(smu, &if_version, NULL); if (ret) { dev_err(adev->dev, "Failed to get smu if version!\n"); goto err0_out; } SMU_TABLE_INIT(tables, SMU_TABLE_WATERMARKS, sizeof(Watermarks_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_DPMCLOCKS, sizeof(DpmClocks_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_PMSTATUSLOG, SMU11_TOOL_SIZE, PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_ACTIVITY_MONITOR_COEFF, sizeof(DpmActivityMonitorCoeffExt_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); if (if_version < 0x3) { SMU_TABLE_INIT(tables, SMU_TABLE_SMU_METRICS, sizeof(SmuMetrics_legacy_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); smu_table->metrics_table = kzalloc(sizeof(SmuMetrics_legacy_t), GFP_KERNEL); } else { SMU_TABLE_INIT(tables, SMU_TABLE_SMU_METRICS, sizeof(SmuMetrics_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); smu_table->metrics_table = kzalloc(sizeof(SmuMetrics_t), GFP_KERNEL); } if (!smu_table->metrics_table) goto err0_out; smu_table->metrics_time = 0; smu_table->gpu_metrics_table_size = sizeof(struct gpu_metrics_v2_2); smu_table->gpu_metrics_table = kzalloc(smu_table->gpu_metrics_table_size, GFP_KERNEL); if (!smu_table->gpu_metrics_table) goto err1_out; smu_table->watermarks_table = kzalloc(sizeof(Watermarks_t), GFP_KERNEL); if (!smu_table->watermarks_table) goto err2_out; smu_table->clocks_table = kzalloc(sizeof(DpmClocks_t), GFP_KERNEL); if (!smu_table->clocks_table) goto err3_out; return 0; err3_out: kfree(smu_table->watermarks_table); err2_out: kfree(smu_table->gpu_metrics_table); err1_out: kfree(smu_table->metrics_table); err0_out: return -ENOMEM; } static int vangogh_get_legacy_smu_metrics_data(struct smu_context *smu, MetricsMember_t member, uint32_t *value) { struct smu_table_context *smu_table = &smu->smu_table; SmuMetrics_legacy_t *metrics = (SmuMetrics_legacy_t *)smu_table->metrics_table; int ret = 0; mutex_lock(&smu->metrics_lock); ret = smu_cmn_get_metrics_table_locked(smu, NULL, false); if (ret) { mutex_unlock(&smu->metrics_lock); return ret; } switch (member) { case METRICS_CURR_GFXCLK: *value = metrics->GfxclkFrequency; break; case METRICS_AVERAGE_SOCCLK: *value = metrics->SocclkFrequency; break; case METRICS_AVERAGE_VCLK: *value = metrics->VclkFrequency; break; case METRICS_AVERAGE_DCLK: *value = metrics->DclkFrequency; break; case METRICS_CURR_UCLK: *value = metrics->MemclkFrequency; break; case METRICS_AVERAGE_GFXACTIVITY: *value = metrics->GfxActivity / 100; break; case METRICS_AVERAGE_VCNACTIVITY: *value = metrics->UvdActivity; break; case METRICS_AVERAGE_SOCKETPOWER: *value = (metrics->CurrentSocketPower << 8) / 1000 ; break; case METRICS_TEMPERATURE_EDGE: *value = metrics->GfxTemperature / 100 * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_HOTSPOT: *value = metrics->SocTemperature / 100 * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_THROTTLER_STATUS: *value = metrics->ThrottlerStatus; break; case METRICS_VOLTAGE_VDDGFX: *value = metrics->Voltage[2]; break; case METRICS_VOLTAGE_VDDSOC: *value = metrics->Voltage[1]; break; case METRICS_AVERAGE_CPUCLK: memcpy(value, &metrics->CoreFrequency[0], smu->cpu_core_num * sizeof(uint16_t)); break; default: *value = UINT_MAX; break; } mutex_unlock(&smu->metrics_lock); return ret; } static int vangogh_get_smu_metrics_data(struct smu_context *smu, MetricsMember_t member, uint32_t *value) { struct smu_table_context *smu_table = &smu->smu_table; SmuMetrics_t *metrics = (SmuMetrics_t *)smu_table->metrics_table; int ret = 0; mutex_lock(&smu->metrics_lock); ret = smu_cmn_get_metrics_table_locked(smu, NULL, false); if (ret) { mutex_unlock(&smu->metrics_lock); return ret; } switch (member) { case METRICS_CURR_GFXCLK: *value = metrics->Current.GfxclkFrequency; break; case METRICS_AVERAGE_SOCCLK: *value = metrics->Current.SocclkFrequency; break; case METRICS_AVERAGE_VCLK: *value = metrics->Current.VclkFrequency; break; case METRICS_AVERAGE_DCLK: *value = metrics->Current.DclkFrequency; break; case METRICS_CURR_UCLK: *value = metrics->Current.MemclkFrequency; break; case METRICS_AVERAGE_GFXACTIVITY: *value = metrics->Current.GfxActivity; break; case METRICS_AVERAGE_VCNACTIVITY: *value = metrics->Current.UvdActivity; break; case METRICS_AVERAGE_SOCKETPOWER: *value = (metrics->Current.CurrentSocketPower << 8) / 1000; break; case METRICS_TEMPERATURE_EDGE: *value = metrics->Current.GfxTemperature / 100 * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_HOTSPOT: *value = metrics->Current.SocTemperature / 100 * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_THROTTLER_STATUS: *value = metrics->Current.ThrottlerStatus; break; case METRICS_VOLTAGE_VDDGFX: *value = metrics->Current.Voltage[2]; break; case METRICS_VOLTAGE_VDDSOC: *value = metrics->Current.Voltage[1]; break; case METRICS_AVERAGE_CPUCLK: memcpy(value, &metrics->Current.CoreFrequency[0], smu->cpu_core_num * sizeof(uint16_t)); break; default: *value = UINT_MAX; break; } mutex_unlock(&smu->metrics_lock); return ret; } static int vangogh_common_get_smu_metrics_data(struct smu_context *smu, MetricsMember_t member, uint32_t *value) { struct amdgpu_device *adev = smu->adev; uint32_t if_version; int ret = 0; ret = smu_cmn_get_smc_version(smu, &if_version, NULL); if (ret) { dev_err(adev->dev, "Failed to get smu if version!\n"); return ret; } if (if_version < 0x3) ret = vangogh_get_legacy_smu_metrics_data(smu, member, value); else ret = vangogh_get_smu_metrics_data(smu, member, value); return ret; } static int vangogh_allocate_dpm_context(struct smu_context *smu) { struct smu_dpm_context *smu_dpm = &smu->smu_dpm; smu_dpm->dpm_context = kzalloc(sizeof(struct smu_11_0_dpm_context), GFP_KERNEL); if (!smu_dpm->dpm_context) return -ENOMEM; smu_dpm->dpm_context_size = sizeof(struct smu_11_0_dpm_context); return 0; } static int vangogh_init_smc_tables(struct smu_context *smu) { int ret = 0; ret = vangogh_tables_init(smu); if (ret) return ret; ret = vangogh_allocate_dpm_context(smu); if (ret) return ret; #ifdef CONFIG_X86 /* AMD x86 APU only */ smu->cpu_core_num = boot_cpu_data.x86_max_cores; #else smu->cpu_core_num = 4; #endif return smu_v11_0_init_smc_tables(smu); } static int vangogh_dpm_set_vcn_enable(struct smu_context *smu, bool enable) { int ret = 0; if (enable) { /* vcn dpm on is a prerequisite for