/* * Copyright 2020 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include #define SMU_13_0_PARTIAL_PPTABLE #define SWSMU_CODE_LAYER_L3 #include "amdgpu.h" #include "amdgpu_smu.h" #include "atomfirmware.h" #include "amdgpu_atomfirmware.h" #include "amdgpu_atombios.h" #include "smu_v13_0.h" #include "soc15_common.h" #include "atom.h" #include "amdgpu_ras.h" #include "smu_cmn.h" #include "asic_reg/thm/thm_13_0_2_offset.h" #include "asic_reg/thm/thm_13_0_2_sh_mask.h" #include "asic_reg/mp/mp_13_0_2_offset.h" #include "asic_reg/mp/mp_13_0_2_sh_mask.h" #include "asic_reg/smuio/smuio_13_0_2_offset.h" #include "asic_reg/smuio/smuio_13_0_2_sh_mask.h" /* * DO NOT use these for err/warn/info/debug messages. * Use dev_err, dev_warn, dev_info and dev_dbg instead. * They are more MGPU friendly. */ #undef pr_err #undef pr_warn #undef pr_info #undef pr_debug MODULE_FIRMWARE("amdgpu/aldebaran_smc.bin"); #define SMU13_VOLTAGE_SCALE 4 #define SMU13_MODE1_RESET_WAIT_TIME_IN_MS 500 //500ms #define LINK_WIDTH_MAX 6 #define LINK_SPEED_MAX 3 #define smnPCIE_LC_LINK_WIDTH_CNTL 0x11140288 #define PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD_MASK 0x00000070L #define PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD__SHIFT 0x4 #define smnPCIE_LC_SPEED_CNTL 0x11140290 #define PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE_MASK 0xC000 #define PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE__SHIFT 0xE static const int link_width[] = {0, 1, 2, 4, 8, 12, 16}; static const int link_speed[] = {25, 50, 80, 160}; int smu_v13_0_init_microcode(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; const char *chip_name; char fw_name[30]; int err = 0; const struct smc_firmware_header_v1_0 *hdr; const struct common_firmware_header *header; struct amdgpu_firmware_info *ucode = NULL; /* doesn't need to load smu firmware in IOV mode */ if (amdgpu_sriov_vf(adev)) return 0; switch (adev->asic_type) { case CHIP_ALDEBARAN: chip_name = "aldebaran"; break; default: dev_err(adev->dev, "Unsupported ASIC type %d\n", adev->asic_type); return -EINVAL; } snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_smc.bin", chip_name); err = request_firmware(&adev->pm.fw, fw_name, adev->dev); if (err) goto out; err = amdgpu_ucode_validate(adev->pm.fw); if (err) goto out; hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data; amdgpu_ucode_print_smc_hdr(&hdr->header); adev->pm.fw_version = le32_to_cpu(hdr->header.ucode_version); if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { ucode = &adev->firmware.ucode[AMDGPU_UCODE_ID_SMC]; ucode->ucode_id = AMDGPU_UCODE_ID_SMC; ucode->fw = adev->pm.fw; header = (const struct common_firmware_header *)ucode->fw->data; adev->firmware.fw_size += ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE); } out: if (err) { DRM_ERROR("smu_v13_0: Failed to load firmware \"%s\"\n", fw_name); release_firmware(adev->pm.fw); adev->pm.fw = NULL; } return err; } void smu_v13_0_fini_microcode(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; release_firmware(adev->pm.fw); adev->pm.fw = NULL; adev->pm.fw_version = 0; } int smu_v13_0_load_microcode(struct smu_context *smu) { #if 0 struct amdgpu_device *adev = smu->adev; const uint32_t *src; const struct smc_firmware_header_v1_0 *hdr; uint32_t addr_start = MP1_SRAM; uint32_t i; uint32_t smc_fw_size; uint32_t mp1_fw_flags; hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data; src = (const uint32_t *)(adev->pm.fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); smc_fw_size = hdr->header.ucode_size_bytes; for (i = 1; i < smc_fw_size/4 - 1; i++) { WREG32_PCIE(addr_start, src[i]); addr_start += 4; } WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff), 1 & MP1_SMN_PUB_CTRL__RESET_MASK); WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff), 1 & ~MP1_SMN_PUB_CTRL__RESET_MASK); for (i = 0; i < adev->usec_timeout; i++) { mp1_fw_flags = RREG32_PCIE(MP1_Public | (smnMP1_FIRMWARE_FLAGS & 0xffffffff)); if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >> MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT) break; udelay(1); } if (i == adev->usec_timeout) return -ETIME; #endif return 0; } int