vcn power gate messages */ ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_PowerUpVcn, 0, NULL); if (ret) return ret; } else { ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_PowerDownVcn, 0, NULL); if (ret) return ret; } return ret; } static int vangogh_dpm_set_jpeg_enable(struct smu_context *smu, bool enable) { int ret = 0; if (enable) { ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_PowerUpJpeg, 0, NULL); if (ret) return ret; } else { ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_PowerDownJpeg, 0, NULL); if (ret) return ret; } return ret; } static bool vangogh_is_dpm_running(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; int ret = 0; uint32_t feature_mask[2]; uint64_t feature_enabled; /* we need to re-init after suspend so return false */ if (adev->in_suspend) return false; ret = smu_cmn_get_enabled_32_bits_mask(smu, feature_mask, 2); if (ret) return false; feature_enabled = (unsigned long)((uint64_t)feature_mask[0] | ((uint64_t)feature_mask[1] << 32)); return !!(feature_enabled & SMC_DPM_FEATURE); } static int vangogh_get_dpm_clk_limited(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t dpm_level, uint32_t *freq) { DpmClocks_t *clk_table = smu->smu_table.clocks_table; if (!clk_table || clk_type >= SMU_CLK_COUNT) return -EINVAL; switch (clk_type) { case SMU_SOCCLK: if (dpm_level >= clk_table->NumSocClkLevelsEnabled) return -EINVAL; *freq = clk_table->SocClocks[dpm_level]; break; case SMU_VCLK: if (dpm_level >= clk_table->VcnClkLevelsEnabled) return -EINVAL; *freq = clk_table->VcnClocks[dpm_level].vclk; break; case SMU_DCLK: if (dpm_level >= clk_table->VcnClkLevelsEnabled) return -EINVAL; *freq = clk_table->VcnClocks[dpm_level].dclk; break; case SMU_UCLK: case SMU_MCLK: if (dpm_level >= clk_table->NumDfPstatesEnabled) return -EINVAL; *freq = clk_table->DfPstateTable[dpm_level].memclk; break; case SMU_FCLK: if (dpm_level >= clk_table->NumDfPstatesEnabled) return -EINVAL; *freq = clk_table->DfPstateTable[dpm_level].fclk; break; default: return -EINVAL; } return 0; } static int vangogh_print_legacy_clk_levels(struct smu_context *smu, enum smu_clk_type clk_type, char *buf) { DpmClocks_t *clk_table = smu->smu_table.clocks_table; SmuMetrics_legacy_t metrics; struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm); int i, idx, size = 0, ret = 0; uint32_t cur_value = 0, value = 0, count = 0; bool cur_value_match_level = false; memset(&metrics, 0, sizeof(metrics)); ret = smu_cmn_get_metrics_table(smu, &metrics, false); if (ret) return ret; smu_cmn_get_sysfs_buf(&buf, &size); switch (clk_type) { case SMU_OD_SCLK: if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_MANUAL) { size += sysfs_emit_at(buf, size, "%s:\n", "OD_SCLK"); size += sysfs_emit_at(buf, size, "0: %10uMhz\n", (smu->gfx_actual_hard_min_freq > 0) ? smu->gfx_actual_hard_min_freq : smu->gfx_default_hard_min_freq); size += sysfs_emit_at(buf, size, "1: %10uMhz\n", (smu->gfx_actual_soft_max_freq > 0) ? smu->gfx_actual_soft_max_freq : smu->gfx_default_soft_max_freq); } break; case SMU_OD_CCLK: if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_MANUAL) { size += sysfs_emit_at(buf, size, "CCLK_RANGE in Core%d:\n", smu->cpu_core_id_select); size += sysfs_emit_at(buf, size, "0: %10uMhz\n", (smu->cpu_actual_soft_min_freq > 0) ? smu->cpu_actual_soft_min_freq : smu->cpu_default_soft_min_freq); size += sysfs_emit_at(buf, size, "1: %10uMhz\n", (smu->cpu_actual_soft_max_freq > 0) ? smu->cpu_actual_soft_max_freq : smu->cpu_default_soft_max_freq); } break; case SMU_OD_RANGE: if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_MANUAL) { size += sysfs_emit_at(buf, size, "%s:\n", "OD_RANGE"); size += sysfs_emit_at(buf, size, "SCLK: %7uMhz %10uMhz\n", smu->gfx_default_hard_min_freq, smu->gfx_default_soft_max_freq); size += sysfs_emit_at(buf, size, "CCLK: %7uMhz %10uMhz\n", smu->cpu_default_soft_min_freq, smu->cpu_default_soft_max_freq); } break; case SMU_SOCCLK: /* the level 3 ~ 6 of socclk use the same frequency for vangogh */ count = clk_table->NumSocClkLevelsEnabled; cur_value = metrics.SocclkFrequency; break; case SMU_VCLK: count = clk_table->VcnClkLevelsEnabled; cur_value = metrics.VclkFrequency; break; case SMU_DCLK: count = clk_table->VcnClkLevelsEnabled; cur_value = metrics.DclkFrequency; break; case SMU_MCLK: count = clk_table->NumDfPstatesEnabled; cur_value = metrics.MemclkFrequency; break; case SMU_FCLK: count = clk_table->NumDfPstatesEnabled; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GetFclkFrequency, 0, &cur_value); if (ret) return ret; break; default: break; } switch (clk_type) { case SMU_SOCCLK: case SMU_VCLK: case SMU_DCLK: case SMU_MCLK: case SMU_FCLK: for (i = 0; i < count; i++) { idx = (clk_type == SMU_FCLK || clk_type == SMU_MCLK) ? (count - i - 1) : i; ret = vangogh_get_dpm_clk_limited(smu, clk_type, idx, &value); if (ret) return ret; if (!value) continue; size += sysfs_emit_at(buf, size, "%d: %uMhz %s\n", i, value, cur_value == value ? "*" : ""); if (cur_value == value) cur_value_match_level = true; } if (!cur_value_match_level) size += sysfs_emit_at(buf, size, " %uMhz *\n", cur_value); break; default: break; } return size; } static int vangogh_print_clk_levels(struct smu_context *smu, enum smu_clk_type clk_type, char *buf) { DpmClocks_t *clk_table = smu->smu_table.clocks_table; SmuMetrics_t metrics; struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm); int i, idx, size = 0, ret = 0; uint32_t cur_value = 0, value = 0, count = 0; bool cur_value_match_level = false; memset(&metrics, 0, sizeof(metrics)); ret = smu_cmn_get_metrics_table(smu, &metrics, false); if (ret) return ret; smu_cmn_get_sysfs_buf(&buf, &size); switch (clk_type) { case SMU_OD_SCLK: if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_MANUAL) { size += sysfs_emit_at(buf, size, "%s:\n", "OD_SCLK"); size += sysfs_emit_at(buf, size, "0: %10uMhz\n", (smu->gfx_actual_hard_min_freq > 0) ? smu->gfx_actual_hard_min_freq : smu->gfx_default_hard_min_freq); size += sysfs_emit_at(buf, size, "1: %10uMhz\n", (smu->gfx_actual_soft_max_freq > 0) ? smu->gfx_actual_soft_max_freq : smu->gfx_default_soft_max_freq); } break; case SMU_OD_CCLK: if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_MANUAL) { size += sysfs_emit_at(buf, size, "CCLK_RANGE in Core%d:\n", smu->cpu_core_id_select); size += sysfs_emit_at(buf, size, "0: %10uMhz\n", (smu->cpu_actual_soft_min_freq > 0) ? smu->cpu_actual_soft_min_freq : smu->cpu_default_soft_min_freq); size += sysfs_emit_at(buf, size, "1: %10uMhz\n", (smu->cpu_actual_soft_max_freq > 0) ? smu->cpu_actual_soft_max_freq : smu->cpu_default_soft_max_freq); } break; case SMU_OD_RANGE: if (smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_MANUAL) { size += sysfs_emit_at(buf, size, "%s:\n", "OD_RANGE"); size += sysfs_emit_at(buf, size, "SCLK: %7uMhz %10uMhz\n", smu->gfx_default_hard_min_freq, smu->gfx_default_soft_max_freq); size += sysfs_emit_at(buf, size, "CCLK: %7uMhz %10uMhz\n", smu->cpu_default_soft_min_freq, smu->cpu_default_soft_max_freq); } break; case SMU_SOCCLK: /* the level 3 ~ 6 of socclk use the same frequency for vangogh */ count = clk_table->NumSocClkLevelsEnabled; cur_value = metrics.Current.SocclkFrequency; break; case SMU_VCLK: count = clk_table->VcnClkLevelsEnabled; cur_value = metrics.Current.VclkFrequency; break; case SMU_DCLK: count = clk_table->VcnClkLevelsEnabled; cur_value = metrics.Current.DclkFrequency; break; case SMU_MCLK: count = clk_table->NumDfPstatesEnabled; cur_value = metrics.Current.MemclkFrequency; break; case SMU_FCLK: count = clk_table->NumDfPstatesEnabled; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GetFclkFrequency, 0, &cur_value); if (ret) return ret; break; default: break; } switch (clk_type) { case SMU_SOCCLK: case SMU_VCLK: case SMU_DCLK: case SMU_MCLK: case SMU_FCLK: for (i = 0; i < count; i++) { idx = (clk_type == SMU_FCLK || clk_type == SMU_MCLK) ? (count - i - 1) : i; ret = vangogh_get_dpm_clk_limited(smu, clk_type, idx, &value); if (ret) return ret; if (!value) continue; size += sysfs_emit_at(buf, size, "%d: %uMhz %s\n", i, value, cur_value == value ? "*" : ""); if (cur_value == value) cur_value_match_level = true; } if (!cur_value_match_level) size += sysfs_emit_at(buf, size, " %uMhz *\n", cur_value); break; default: break; } return size; } static int vangogh_common_print_clk_levels(struct smu_context *smu, enum smu_clk_type clk_type, char *buf) { struct amdgpu_device *adev = smu->adev; uint32_t if_version; int ret = 0; ret = smu_cmn_get_smc_version(smu, &if_version, NULL); if (ret) { dev_err(adev->dev, "Failed to get smu if version!\n"); return ret; } if (if_version < 0x3) ret = vangogh_print_legacy_clk_levels(smu, clk_type, buf); else ret = vangogh_print_clk_levels(smu, clk_type, buf); return ret; } static int vangogh_get_profiling_clk_mask(struct smu_context *smu, enum amd_dpm_forced_level level, uint32_t *vclk_mask, uint32_t *dclk_mask, uint32_t *mclk_mask, uint32_t *fclk_mask, uint32_t *soc_mask) { DpmClocks_t *clk_table = smu->smu_table.clocks_table; if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) { if (mclk_mask) *mclk_mask = clk_table->NumDfPstatesEnabled - 1; if (fclk_mask) *fclk_mask = clk_table->NumDfPstatesEnabled - 1; if (soc_mask) *soc_mask = 0; } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { if (mclk_mask) *mclk_mask = 0; if (fclk_mask) *fclk_mask = 0; if (soc_mask) *soc_mask = 1; if (vclk_mask) *vclk_mask = 1; if (dclk_mask) *dclk_mask = 1; } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD) { if (mclk_mask) *mclk_mask = 0; if (fclk_mask) *fclk_mask = 0; if (soc_mask) *soc_mask = 1; if (vclk_mask) *vclk_mask = 1; if (dclk_mask) *dclk_mask = 1; } return 0; } static bool vangogh_clk_dpm_is_enabled(struct smu_context *smu, enum smu_clk_type clk_type) { enum smu_feature_mask feature_id = 0; switch (clk_type) { case SMU_MCLK: case SMU_UCLK: case SMU_FCLK: feature_id = SMU_FEATURE_DPM_FCLK_BIT; break; case SMU_GFXCLK: case SMU_SCLK: feature_id = SMU_FEATURE_DPM_GFXCLK_BIT; break; case SMU_SOCCLK: feature_id = SMU_FEATURE_DPM_SOCCLK_BIT; break; case SMU_VCLK: case SMU_DCLK: feature_id = SMU_FEATURE_VCN_DPM_BIT; break; default: return true; } if (!smu_cmn_feature_is_enabled(smu, feature_id)) return false; return true; } static int vangogh_get_dpm_ultimate_freq(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t *min, uint32_t *max) { int ret = 0; uint32_t soc_mask; uint32_t vclk_mask; uint32_t dclk_mask; uint32_t mclk_mask; uint32_t fclk_mask; uint32_t clock_limit; if (!vangogh_clk_dpm_is_enabled(smu, clk_type)) { switch (clk_type) { case SMU_MCLK: case SMU_UCLK: clock_limit = smu->smu_table.boot_values.uclk; break; case SMU_FCLK: clock_limit = smu->smu_table.boot_values.fclk; break; case SMU_GFXCLK: case SMU_SCLK: clock_limit = smu->smu_table.boot_values.gfxclk; break; case SMU_SOCCLK: clock_limit = smu->smu_table.boot_values.socclk; break; case SMU_VCLK: clock_limit = smu->smu_table.boot_values.vclk; break; case SMU_DCLK: clock_limit = smu->smu_table.boot_values.dclk; break; default: clock_limit = 0; break; } /* clock in Mhz unit */ if (min) *min = clock_limit / 100; if (max) *max = clock_limit / 100; return 0; } if (max) { ret = vangogh_get_profiling_clk_mask(smu, AMD_DPM_FORCED_LEVEL_PROFILE_PEAK, &vclk_mask, &dclk_mask, &mclk_mask, &fclk_mask, &soc_mask); if (ret) goto failed; switch (clk_type) { case SMU_UCLK: case SMU_MCLK: ret = vangogh_get_dpm_clk_limited(smu, clk_type, mclk_mask, max); if (ret) goto failed; break; case SMU_SOCCLK: ret = vangogh_get_dpm_clk_limited(smu, clk_type, soc_mask, max); if (ret) goto failed; break; case SMU_FCLK: ret = vangogh_get_dpm_clk_limited(smu, clk_type, fclk_mask, max); if (ret) goto failed; break; case SMU_VCLK: ret = vangogh_get_dpm_clk_limited(smu, clk_type, vclk_mask, max); if (ret) goto failed; break; case SMU_DCLK: ret = vangogh_get_dpm_clk_limited(smu, clk_type, dclk_mask, max); if (ret) goto failed; break; default: ret = -EINVAL; goto failed; } } if (min) { switch (clk_type) { case SMU_UCLK: case SMU_MCLK: ret = vangogh_get_dpm_clk_limited(smu, clk_type, mclk_mask, min); if (ret) goto failed; break; case SMU_SOCCLK: ret = vangogh_get_dpm_clk_limited(smu, clk_type, soc_mask, min); if (ret) goto failed; break; case SMU_FCLK: ret = vangogh_get_dpm_clk_limited(smu, clk_type, fclk_mask, min); if (ret) goto failed; break; case SMU_VCLK: ret = vangogh_get_dpm_clk_limited(smu, clk_type, vclk_mask, min); if (ret) goto failed; break; case SMU_DCLK: ret = vangogh_get_dpm_clk_limited(smu, clk_type, dclk_mask, min); if (ret) goto failed; break; default: ret = -EINVAL; goto