smu_v13_0_check_fw_status(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; uint32_t mp1_fw_flags; mp1_fw_flags = RREG32_PCIE(MP1_Public | (smnMP1_FIRMWARE_FLAGS & 0xffffffff)); if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >> MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT) return 0; return -EIO; } int smu_v13_0_check_fw_version(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; uint32_t if_version = 0xff, smu_version = 0xff; uint16_t smu_major; uint8_t smu_minor, smu_debug; int ret = 0; ret = smu_cmn_get_smc_version(smu, &if_version, &smu_version); if (ret) return ret; smu_major = (smu_version >> 16) & 0xffff; smu_minor = (smu_version >> 8) & 0xff; smu_debug = (smu_version >> 0) & 0xff; if (smu->is_apu) adev->pm.fw_version = smu_version; switch (smu->adev->asic_type) { case CHIP_ALDEBARAN: smu->smc_driver_if_version = SMU13_DRIVER_IF_VERSION_ALDE; break; case CHIP_YELLOW_CARP: smu->smc_driver_if_version = SMU13_DRIVER_IF_VERSION_YELLOW_CARP; break; default: dev_err(smu->adev->dev, "smu unsupported asic type:%d.\n", smu->adev->asic_type); smu->smc_driver_if_version = SMU13_DRIVER_IF_VERSION_INV; break; } dev_info(smu->adev->dev, "smu fw reported version = 0x%08x (%d.%d.%d)\n", smu_version, smu_major, smu_minor, smu_debug); /* * 1. if_version mismatch is not critical as our fw is designed * to be backward compatible. * 2. New fw usually brings some optimizations. But that's visible * only on the paired driver. * Considering above, we just leave user a warning message instead * of halt driver loading. */ if (if_version != smu->smc_driver_if_version) { dev_info(smu->adev->dev, "smu driver if version = 0x%08x, smu fw if version = 0x%08x, " "smu fw version = 0x%08x (%d.%d.%d)\n", smu->smc_driver_if_version, if_version, smu_version, smu_major, smu_minor, smu_debug); dev_warn(smu->adev->dev, "SMU driver if version not matched\n"); } return ret; } static int smu_v13_0_set_pptable_v2_1(struct smu_context *smu, void **table, uint32_t *size, uint32_t pptable_id) { struct amdgpu_device *adev = smu->adev; const struct smc_firmware_header_v2_1 *v2_1; struct smc_soft_pptable_entry *entries; uint32_t pptable_count = 0; int i = 0; v2_1 = (const struct smc_firmware_header_v2_1 *) adev->pm.fw->data; entries = (struct smc_soft_pptable_entry *) ((uint8_t *)v2_1 + le32_to_cpu(v2_1->pptable_entry_offset)); pptable_count = le32_to_cpu(v2_1->pptable_count); for (i = 0; i < pptable_count; i++) { if (le32_to_cpu(entries[i].id) == pptable_id) { *table = ((uint8_t *)v2_1 + le32_to_cpu(entries[i].ppt_offset_bytes)); *size = le32_to_cpu(entries[i].ppt_size_bytes); break; } } if (i == pptable_count) return -EINVAL; return 0; } static int smu_v13_0_get_pptable_from_vbios(struct smu_context *smu, void **table, uint32_t *size) { struct amdgpu_device *adev = smu->adev; uint16_t atom_table_size; uint8_t frev, crev; int ret, index; dev_info(adev->dev, "use vbios provided pptable\n"); index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, powerplayinfo); ret = amdgpu_atombios_get_data_table(adev, index, &atom_table_size, &frev, &crev, (uint8_t **)table); if (ret) return ret; if (size) *size = atom_table_size; return 0; } static int smu_v13_0_get_pptable_from_firmware(struct smu_context *smu, void **table, uint32_t *size, uint32_t pptable_id) { const struct smc_firmware_header_v1_0 *hdr; struct amdgpu_device *adev = smu->adev; uint16_t version_major, version_minor; int ret; hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data; if (!hdr) return -EINVAL; dev_info(adev->dev, "use driver provided pptable %d\n", pptable_id); version_major = le16_to_cpu(hdr->header.header_version_major); version_minor = le16_to_cpu(hdr->header.header_version_minor); if (version_major != 2) { dev_err(adev->dev, "Unsupported smu firmware version %d.