failed; } } failed: return ret; } static int vangogh_get_power_profile_mode(struct smu_context *smu, char *buf) { static const char *profile_name[] = { "BOOTUP_DEFAULT", "3D_FULL_SCREEN", "POWER_SAVING", "VIDEO", "VR", "COMPUTE", "CUSTOM"}; uint32_t i, size = 0; int16_t workload_type = 0; if (!buf) return -EINVAL; for (i = 0; i <= PP_SMC_POWER_PROFILE_CUSTOM; i++) { /* * Conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT * Not all profile modes are supported on vangogh. */ workload_type = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_WORKLOAD, i); if (workload_type < 0) continue; size += sysfs_emit_at(buf, size, "%2d %14s%s\n", i, profile_name[i], (i == smu->power_profile_mode) ? "*" : " "); } return size; } static int vangogh_set_power_profile_mode(struct smu_context *smu, long *input, uint32_t size) { int workload_type, ret; uint32_t profile_mode = input[size]; if (profile_mode > PP_SMC_POWER_PROFILE_CUSTOM) { dev_err(smu->adev->dev, "Invalid power profile mode %d\n", profile_mode); return -EINVAL; } if (profile_mode == PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT || profile_mode == PP_SMC_POWER_PROFILE_POWERSAVING) return 0; /* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */ workload_type = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_WORKLOAD, profile_mode); if (workload_type < 0) { dev_dbg(smu->adev->dev, "Unsupported power profile mode %d on VANGOGH\n", profile_mode); return -EINVAL; } ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_ActiveProcessNotify, 1 << workload_type, NULL); if (ret) { dev_err_once(smu->adev->dev, "Fail to set workload type %d\n", workload_type); return ret; } smu->power_profile_mode = profile_mode; return 0; } static int vangogh_set_soft_freq_limited_range(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t min, uint32_t max) { int ret = 0; if (!vangogh_clk_dpm_is_enabled(smu, clk_type)) return 0; switch (clk_type) { case SMU_GFXCLK: case SMU_SCLK: ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinGfxClk, min, NULL); if (ret) return ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxGfxClk, max, NULL); if (ret) return ret; break; case SMU_FCLK: ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinFclkByFreq, min, NULL); if (ret) return ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxFclkByFreq, max, NULL); if (ret) return ret; break; case SMU_SOCCLK: ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinSocclkByFreq, min, NULL); if (ret) return ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxSocclkByFreq, max, NULL); if (ret) return ret; break; case SMU_VCLK: ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinVcn, min << 16, NULL); if (ret) return ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxVcn, max << 16, NULL); if (ret) return ret; break; case SMU_DCLK: ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinVcn, min, NULL); if (ret) return ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxVcn, max, NULL); if (ret) return ret; break; default: return -EINVAL; } return ret; } static int vangogh_force_clk_levels(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t mask) { uint32_t soft_min_level = 0, soft_max_level = 0; uint32_t min_freq = 0, max_freq = 0; int ret = 0 ; soft_min_level = mask ? (ffs(mask) - 1) : 0; soft_max_level = mask ? (fls(mask) - 1) : 0; switch (clk_type) { case SMU_SOCCLK: ret = vangogh_get_dpm_clk_limited(smu, clk_type, soft_min_level, &min_freq); if (ret) return ret; ret = vangogh_get_dpm_clk_limited(smu, clk_type, soft_max_level, &max_freq); if (ret) return ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxSocclkByFreq, max_freq, NULL); if (ret) return ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinSocclkByFreq, min_freq, NULL); if (ret) return ret; break; case SMU_FCLK: ret = vangogh_get_dpm_clk_limited(smu, clk_type, soft_min_level, &min_freq); if (ret) return ret; ret = vangogh_get_dpm_clk_limited(smu, clk_type, soft_max_level, &max_freq); if (ret) return ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxFclkByFreq, max_freq, NULL); if (ret) return ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinFclkByFreq, min_freq, NULL); if (ret) return ret; break; case SMU_VCLK: ret = vangogh_get_dpm_clk_limited(smu, clk_type, soft_min_level, &min_freq); if (ret) return ret; ret = vangogh_get_dpm_clk_limited(smu, clk_type, soft_max_level, &max_freq); if (ret) return ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinVcn, min_freq << 16, NULL); if (ret) return ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxVcn, max_freq << 16, NULL); if (ret) return ret; break; case SMU_DCLK: ret = vangogh_get_dpm_clk_limited(smu, clk_type, soft_min_level, &min_freq); if (ret) return ret; ret = vangogh_get_dpm_clk_limited(smu, clk_type, soft_max_level, &max_freq); if (ret) return ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinVcn, min_freq, NULL); if (ret) return ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxVcn, max_freq, NULL); if (ret) return ret; break; default: break; } return ret; } static int vangogh_force_dpm_limit_value(struct smu_context *smu, bool highest) { int ret = 0, i = 0; uint32_t min_freq, max_freq, force_freq; enum smu_clk_type clk_type; enum smu_clk_type clks[] = { SMU_SOCCLK, SMU_VCLK, SMU_DCLK, SMU_FCLK, }; for (i = 0; i < ARRAY_SIZE(clks); i++) { clk_type = clks[i]; ret = vangogh_get_dpm_ultimate_freq(smu, clk_type, &min_freq, &max_freq); if (ret) return ret; force_freq = highest ? max_freq : min_freq; ret = vangogh_set_soft_freq_limited_range(smu, clk_type, force_freq, force_freq); if (ret) return ret; } return ret; } static int vangogh_unforce_dpm_levels(struct smu_context *smu) { int ret = 0, i = 0; uint32_t min_freq, max_freq; enum smu_clk_type clk_type; struct clk_feature_map { enum smu_clk_type clk_type; uint32_t feature; } clk_feature_map[] = { {SMU_FCLK, SMU_FEATURE_DPM_FCLK_BIT}, {SMU_SOCCLK, SMU_FEATURE_DPM_SOCCLK_BIT}, {SMU_VCLK, SMU_FEATURE_VCN_DPM_BIT}, {SMU_DCLK, SMU_FEATURE_VCN_DPM_BIT}, }; for (i = 0; i < ARRAY_SIZE(clk_feature_map); i++) { if (!smu_cmn_feature_is_enabled(smu, clk_feature_map[i].feature)) continue; clk_type = clk_feature_map[i].clk_type; ret = vangogh_get_dpm_ultimate_freq(smu, clk_type, &min_freq, &max_freq); if (ret) return ret; ret = vangogh_set_soft_freq_limited_range(smu, clk_type, min_freq, max_freq); if (ret) return ret; } return ret; } static int vangogh_set_peak_clock_by_device(struct smu_context *smu) { int ret = 0; uint32_t socclk_freq = 0, fclk_freq = 0; uint32_t vclk_freq = 0, dclk_freq = 0; ret = vangogh_get_dpm_ultimate_freq(smu, SMU_FCLK, NULL, &fclk_freq); if (ret) return ret; ret = vangogh_set_soft_freq_limited_range(smu, SMU_FCLK, fclk_freq, fclk_freq); if (ret) return ret; ret = vangogh_get_dpm_ultimate_freq(smu, SMU_SOCCLK, NULL, &socclk_freq); if (ret) return ret; ret = vangogh_set_soft_freq_limited_range(smu, SMU_SOCCLK, socclk_freq, socclk_freq); if (ret) return ret; ret = vangogh_get_dpm_ultimate_freq(smu, SMU_VCLK, NULL, &vclk_freq); if (ret) return ret; ret = vangogh_set_soft_freq_limited_range(smu, SMU_VCLK, vclk_freq, vclk_freq); if (ret) return ret; ret = vangogh_get_dpm_ultimate_freq(smu, SMU_DCLK, NULL, &dclk_freq); if (ret) return ret; ret = vangogh_set_soft_freq_limited_range(smu, SMU_DCLK, dclk_freq, dclk_freq); if (ret) return ret; return ret; } static int vangogh_set_performance_level(struct smu_context *smu, enum amd_dpm_forced_level level) { int ret = 0; uint32_t soc_mask, mclk_mask, fclk_mask; uint32_t vclk_mask = 0, dclk_mask = 0; smu->cpu_actual_soft_min_freq = smu->cpu_default_soft_min_freq; smu->cpu_actual_soft_max_freq = smu->cpu_default_soft_max_freq; switch (level) { case AMD_DPM_FORCED_LEVEL_HIGH: smu->gfx_actual_hard_min_freq = smu->gfx_default_soft_max_freq; smu->gfx_actual_soft_max_freq = smu->gfx_default_soft_max_freq; ret = vangogh_force_dpm_limit_value(smu, true); if (ret) return ret; break; case AMD_DPM_FORCED_LEVEL_LOW: smu->gfx_actual_hard_min_freq = smu->gfx_default_hard_min_freq; smu->gfx_actual_soft_max_freq = smu->gfx_default_hard_min_freq; ret = vangogh_force_dpm_limit_value(smu, false); if (ret) return ret; break; case AMD_DPM_FORCED_LEVEL_AUTO: smu->gfx_actual_hard_min_freq = smu->gfx_default_hard_min_freq; smu->gfx_actual_soft_max_freq = smu->gfx_default_soft_max_freq; ret = vangogh_unforce_dpm_levels(smu); if (ret) return ret; break; case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD: smu->gfx_actual_hard_min_freq = VANGOGH_UMD_PSTATE_STANDARD_GFXCLK; smu->gfx_actual_soft_max_freq = VANGOGH_UMD_PSTATE_STANDARD_GFXCLK; ret = vangogh_get_profiling_clk_mask(smu, level, &vclk_mask, &dclk_mask, &mclk_mask, &fclk_mask, &soc_mask); if (ret) return ret; vangogh_force_clk_levels(smu, SMU_FCLK, 1 << fclk_mask); vangogh_force_clk_levels(smu, SMU_SOCCLK, 1 << soc_mask); vangogh_force_clk_levels(smu, SMU_VCLK, 1 << vclk_mask); vangogh_force_clk_levels(smu, SMU_DCLK, 1 << dclk_mask); break; case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK: smu->gfx_actual_hard_min_freq = smu->gfx_default_hard_min_freq; smu->gfx_actual_soft_max_freq = smu->gfx_default_hard_min_freq; break; case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK: smu->gfx_actual_hard_min_freq = smu->gfx_default_hard_min_freq; smu->gfx_actual_soft_max_freq = smu->gfx_default_soft_max_freq; ret = vangogh_get_profiling_clk_mask(smu, level, NULL, NULL, &mclk_mask, &fclk_mask, NULL); if (ret) return ret; vangogh_force_clk_levels(smu, SMU_FCLK, 1 << fclk_mask); break; case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK: smu->gfx_actual_hard_min_freq = VANGOGH_UMD_PSTATE_PEAK_GFXCLK; smu->gfx_actual_soft_max_freq = VANGOGH_UMD_PSTATE_PEAK_GFXCLK; ret = vangogh_set_peak_clock_by_device(smu); if (ret) return ret; break; case AMD_DPM_FORCED_LEVEL_MANUAL: case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT: default: return 0; } ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinGfxClk, smu->gfx_actual_hard_min_freq, NULL); if (ret) return ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxGfxClk, smu->gfx_actual_soft_max_freq, NULL); if (ret) return ret; return ret; } static int vangogh_read_sensor(struct smu_context *smu, enum amd_pp_sensors sensor, void *data, uint32_t *size) { int ret = 0; if (!data || !size) return -EINVAL; mutex_lock(&smu->sensor_lock); switch (sensor) { case AMDGPU_PP_SENSOR_GPU_LOAD: ret = vangogh_common_get_smu_metrics_data(smu, METRICS_AVERAGE_GFXACTIVITY, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_GPU_POWER: ret = vangogh_common_get_smu_metrics_data(smu, METRICS_AVERAGE_SOCKETPOWER, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_EDGE_TEMP: ret = vangogh_common_get_smu_metrics_data(smu, METRICS_TEMPERATURE_EDGE, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_HOTSPOT_TEMP: ret = vangogh_common_get_smu_metrics_data(smu, METRICS_TEMPERATURE_HOTSPOT, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_GFX_MCLK: ret = vangogh_common_get_smu_metrics_data(smu, METRICS_CURR_UCLK, (uint32_t *)data); *(uint32_t *)data *= 100; *size = 4; break; case AMDGPU_PP_SENSOR_GFX_SCLK: ret = vangogh_common_get_smu_metrics_data(smu, METRICS_CURR_GFXCLK, (uint32_t *)data); *(uint32_t *)data *= 100; *size = 4; break; case AMDGPU_PP_SENSOR_VDDGFX: ret = vangogh_common_get_smu_metrics_data(smu, METRICS_VOLTAGE_VDDGFX, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_VDDNB: ret = vangogh_common_get_smu_metrics_data(smu, METRICS_VOLTAGE_VDDSOC, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_CPU_CLK: ret = vangogh_common_get_smu_metrics_data(smu, METRICS_AVERAGE_CPUCLK, (uint32_t *)data); *size = smu->cpu_core_num * sizeof(uint16_t); break; default: ret = -EOPNOTSUPP; break; } mutex_unlock(&smu->sensor_lock); return ret; } static int vangogh_set_watermarks_table(struct smu_context *smu, struct pp_smu_wm_range_sets *clock_ranges) { int i; int ret = 0; Watermarks_t *table = smu->smu_table.watermarks_table; if (!table || !clock_ranges) return -EINVAL; if (clock_ranges) { if (clock_ranges->num_reader_wm_sets > NUM_WM_RANGES || clock_ranges->num_writer_wm_sets > NUM_WM_RANGES) return -EINVAL; for (i = 0; i < clock_ranges->num_reader_wm_sets; i++) { table->WatermarkRow[WM_DCFCLK][i].MinClock = clock_ranges->reader_wm_sets[i].min_drain_clk_mhz; table->WatermarkRow[WM_DCFCLK][i].MaxClock = clock_ranges->reader_wm_sets[i].max_drain_clk_mhz; table->WatermarkRow[WM_DCFCLK][i].MinMclk = clock_ranges->reader_wm_sets[i].min_fill_clk_mhz; table->WatermarkRow[WM_DCFCLK][i].MaxMclk = clock_ranges->reader_wm_sets[i].max_fill_clk_mhz; table->WatermarkRow[WM_DCFCLK][i].WmSetting = clock_ranges->reader_wm_sets[i].wm_inst; } for (i = 0; i < clock_ranges->num_writer_wm_sets; i++) { table->WatermarkRow[WM_SOCCLK][i].MinClock = clock_ranges->writer_wm_sets[i].min_fill_clk_mhz; table->WatermarkRow[WM_SOCCLK][i].MaxClock = clock_ranges->writer_wm_sets[i].max_fill_clk_mhz; table->WatermarkRow[WM_SOCCLK][i].MinMclk = clock_ranges->writer_wm_sets[i].min_drain_clk_mhz; table->WatermarkRow[WM_SOCCLK][i].MaxMclk = clock_ranges->writer_wm_sets[i].max_drain_clk_mhz; table->WatermarkRow[WM_SOCCLK][i].WmSetting = clock_ranges->writer_wm_sets[i].wm_inst; } smu->watermarks_bitmap |= WATERMARKS_EXIST; } /* pass data to smu controller */ if ((smu->watermarks_bitmap & WATERMARKS_EXIST) && !(smu->watermarks_bitmap & WATERMARKS_LOADED)) { ret = smu_cmn_write_watermarks_table(smu); if (ret) { dev_err(smu->adev->dev, "Failed to update WMTABLE!"); return ret; } smu->watermarks_bitmap |= WATERMARKS_LOADED; } return 0; } static ssize_t vangogh_get_legacy_gpu_metrics(struct smu_context *smu, void **table) { struct smu_table_context *smu_table = &smu->smu_table; struct gpu_metrics_v2_2 *gpu_metrics = (struct gpu_metrics_v2_2 *)smu_table->gpu_metrics_table; SmuMetrics_legacy_t metrics; int ret = 0; ret = smu_cmn_get_metrics_table(smu, &metrics, true); if (ret) return ret; smu_cmn_init_soft_gpu_metrics(gpu_metrics, 2, 2); gpu_metrics->temperature_gfx = metrics.GfxTemperature; gpu_metrics->temperature_soc = metrics.SocTemperature; memcpy(&gpu_metrics->temperature_core[0], &metrics.CoreTemperature[0], sizeof(uint16_t) * 4); gpu_metrics->temperature_l3[0] = metrics.L3Temperature[0]; gpu_metrics->average_gfx_activity = metrics.GfxActivity; gpu_metrics->average_mm_activity = metrics.UvdActivity; gpu_metrics->average_socket_power = metrics.CurrentSocketPower; gpu_metrics->average_cpu_power = metrics.Power[0]; gpu_metrics->average_soc_power = metrics.Power[1]; gpu_metrics->average_gfx_power = metrics.Power[2]; memcpy(&gpu_metrics->average_core_power[0], &metrics.CorePower[0], sizeof(uint16_t) * 4); gpu_metrics->average_gfxclk_frequency = metrics.GfxclkFrequency; gpu_metrics->average_socclk_frequency = metrics.SocclkFrequency; gpu_metrics->average_uclk_frequency = metrics.MemclkFrequency; gpu_metrics->average_fclk_frequency = metrics.MemclkFrequency; gpu_metrics->average_vclk_frequency = metrics.VclkFrequency; gpu_metrics->average_dclk_frequency = metrics.DclkFrequency; memcpy(&gpu_metrics->current_coreclk[0], &metrics.CoreFrequency[0], sizeof(uint16_t) * 4); gpu_metrics->current_l3clk[0] = metrics.L3Frequency[0]; gpu_metrics->throttle_status = metrics.ThrottlerStatus; gpu_metrics->indep_throttle_status = smu_cmn_get_indep_throttler_status(metrics.ThrottlerStatus, vangogh_throttler_map); gpu_metrics->system_clock_counter = ktime_get_boottime_ns(); *table = (void *)gpu_metrics; return sizeof(struct gpu_metrics_v2_2); } static ssize_t vangogh_get_gpu_metrics(struct smu_context *smu, void **table) { struct smu_table_context *smu_table = &smu->smu_table; struct gpu_metrics_v2_2 *gpu_metrics = (struct gpu_metrics_v2_2 *)smu_table->gpu_metrics_table; SmuMetrics_t metrics; int ret = 0; ret = smu_cmn_get_metrics_table(smu, &metrics, true); if (ret) return ret; smu_cmn_init_soft_gpu_metrics(gpu_metrics, 2, 2); gpu_metrics->temperature_gfx = metrics.Current.GfxTemperature; gpu_metrics->temperature_soc = metrics.Current.SocTemperature; memcpy(&gpu_metrics->temperature_core[0], &metrics.Current.CoreTemperature[0], sizeof(uint16_t) * 4); gpu_metrics->temperature_l3[0] = metrics.Current.L3Temperature[0]; gpu_metrics->average_gfx_activity = metrics.Current.GfxActivity; gpu_metrics->average_mm_activity = metrics.Current.UvdActivity; gpu_metrics->average_socket_power = metrics.Current.CurrentSocketPower; gpu_metrics->average_cpu_power = metrics.Current.Power[0]; gpu_metrics->average_soc_power = metrics.Current.Power[1]; gpu_metrics->average_gfx_power = metrics.Current.Power[2]; memcpy(&gpu_metrics->average_core_power[0], &metrics.Average.CorePower[0], sizeof(uint16_t) * 4); gpu_metrics->average_gfxclk_frequency = metrics.Average.GfxclkFrequency; gpu_metrics->average_socclk_frequency = metrics.Average.SocclkFrequency; gpu_metrics->average_uclk_frequency = metrics.Average.MemclkFrequency; gpu_metrics->average_fclk_frequency = metrics.Average.MemclkFrequency; gpu_metrics->average_vclk_frequency = metrics.Average.VclkFrequency; gpu_metrics->average_dclk_frequency = metrics.Average.DclkFrequency; gpu_metrics->current_gfxclk = metrics.Current.GfxclkFrequency; gpu_metrics->current_socclk = metrics.Current.SocclkFrequency; gpu_metrics->current_uclk = metrics.Current.MemclkFrequency; gpu_metrics->current_fclk = metrics.Current.MemclkFrequency; gpu_metrics->current_vclk = metrics.Current.VclkFrequency; gpu_metrics->current_dclk = metrics.Current.DclkFrequency; memcpy(&gpu_metrics->current_coreclk[0], &metrics.Current.CoreFrequency[0], sizeof(uint16_t) * 4); gpu_metrics->current_l3clk[0] = metrics.Current.L3Frequency[0]; gpu_metrics->throttle_status = metrics.Current.ThrottlerStatus; gpu_metrics->indep_throttle_status = smu_cmn_get_indep_throttler_status(metrics.Current.ThrottlerStatus, vangogh_throttler_map); gpu_metrics->system_clock_counter = ktime_get_boottime_ns(); *table = (void *)gpu_metrics; return sizeof(struct gpu_metrics_v2_2); } static ssize_t vangogh_common_get_gpu_metrics(struct smu_context *smu, void **table) { struct amdgpu_device *adev = smu->adev; uint32_t if_version; int ret = 0; ret = smu_cmn_get_smc_version(smu, &if_version, NULL); if (ret) { dev_err(adev->dev, "Failed to get smu if version!\n"); return ret; } if (if_version < 0x3) ret = vangogh_get_legacy_gpu_metrics(smu, table); else ret = vangogh_get_gpu_metrics(smu, table); return ret; } static int vangogh_od_edit_dpm_table(struct smu_context *smu, enum PP_OD_DPM_TABLE_COMMAND type, long input[], uint32_t size) { int ret = 0; struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm); if (!(smu_dpm_ctx->dpm_level == AMD_DPM_FORCED_LEVEL_MANUAL)) { dev_warn(smu->adev->dev, "pp_od_clk_voltage is not accessible if power_dpm_force_performance_level is not in manual mode!