%d\n", version_major, version_minor); return -EINVAL; } switch (version_minor) { case 1: ret = smu_v13_0_set_pptable_v2_1(smu, table, size, pptable_id); break; default: ret = -EINVAL; break; } return ret; } int smu_v13_0_setup_pptable(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; uint32_t size = 0, pptable_id = 0; void *table; int ret = 0; /* override pptable_id from driver parameter */ if (amdgpu_smu_pptable_id >= 0) { pptable_id = amdgpu_smu_pptable_id; dev_info(adev->dev, "override pptable id %d\n", pptable_id); } else { pptable_id = smu->smu_table.boot_values.pp_table_id; } /* force using vbios pptable in sriov mode */ if (amdgpu_sriov_vf(adev) || !pptable_id) ret = smu_v13_0_get_pptable_from_vbios(smu, &table, &size); else ret = smu_v13_0_get_pptable_from_firmware(smu, &table, &size, pptable_id); if (ret) return ret; if (!smu->smu_table.power_play_table) smu->smu_table.power_play_table = table; if (!smu->smu_table.power_play_table_size) smu->smu_table.power_play_table_size = size; return 0; } int smu_v13_0_init_smc_tables(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; struct smu_table *tables = smu_table->tables; int ret = 0; smu_table->driver_pptable = kzalloc(tables[SMU_TABLE_PPTABLE].size, GFP_KERNEL); if (!smu_table->driver_pptable) { ret = -ENOMEM; goto err0_out; } smu_table->max_sustainable_clocks = kzalloc(sizeof(struct smu_13_0_max_sustainable_clocks), GFP_KERNEL); if (!smu_table->max_sustainable_clocks) { ret = -ENOMEM; goto err1_out; } /* Aldebaran does not support OVERDRIVE */ if (tables[SMU_TABLE_OVERDRIVE].size) { smu_table->overdrive_table = kzalloc(tables[SMU_TABLE_OVERDRIVE].size, GFP_KERNEL); if (!smu_table->overdrive_table) { ret = -ENOMEM; goto err2_out; } smu_table->boot_overdrive_table = kzalloc(tables[SMU_TABLE_OVERDRIVE].size, GFP_KERNEL); if (!smu_table->boot_overdrive_table) { ret = -ENOMEM; goto err3_out; } } return 0; err3_out: kfree(smu_table->overdrive_table); err2_out: kfree(smu_table->max_sustainable_clocks); err1_out: kfree(smu_table->driver_pptable); err0_out: return ret; } int smu_v13_0_fini_smc_tables(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; struct smu_dpm_context *smu_dpm = &smu->smu_dpm; kfree(smu_table->gpu_metrics_table); kfree(smu_table->boot_overdrive_table); kfree(smu_table->overdrive_table); kfree(smu_table->max_sustainable_clocks); kfree(smu_table->driver_pptable); smu_table->gpu_metrics_table = NULL; smu_table->boot_overdrive_table = NULL; smu_table->overdrive_table = NULL; smu_table->max_sustainable_clocks = NULL; smu_table->driver_pptable = NULL; kfree(smu_table->hardcode_pptable); smu_table->hardcode_pptable = NULL; kfree(smu_table->metrics_table); kfree(smu_table->watermarks_table); smu_table->metrics_table = NULL; smu_table->watermarks_table = NULL; smu_table->metrics_time = 0; kfree(smu_dpm->dpm_context); kfree(smu_dpm->golden_dpm_context); kfree(smu_dpm->dpm_current_power_state); kfree(smu_dpm->dpm_request_power_state); smu_dpm->dpm_context = NULL; smu_dpm->golden_dpm_context = NULL; smu_dpm->dpm_context_size = 0; smu_dpm->dpm_current_power_state = NULL; smu_dpm->dpm_request_power_state = NULL; return 0; } int smu_v13_0_init_power(struct smu_context *smu) { struct smu_power_context *smu_power = &smu->smu_power; if (smu_power->power_context || smu_power->power_context_size != 0) return -EINVAL; smu_power->power_context = kzalloc(sizeof(struct smu_13_0_power_context), GFP_KERNEL); if (!smu_power->power_context) return -ENOMEM; smu_power->power_context_size = sizeof(struct smu_13_0_power_context); return 0; } int smu_v13_0_fini_power(struct smu_context *smu) { struct smu_power_context *smu_power = &smu->smu_power; if (!smu_power->power_context || smu_power->power_context_size == 0) return -EINVAL; kfree(smu_power->power_context); smu_power->power_context = NULL; smu_power->power_context_size = 0; return 0; } static int smu_v13_0_atom_get_smu_clockinfo(struct amdgpu_device *adev, uint8_t clk_id, uint8_t syspll_id, uint32_t *clk_freq) { struct atom_get_smu_clock_info_parameters_v3_1 input = {0}; struct atom_get_smu_clock_info_output_parameters_v3_1 *output; int ret, index; input.clk_id = clk_id; input.syspll_id = syspll_id; input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ; index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1, getsmuclockinfo); ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&input); if (ret) return -EINVAL; output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input; *clk_freq = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000; return 0; } int