\n"); return -EINVAL; } switch (type) { case PP_OD_EDIT_CCLK_VDDC_TABLE: if (size != 3) { dev_err(smu->adev->dev, "Input parameter number not correct (should be 4 for processor)\n"); return -EINVAL; } if (input[0] >= smu->cpu_core_num) { dev_err(smu->adev->dev, "core index is overflow, should be less than %d\n", smu->cpu_core_num); } smu->cpu_core_id_select = input[0]; if (input[1] == 0) { if (input[2] < smu->cpu_default_soft_min_freq) { dev_warn(smu->adev->dev, "Fine grain setting minimum cclk (%ld) MHz is less than the minimum allowed (%d) MHz\n", input[2], smu->cpu_default_soft_min_freq); return -EINVAL; } smu->cpu_actual_soft_min_freq = input[2]; } else if (input[1] == 1) { if (input[2] > smu->cpu_default_soft_max_freq) { dev_warn(smu->adev->dev, "Fine grain setting maximum cclk (%ld) MHz is greater than the maximum allowed (%d) MHz\n", input[2], smu->cpu_default_soft_max_freq); return -EINVAL; } smu->cpu_actual_soft_max_freq = input[2]; } else { return -EINVAL; } break; case PP_OD_EDIT_SCLK_VDDC_TABLE: if (size != 2) { dev_err(smu->adev->dev, "Input parameter number not correct\n"); return -EINVAL; } if (input[0] == 0) { if (input[1] < smu->gfx_default_hard_min_freq) { dev_warn(smu->adev->dev, "Fine grain setting minimum sclk (%ld) MHz is less than the minimum allowed (%d) MHz\n", input[1], smu->gfx_default_hard_min_freq); return -EINVAL; } smu->gfx_actual_hard_min_freq = input[1]; } else if (input[0] == 1) { if (input[1] > smu->gfx_default_soft_max_freq) { dev_warn(smu->adev->dev, "Fine grain setting maximum sclk (%ld) MHz is greater than the maximum allowed (%d) MHz\n", input[1], smu->gfx_default_soft_max_freq); return -EINVAL; } smu->gfx_actual_soft_max_freq = input[1]; } else { return -EINVAL; } break; case PP_OD_RESTORE_DEFAULT_TABLE: if (size != 0) { dev_err(smu->adev->dev, "Input parameter number not correct\n"); return -EINVAL; } else { smu->gfx_actual_hard_min_freq = smu->gfx_default_hard_min_freq; smu->gfx_actual_soft_max_freq = smu->gfx_default_soft_max_freq; smu->cpu_actual_soft_min_freq = smu->cpu_default_soft_min_freq; smu->cpu_actual_soft_max_freq = smu->cpu_default_soft_max_freq; } break; case PP_OD_COMMIT_DPM_TABLE: if (size != 0) { dev_err(smu->adev->dev, "Input parameter number not correct\n"); return -EINVAL; } else { if (smu->gfx_actual_hard_min_freq > smu->gfx_actual_soft_max_freq) { dev_err(smu->adev->dev, "The setting minimum sclk (%d) MHz is greater than the setting maximum sclk (%d) MHz\n", smu->gfx_actual_hard_min_freq, smu->gfx_actual_soft_max_freq); return -EINVAL; } ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinGfxClk, smu->gfx_actual_hard_min_freq, NULL); if (ret) { dev_err(smu->adev->dev, "Set hard min sclk failed!"); return ret; } ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxGfxClk, smu->gfx_actual_soft_max_freq, NULL); if (ret) { dev_err(smu->adev->dev, "Set soft max sclk failed!"); return ret; } if (smu->adev->pm.fw_version < 0x43f1b00) { dev_warn(smu->adev->dev, "CPUSoftMax/CPUSoftMin are not supported, please update SBIOS!\n"); break; } ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMinCclk, ((smu->cpu_core_id_select << 20) | smu->cpu_actual_soft_min_freq), NULL); if (ret) { dev_err(smu->adev->dev, "Set hard min cclk failed!"); return ret; } ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxCclk, ((smu->cpu_core_id_select << 20) | smu->cpu_actual_soft_max_freq), NULL); if (ret) { dev_err(smu->adev->dev, "Set soft max cclk failed!"); return ret; } } break; default: return -ENOSYS; } return ret; } static int vangogh_set_default_dpm_tables(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; return smu_cmn_update_table(smu, SMU_TABLE_DPMCLOCKS, 0, smu_table->clocks_table, false); } static int vangogh_set_fine_grain_gfx_freq_parameters(struct smu_context *smu) { DpmClocks_t *clk_table = smu->smu_table.clocks_table; smu->gfx_default_hard_min_freq = clk_table->MinGfxClk; smu->gfx_default_soft_max_freq = clk_table->MaxGfxClk; smu->gfx_actual_hard_min_freq = 0; smu->gfx_actual_soft_max_freq = 0; smu->cpu_default_soft_min_freq = 1400; smu->cpu_default_soft_max_freq = 3500; smu->cpu_actual_soft_min_freq = 0; smu->cpu_actual_soft_max_freq = 0; return 0; } static int vangogh_get_dpm_clock_table(struct smu_context *smu, struct dpm_clocks *clock_table) { DpmClocks_t *table = smu->smu_table.clocks_table; int i; if (!clock_table || !table) return -EINVAL; for (i = 0; i < NUM_SOCCLK_DPM_LEVELS; i++) { clock_table->SocClocks[i].Freq = table->SocClocks[i]; clock_table->SocClocks[i].Vol = table->SocVoltage[i]; } for (i = 0; i < NUM_FCLK_DPM_LEVELS; i++) { clock_table->FClocks[i].Freq = table->DfPstateTable[i].fclk; clock_table->FClocks[i].Vol = table->DfPstateTable[i].voltage; } for (i = 0; i < NUM_FCLK_DPM_LEVELS; i++) { clock_table->MemClocks[i].Freq = table->DfPstateTable[i].memclk; clock_table->MemClocks[i].Vol = table->DfPstateTable[i].voltage; } return 0; } static int vangogh_system_features_control(struct smu_context *smu, bool en) { struct amdgpu_device *adev = smu->adev; struct smu_feature *feature = &smu->smu_feature; uint32_t feature_mask[2]; int ret = 0; if (adev->pm.fw_version >= 0x43f1700 && !en) ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_RlcPowerNotify, RLC_STATUS_OFF, NULL); bitmap_zero(feature->enabled, feature->feature_num); bitmap_zero(feature->supported, feature->feature_num); if (!en) return ret; ret = smu_cmn_get_enabled_32_bits_mask(smu, feature_mask, 2); if (ret) return ret; bitmap_copy(feature->enabled, (unsigned long *)&feature_mask, feature->feature_num); bitmap_copy(feature->supported, (unsigned long *)&feature_mask, feature->feature_num); return 0; } static int vangogh_post_smu_init(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; uint32_t tmp; int ret = 0; uint8_t aon_bits = 0; /* Two CUs in one WGP */ uint32_t req_active_wgps = adev->gfx.cu_info.number/2; uint32_t total_cu = adev->gfx.config.max_cu_per_sh * adev->gfx.config.max_sh_per_se * adev->gfx.config.max_shader_engines; /* allow message will be sent after enable message on Vangogh*/ if (smu_cmn_feature_is_supported(smu, SMU_FEATURE_DPM_GFXCLK_BIT) && (adev->pg_flags & AMD_PG_SUPPORT_GFX_PG)) { ret = smu_cmn_send_smc_msg(smu, SMU_MSG_EnableGfxOff, NULL); if (ret) { dev_err(adev->dev, "Failed to Enable GfxOff!\n"); return ret; } } else { adev->pm.pp_feature &= ~PP_GFXOFF_MASK; dev_info(adev->dev, "If GFX DPM or power gate disabled, disable GFXOFF\n"); } /* if all CUs are active, no need to power off any WGPs */ if (total_cu == adev->gfx.cu_info.number) return 0; /* * Calculate the total bits number of always on WGPs for all SA/SEs in * RLC_PG_ALWAYS_ON_WGP_MASK. */ tmp = RREG32_KIQ(SOC15_REG_OFFSET(GC, 0, mmRLC_PG_ALWAYS_ON_WGP_MASK)); tmp &= RLC_PG_ALWAYS_ON_WGP_MASK__AON_WGP_MASK_MASK; aon_bits = hweight32(tmp) * adev->gfx.config.max_sh_per_se * adev->gfx.config.max_shader_engines; /* Do not request any WGPs less than set in the AON_WGP_MASK */ if (aon_bits > req_active_wgps) { dev_info(adev->dev, "Number of always on WGPs greater than active WGPs: WGP power save not requested.\n"); return 0; } else { return smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_RequestActiveWgp, req_active_wgps, NULL); } } static int vangogh_mode_reset(struct smu_context *smu, int type) { int ret = 0, index = 0; index = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_MSG, SMU_MSG_GfxDeviceDriverReset); if (index < 0) return index == -EACCES ? 0 : index; mutex_lock(&smu->message_lock); ret = smu_cmn_send_msg_without_waiting(smu, (uint16_t)index, type); mutex_unlock(&smu->message_lock); mdelay(10); return ret; } static int vangogh_mode2_reset(struct smu_context *smu) { return vangogh_mode_reset(smu, SMU_RESET_MODE_2); } static int vangogh_get_power_limit(struct smu_context *smu, uint32_t *current_power_limit, uint32_t *default_power_limit, uint32_t *max_power_limit) { struct smu_11_5_power_context *power_context = smu->smu_power.power_context; uint32_t ppt_limit; int ret = 0; if (smu->adev->pm.fw_version < 0x43f1e00) return ret; ret = smu_cmn_send_smc_msg(smu, SMU_MSG_GetSlowPPTLimit, &ppt_limit); if (ret) { dev_err(smu->adev->dev, "Get slow PPT limit failed!\n"); return ret; } /* convert from milliwatt to watt */ if (current_power_limit) *current_power_limit = ppt_limit / 1000; if (default_power_limit) *default_power_limit = ppt_limit / 1000; if (max_power_limit) *max_power_limit = 29; ret = smu_cmn_send_smc_msg(smu, SMU_MSG_GetFastPPTLimit, &ppt_limit); if (ret) { dev_err(smu->adev->dev, "Get fast PPT limit failed!\n"); return ret; } /* convert from milliwatt to watt */ power_context->current_fast_ppt_limit = power_context->default_fast_ppt_limit = ppt_limit / 1000; power_context->max_fast_ppt_limit = 30; return ret; } static int vangogh_get_ppt_limit(struct smu_context *smu, uint32_t *ppt_limit, enum smu_ppt_limit_type type, enum smu_ppt_limit_level level) { struct smu_11_5_power_context *power_context = smu->smu_power.power_context; if (!power_context) return -EOPNOTSUPP; if (type == SMU_FAST_PPT_LIMIT) { switch (level) { case SMU_PPT_LIMIT_MAX: *ppt_limit = power_context->max_fast_ppt_limit; break; case SMU_PPT_LIMIT_CURRENT: *ppt_limit = power_context->current_fast_ppt_limit; break; case SMU_PPT_LIMIT_DEFAULT: *ppt_limit = power_context->default_fast_ppt_limit; break; default: break; } } return 0; } static int vangogh_set_power_limit(struct smu_context *smu, uint32_t ppt_limit) { struct smu_11_5_power_context *power_context = smu->smu_power.power_context; uint32_t limit_type = ppt_limit >> 24; int ret = 0; if (!smu_cmn_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT)) { dev_err(smu->adev->dev, "Setting new power limit is not supported!\n"); return -EOPNOTSUPP; } switch (limit_type) { case SMU_DEFAULT_PPT_LIMIT: ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSlowPPTLimit, ppt_limit * 1000, /* convert from watt to milliwatt */ NULL); if (ret) return ret; smu->current_power_limit = ppt_limit; break; case SMU_FAST_PPT_LIMIT: ppt_limit &= ~(SMU_FAST_PPT_LIMIT << 24); if (ppt_limit > power_context->max_fast_ppt_limit) { dev_err(smu->adev->dev, "New power limit (%d) is over the max allowed %d\n", ppt_limit, power_context->max_fast_ppt_limit); return ret; } ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetFastPPTLimit, ppt_limit * 1000, /* convert from watt to milliwatt */ NULL); if (ret) return ret; power_context->current_fast_ppt_limit = ppt_limit; break; default: return -EINVAL; } return ret; } static const struct pptable_funcs vangogh_ppt_funcs = { .check_fw_status = smu_v11_0_check_fw_status, .check_fw_version = smu_v11_0_check_fw_version, .init_smc_tables = vangogh_init_smc_tables, .fini_smc_tables = smu_v11_0_fini_smc_tables, .init_power = smu_v11_0_init_power, .fini_power = smu_v11_0_fini_power, .register_irq_handler = smu_v11_0_register_irq_handler, .notify_memory_pool_location = smu_v11_0_notify_memory_pool_location, .send_smc_msg_with_param = smu_cmn_send_smc_msg_with_param, .send_smc_msg = smu_cmn_send_smc_msg, .dpm_set_vcn_enable = vangogh_dpm_set_vcn_enable, .dpm_set_jpeg_enable = vangogh_dpm_set_jpeg_enable, .is_dpm_running = vangogh_is_dpm_running, .read_sensor = vangogh_read_sensor, .get_enabled_mask = smu_cmn_get_enabled_32_bits_mask, .get_pp_feature_mask = smu_cmn_get_pp_feature_mask, .set_watermarks_table = vangogh_set_watermarks_table, .set_driver_table_location = smu_v11_0_set_driver_table_location, .interrupt_work = smu_v11_0_interrupt_work, .get_gpu_metrics = vangogh_common_get_gpu_metrics, .od_edit_dpm_table = vangogh_od_edit_dpm_table, .print_clk_levels = vangogh_common_print_clk_levels, .set_default_dpm_table = vangogh_set_default_dpm_tables, .set_fine_grain_gfx_freq_parameters = vangogh_set_fine_grain_gfx_freq_parameters, .system_features_control = vangogh_system_features_control, .feature_is_enabled = smu_cmn_feature_is_enabled, .set_power_profile_mode = vangogh_set_power_profile_mode, .get_power_profile_mode = vangogh_get_power_profile_mode, .get_dpm_clock_table = vangogh_get_dpm_clock_table, .force_clk_levels = vangogh_force_clk_levels, .set_performance_level = vangogh_set_performance_level, .post_init = vangogh_post_smu_init, .mode2_reset = vangogh_mode2_reset, .gfx_off_control = smu_v11_0_gfx_off_control, .get_ppt_limit = vangogh_get_ppt_limit, .get_power_limit = vangogh_get_power_limit, .set_power_limit = vangogh_set_power_limit, .get_vbios_bootup_values = smu_v11_0_get_vbios_bootup_values, }; void vangogh_set_ppt_funcs(struct smu_context *smu) { smu->ppt_funcs = &vangogh_ppt_funcs; smu->message_map = vangogh_message_map; smu->feature_map = vangogh_feature_mask_map; smu->table_map = vangogh_table_map; smu->workload_map = vangogh_workload_map; smu->is_apu = true; }