smu_v13_0_get_vbios_bootup_values(struct smu_context *smu) { int ret, index; uint16_t size; uint8_t frev, crev; struct atom_common_table_header *header; struct atom_firmware_info_v3_4 *v_3_4; struct atom_firmware_info_v3_3 *v_3_3; struct atom_firmware_info_v3_1 *v_3_1; index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, firmwareinfo); ret = amdgpu_atombios_get_data_table(smu->adev, index, &size, &frev, &crev, (uint8_t **)&header); if (ret) return ret; if (header->format_revision != 3) { dev_err(smu->adev->dev, "unknown atom_firmware_info version! for smu13\n"); return -EINVAL; } switch (header->content_revision) { case 0: case 1: case 2: v_3_1 = (struct atom_firmware_info_v3_1 *)header; smu->smu_table.boot_values.revision = v_3_1->firmware_revision; smu->smu_table.boot_values.gfxclk = v_3_1->bootup_sclk_in10khz; smu->smu_table.boot_values.uclk = v_3_1->bootup_mclk_in10khz; smu->smu_table.boot_values.socclk = 0; smu->smu_table.boot_values.dcefclk = 0; smu->smu_table.boot_values.vddc = v_3_1->bootup_vddc_mv; smu->smu_table.boot_values.vddci = v_3_1->bootup_vddci_mv; smu->smu_table.boot_values.mvddc = v_3_1->bootup_mvddc_mv; smu->smu_table.boot_values.vdd_gfx = v_3_1->bootup_vddgfx_mv; smu->smu_table.boot_values.cooling_id = v_3_1->coolingsolution_id; smu->smu_table.boot_values.pp_table_id = 0; break; case 3: v_3_3 = (struct atom_firmware_info_v3_3 *)header; smu->smu_table.boot_values.revision = v_3_3->firmware_revision; smu->smu_table.boot_values.gfxclk = v_3_3->bootup_sclk_in10khz; smu->smu_table.boot_values.uclk = v_3_3->bootup_mclk_in10khz; smu->smu_table.boot_values.socclk = 0; smu->smu_table.boot_values.dcefclk = 0; smu->smu_table.boot_values.vddc = v_3_3->bootup_vddc_mv; smu->smu_table.boot_values.vddci = v_3_3->bootup_vddci_mv; smu->smu_table.boot_values.mvddc = v_3_3->bootup_mvddc_mv; smu->smu_table.boot_values.vdd_gfx = v_3_3->bootup_vddgfx_mv; smu->smu_table.boot_values.cooling_id = v_3_3->coolingsolution_id; smu->smu_table.boot_values.pp_table_id = v_3_3->pplib_pptable_id; break; case 4: default: v_3_4 = (struct atom_firmware_info_v3_4 *)header; smu->smu_table.boot_values.revision = v_3_4->firmware_revision; smu->smu_table.boot_values.gfxclk = v_3_4->bootup_sclk_in10khz; smu->smu_table.boot_values.uclk = v_3_4->bootup_mclk_in10khz; smu->smu_table.boot_values.socclk = 0; smu->smu_table.boot_values.dcefclk = 0; smu->smu_table.boot_values.vddc = v_3_4->bootup_vddc_mv; smu->smu_table.boot_values.vddci = v_3_4->bootup_vddci_mv; smu->smu_table.boot_values.mvddc = v_3_4->bootup_mvddc_mv; smu->smu_table.boot_values.vdd_gfx = v_3_4->bootup_vddgfx_mv; smu->smu_table.boot_values.cooling_id = v_3_4->coolingsolution_id; smu->smu_table.boot_values.pp_table_id = v_3_4->pplib_pptable_id; break; } smu->smu_table.boot_values.format_revision = header->format_revision; smu->smu_table.boot_values.content_revision = header->content_revision; smu_v13_0_atom_get_smu_clockinfo(smu->adev, (uint8_t)SMU11_SYSPLL0_SOCCLK_ID, (uint8_t)0, &smu->smu_table.boot_values.socclk); smu_v13_0_atom_get_smu_clockinfo(smu->adev, (uint8_t)SMU11_SYSPLL0_DCEFCLK_ID, (uint8_t)0, &smu->smu_table.boot_values.dcefclk); smu_v13_0_atom_get_smu_clockinfo(smu->adev, (uint8_t)SMU11_SYSPLL0_ECLK_ID, (uint8_t)0, &smu->smu_table.boot_values.eclk); smu_v13_0_atom_get_smu_clockinfo(smu->adev, (uint8_t)SMU11_SYSPLL0_VCLK_ID, (uint8_t)0, &smu->smu_table.boot_values.vclk); smu_v13_0_atom_get_smu_clockinfo(smu->adev, (uint8_t)SMU11_SYSPLL0_DCLK_ID, (uint8_t)0, &smu->smu_table.boot_values.dclk); if ((smu->smu_table.boot_values.format_revision == 3) && (smu->smu_table.boot_values.content_revision >= 2)) smu_v13_0_atom_get_smu_clockinfo(smu->adev, (uint8_t)SMU11_SYSPLL1_0_FCLK_ID, (uint8_t)SMU11_SYSPLL1_2_ID, &smu->smu_table.boot_values.fclk); return 0; } int smu_v13_0_notify_memory_pool_location(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; struct smu_table *memory_pool = &smu_table->memory_pool; int ret = 0; uint64_t address; uint32_t address_low, address_high; if (memory_pool->size == 0 || memory_pool->cpu_addr == NULL) return ret; address = memory_pool->mc_address; address_high = (uint32_t)upper_32_bits(address); address_low = (uint32_t)lower_32_bits(address); ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrHigh, address_high, NULL); if (ret) return ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrLow, address_low, NULL); if (ret) return ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramSize, (uint32_t)memory_pool->size, NULL); if (ret) return ret; return ret; } int smu_v13_0_set_min_deep_sleep_dcefclk(struct smu_context *smu, uint32_t clk) { int ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetMinDeepSleepDcefclk, clk, NULL); if (ret) dev_err(smu->adev->dev, "SMU13 attempt to set divider for DCEFCLK Failed!"); return ret; } int smu_v13_0_set_driver_table_location(struct smu_context *smu) { struct smu_table *driver_table = &smu->smu_table.driver_table; int ret = 0; if (driver_table->mc_address) { ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetDriverDramAddrHigh, upper_32_bits(driver_table->mc_address), NULL); if (!ret) ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetDriverDramAddrLow, lower_32_bits(driver_table->mc_address), NULL); } return ret; } int smu_v13_0_set_tool_table_location(struct smu_context *smu) { int ret = 0; struct smu_table *tool_table = &smu->smu_table.tables[SMU_TABLE_PMSTATUSLOG]; if (tool_table->mc_address) { ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetToolsDramAddrHigh, upper_32_bits(tool_table->mc_address), NULL); if (!ret) ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetToolsDramAddrLow, lower_32_bits(tool_table->mc_address), NULL); } return ret; } int smu_v13_0_init_display_count(struct smu_context *smu, uint32_t count) { int ret = 0; if (!smu->pm_enabled) return ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, count, NULL); return ret; } int smu_v13_0_set_allowed_mask(struct smu_context *smu) { struct smu_feature *feature = &smu->smu_feature; int ret = 0; uint32_t feature_mask[2]; mutex_lock(&feature->mutex); if (bitmap_empty(feature->allowed, SMU_FEATURE_MAX) || feature->feature_num < 64) goto failed; bitmap_to_arr32(feature_mask, feature->allowed, 64); ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskHigh, feature_mask[1], NULL); if (ret) goto failed; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskLow, feature_mask[0], NULL); if (ret) goto failed; failed: mutex_unlock(&feature->mutex); return ret; } int smu_v13_0_gfx_off_control(struct smu_context *smu, bool enable) { int ret = 0; struct amdgpu_device *adev = smu->adev; switch (adev->asic_type) { case CHIP_YELLOW_CARP: if (!(adev->pm.pp_feature & PP_GFXOFF_MASK)) return 0; if (enable) ret = smu_cmn_send_smc_msg(smu, SMU_MSG_AllowGfxOff, NULL); else ret = smu_cmn_send_smc_msg(smu, SMU_MSG_DisallowGfxOff, NULL); break; default: break; } return ret; } int smu_v13_0_system_features_control(struct smu_context *smu, bool en) { struct smu_feature *feature = &smu->smu_feature; uint32_t feature_mask[2]; int ret = 0; ret = smu_cmn_send_smc_msg(smu, (en ? SMU_MSG_EnableAllSmuFeatures : SMU_MSG_DisableAllSmuFeatures), NULL); if (ret) return ret; bitmap_zero(feature->enabled, feature->feature_num); bitmap_zero(feature->supported, feature->feature_num); if (en) { ret = smu_cmn_get_enabled_mask(smu, feature_mask, 2); if (ret) return ret; bitmap_copy(feature->enabled, (unsigned long *)&feature_mask, feature->feature_num); bitmap_copy(feature->supported, (unsigned long *)&feature_mask, feature->feature_num); } return ret; } int smu_v13_0_notify_display_change(struct smu_context *smu) { int ret = 0; if (!smu->pm_enabled) return ret; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT) && smu->adev->gmc.vram_type == AMDGPU_VRAM_TYPE_HBM) ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetUclkFastSwitch, 1, NULL); return ret; } static int smu_v13_0_get_max_sustainable_clock(struct smu_context *smu, uint32_t *clock, enum smu_clk_type clock_select) { int ret = 0; int clk_id; if ((smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_MSG, SMU_MSG_GetDcModeMaxDpmFreq) < 0) || (smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_MSG, SMU_MSG_GetMaxDpmFreq) < 0)) return 0; clk_id = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_CLK, clock_select); if (clk_id < 0) return -EINVAL; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GetDcModeMaxDpmFreq, clk_id << 16, clock); if (ret) { dev_err(smu->adev->dev, "[GetMaxSustainableClock] Failed to get max DC clock from SMC!"); return ret; } if (*clock != 0) return 0; /* if DC limit is zero, return AC limit */ ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq, clk_id << 16, clock); if (ret) { dev_err(smu->adev->dev, "[GetMaxSustainableClock] failed to get max AC clock from SMC!"); return ret; } return 0; } int smu_v13_0_init_max_sustainable_clocks(struct smu_context *smu) { struct smu_13_0_max_sustainable_clocks *max_sustainable_clocks = smu->smu_table.max_sustainable_clocks; int ret = 0; max_sustainable_clocks->uclock = smu->smu_table.boot_values.uclk / 100; max_sustainable_clocks->soc_clock = smu->smu_table.boot_values.socclk / 100; max_sustainable_clocks->dcef_clock = smu->smu_table.boot_values.dcefclk / 100; max_sustainable_clocks->display_clock = 0xFFFFFFFF; max_sustainable_clocks->phy_clock = 0xFFFFFFFF; max_sustainable_clocks->pixel_clock = 0xFFFFFFFF; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) { ret = smu_v13_0_get_max_sustainable_clock(smu, &(max_sustainable_clocks->uclock), SMU_UCLK); if (ret) { dev_err(smu->adev->dev, "[%s] failed to get max UCLK from SMC!", __func__); return ret; } } if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) { ret = smu_v13_0_get_max_sustainable_clock(smu, &(max_sustainable_clocks->soc_clock), SMU_SOCCLK); if (ret) { dev_err(smu->adev->dev, "[%s] failed to get max SOCCLK from SMC!", __func__); return ret; } } if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) { ret = smu_v13_0_get_max_sustainable_clock(smu, &(max_sustainable_clocks->dcef_clock), SMU_DCEFCLK); if (ret) { dev_err(smu->adev->dev, "[%s] failed to get max DCEFCLK from SMC!", __func__); return ret; } ret = smu_v13_0_get_max_sustainable_clock(smu, &(max_sustainable_clocks->display_clock), SMU_DISPCLK); if (ret) { dev_err(smu->adev->dev, "[%s] failed to get max DISPCLK from SMC!", __func__); return ret; } ret = smu_v13_0_get_max_sustainable_clock(smu, &(max_sustainable_clocks->phy_clock), SMU_PHYCLK); if (ret) { dev_err(smu->adev->dev, "[%s] failed to get max PHYCLK from SMC!", __func__); return ret; } ret = smu_v13_0_get_max_sustainable_clock(smu, &(max_sustainable_clocks->pixel_clock), SMU_PIXCLK); if (ret) { dev_err(smu->adev->dev, "[%s] failed to get max PIXCLK from SMC!", __func__); return ret; } } if (max_sustainable_clocks->soc_clock < max_sustainable_clocks->uclock) max_sustainable_clocks->uclock = max_sustainable_clocks->soc_clock; return 0; } int smu_v13_0_get_current_power_limit(struct smu_context *smu, uint32_t *power_limit) { int power_src; int ret = 0; if (!smu_cmn_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT)) return -EINVAL; power_src = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_PWR, smu->adev->pm.ac_power ? SMU_POWER_SOURCE_AC : SMU_POWER_SOURCE_DC); if (power_src < 0) return -EINVAL; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GetPptLimit, power_src << 16, power_limit); if (ret) dev_err(smu->adev->dev, "[%s] get PPT limit failed!", __func__); return ret; } int smu_v13_0_set_power_limit(struct smu_context *smu, uint32_t n) { int ret = 0; if (!smu_cmn_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT)) { dev_err(smu->adev->dev, "Setting new power limit is not supported!\n"); return -EOPNOTSUPP; } ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetPptLimit, n, NULL); if (ret) { dev_err(smu->adev->dev, "[%s] Set power limit Failed!\n", __func__); return ret; } smu->current_power_limit = n; return 0; } int smu_v13_0_enable_thermal_alert(struct smu_context *smu) { if (smu->smu_table.thermal_controller_type) return amdgpu_irq_get(smu->adev, &smu->irq_source, 0); return 0; } int smu_v13_0_disable_thermal_alert(struct smu_context *smu) { return amdgpu_irq_put(smu->adev, &smu->irq_source, 0); } static uint16_t convert_to_vddc(uint8_t vid) { return (uint16_t) ((6200 - (vid * 25)) / SMU13_VOLTAGE_SCALE); } int smu_v13_0_get_gfx_vdd(struct smu_context *smu, uint32_t *value) { struct amdgpu_device *adev = smu->adev; uint32_t vdd = 0, val_vid = 0; if (!value) return -EINVAL; val_vid = (RREG32_SOC15(SMUIO, 0, regSMUSVI0_TEL_PLANE0) & SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR_MASK) >> SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR__SHIFT; vdd = (uint32_t)convert_to_vddc((uint8_t)val_vid); *value = vdd; return 0; } int smu_v13_0_display_clock_voltage_request(struct smu_context *smu, struct pp_display_clock_request *clock_req) { enum amd_pp_clock_type clk_type = clock_req->clock_type; int ret = 0; enum smu_clk_type clk_select = 0; uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000; if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) || smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) { switch (clk_type) { case amd_pp_dcef_clock: clk_select = SMU_DCEFCLK; break; case amd_pp_disp_clock: clk_select = SMU_DISPCLK; break; case amd_pp_pixel_clock: clk_select = SMU_PIXCLK; break; case amd_pp_phy_clock: clk_select = SMU_PHYCLK; break; case amd_pp_mem_clock: clk_select = SMU_UCLK; break; default: dev_info(smu->adev->dev, "[%s] Invalid Clock Type!", __func__); ret = -EINVAL; break; } if (ret) goto failed; if (clk_select == SMU_UCLK && smu->disable_uclk_switch) return 0; ret = smu_v13_0_set_hard_freq_limited_range(smu, clk_select, clk_freq, 0); if(clk_select == SMU_UCLK) smu->hard_min_uclk_req_from_dal = clk_freq; } failed: return ret; } uint32_t smu_v13_0_get_fan_control_mode(struct smu_context *smu) { if (!smu_cmn_feature_is_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT)) return AMD_FAN_CTRL_MANUAL; else return AMD_FAN_CTRL_AUTO; } static int smu_v13_0_auto_fan_control(struct smu_context *smu, bool auto_fan_control) { int ret = 0; if (!smu_cmn_feature_is_supported(smu, SMU_FEATURE_FAN_CONTROL_BIT)) return 0; ret = smu_cmn_feature_set_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT, auto_fan_control); if (ret) dev_err(smu->adev->dev, "[%s]%s smc FAN CONTROL feature failed!", __func__, (auto_fan_control ? "Start" : "Stop")); return ret; } static int smu_v13_0_set_fan_static_mode(struct smu_context *smu, uint32_t mode) { struct amdgpu_device *adev = smu->adev; WREG32_SOC15(THM, 0, regCG_FDO_CTRL2, REG_SET_FIELD(RREG32_SOC15(THM, 0, regCG_FDO_CTRL2), CG_FDO_CTRL2, TMIN, 0)); WREG32_SOC15(THM, 0, regCG_FDO_CTRL2, REG_SET_FIELD(RREG32_SOC15(THM, 0, regCG_FDO_CTRL2), CG_FDO_CTRL2, FDO_PWM_MODE, mode)); return 0; } int smu_v13_0_set_fan_speed_percent(struct smu_context *smu, uint32_t speed) { struct amdgpu_device *adev = smu->adev; uint32_t duty100, duty; uint64_t tmp64; if (speed > 100) speed = 100; if (smu_v13_0_auto_fan_control(smu, 0)) return -EINVAL; duty100 = REG_GET_FIELD(RREG32_SOC15(THM, 0, regCG_FDO_CTRL1), CG_FDO_CTRL1, FMAX_DUTY100); if (!duty100) return -EINVAL; tmp64 = (uint64_t)speed * duty100; do_div(tmp64, 100); duty = (uint32_t)tmp64; WREG32_SOC15(THM, 0, regCG_FDO_CTRL0, REG_SET_FIELD(RREG32_SOC15(THM, 0, regCG_FDO_CTRL0), CG_FDO_CTRL0, FDO_STATIC_DUTY, duty)); return smu_v13_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC); } int smu_v13_0_set_fan_control_mode(struct smu_context *smu, uint32_t mode) { int ret = 0; switch (mode) { case AMD_FAN_CTRL_NONE: ret = smu_v13_0_set_fan_speed_percent(smu, 100); break; case AMD_FAN_CTRL_MANUAL: ret = smu_v13_0_auto_fan_control(smu, 0); break; case AMD_FAN_CTRL_AUTO: ret = smu_v13_0_auto_fan_control(smu, 1); break; default: break; } if (ret) { dev_err(smu->adev->dev, "[%s]Set fan control mode failed!", __func__); return -EINVAL; } return ret; } int smu_v13_0_set_fan_speed_rpm(struct smu_context *smu, uint32_t speed) { struct amdgpu_device *adev = smu->adev; int ret; uint32_t tach_period, crystal_clock_freq; if (!speed) return -EINVAL; ret = smu_v13_0_auto_fan_control(smu, 0); if (ret) return ret; crystal_clock_freq = amdgpu_asic_get_xclk(adev); tach_period = 60 * crystal_clock_freq * 10000 / (8 * speed); WREG32_SOC15(THM, 0, regCG_TACH_CTRL, REG_SET_FIELD(RREG32_SOC15(THM, 0, regCG_TACH_CTRL), CG_TACH_CTRL, TARGET_PERIOD, tach_period)); ret = smu_v13_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC_RPM); return ret; } int smu_v13_0_set_xgmi_pstate(struct smu_context *smu, uint32_t pstate) { int ret = 0; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetXgmiMode, pstate ? XGMI_MODE_PSTATE_D0 : XGMI_MODE_PSTATE_D3, NULL); return ret; } static int smu_v13_0_set_irq_state(struct amdgpu_device *adev, struct amdgpu_irq_src *source, unsigned tyep, enum amdgpu_interrupt_state state) { struct smu_context *smu = &adev->smu; uint32_t low, high; uint32_t val = 0; switch (state) { case AMDGPU_IRQ_STATE_DISABLE: /* For THM irqs */ val = RREG32_SOC15(THM, 0, regTHM_THERMAL_INT_CTRL); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTH_MASK, 1); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTL_MASK, 1); WREG32_SOC15(THM, 0, regTHM_THERMAL_INT_CTRL, val); WREG32_SOC15(THM, 0, regTHM_THERMAL_INT_ENA, 0); /* For MP1 SW irqs */ val = RREG32_SOC15(MP1, 0, regMP1_SMN_IH_SW_INT_CTRL); val = REG_SET_FIELD(val, MP1_SMN_IH_SW_INT_CTRL, INT_MASK, 1); WREG32_SOC15(MP1, 0, regMP1_SMN_IH_SW_INT_CTRL, val); break; case AMDGPU_IRQ_STATE_ENABLE: /* For THM irqs */ low = max(SMU_THERMAL_MINIMUM_ALERT_TEMP, smu->thermal_range.min / SMU_TEMPERATURE_UNITS_PER_CENTIGRADES); high = min(SMU_THERMAL_MAXIMUM_ALERT_TEMP, smu->thermal_range.software_shutdown_temp); val = RREG32_SOC15(THM, 0, regTHM_THERMAL_INT_CTRL); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, MAX_IH_CREDIT, 5); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_IH_HW_ENA, 1); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTH_MASK, 0); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTL_MASK, 0); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTH, (high & 0xff)); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTL, (low & 0xff)); val = val & (~THM_THERMAL_INT_CTRL__THERM_TRIGGER_MASK_MASK); WREG32_SOC15(THM, 0, regTHM_THERMAL_INT_CTRL, val); val = (1 << THM_THERMAL_INT_ENA__THERM_INTH_CLR__SHIFT); val |= (1 << THM_THERMAL_INT_ENA__THERM_INTL_CLR__SHIFT); val |= (1 << THM_THERMAL_INT_ENA__THERM_TRIGGER_CLR__SHIFT); WREG32_SOC15(THM, 0, regTHM_THERMAL_INT_ENA, val); /* For MP1 SW irqs */ val = RREG32_SOC15(MP1, 0, regMP1_SMN_IH_SW_INT); val = REG_SET_FIELD(val, MP1_SMN_IH_SW_INT, ID, 0xFE); val = REG_SET_FIELD(val, MP1_SMN_IH_SW_INT, VALID, 0); WREG32_SOC15(MP1, 0, regMP1_SMN_IH_SW_INT, val); val = RREG32_SOC15(MP1, 0, regMP1_SMN_IH_SW_INT_CTRL); val = REG_SET_FIELD(val, MP1_SMN_IH_SW_INT_CTRL, INT_MASK, 0); WREG32_SOC15(MP1, 0, regMP1_SMN_IH_SW_INT_CTRL, val); break; default: break; } return 0; } static int smu_v13_0_ack_ac_dc_interrupt(struct smu_context *smu) { return smu_cmn_send_smc_msg(smu, SMU_MSG_ReenableAcDcInterrupt, NULL); } #define THM_11_0__SRCID__THM_DIG_THERM_L2H 0 /* ASIC_TEMP > CG_THERMAL_INT.DIG_THERM_INTH */ #define THM_11_0__SRCID__THM_DIG_THERM_H2L 1 /* ASIC_TEMP < CG_THERMAL_INT.DIG_THERM_INTL */ #define SMUIO_11_0__SRCID__SMUIO_GPIO19 83 static int smu_v13_0_irq_process(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { struct smu_context *smu = &adev->smu; uint32_t client_id = entry->client_id; uint32_t src_id = entry->src_id; /* * ctxid is used to distinguish different * events for SMCToHost interrupt. */ uint32_t ctxid = entry->src_data[0]; uint32_t data; if (client_id == SOC15_IH_CLIENTID_THM) { switch (src_id) { case THM_11_0__SRCID__THM_DIG_THERM_L2H: dev_emerg(adev->dev, "ERROR: GPU over temperature range(SW CTF) detected!\n"); /* * SW CTF just occurred. * Try to do a graceful shutdown to prevent further damage. */ dev_emerg(adev->dev, "ERROR: System is going to shutdown due to GPU SW CTF!\n"); orderly_poweroff(true); break; case THM_11_0__SRCID__THM_DIG_THERM_H2L: dev_emerg(adev->dev, "ERROR: GPU under temperature range detected\n"); break; default: dev_emerg(adev->dev, "ERROR: GPU under temperature range unknown src id (%d)\n", src_id); break; } } else if (client_id == SOC15_IH_CLIENTID_ROM_SMUIO) { dev_emerg(adev->dev, "ERROR: GPU HW Critical Temperature Fault(aka CTF) detected!\n"); /* * HW CTF just occurred. Shutdown to prevent further damage. */ dev_emerg(adev->dev, "ERROR: System is going to shutdown due to GPU HW CTF!\n"); orderly_poweroff(true); } else if (client_id == SOC15_IH_CLIENTID_MP1) { if (src_id == 0xfe) { /* ACK SMUToHost interrupt */ data = RREG32_SOC15(MP1, 0, regMP1_SMN_IH_SW_INT_CTRL); data = REG_SET_FIELD(data, MP1_SMN_IH_SW_INT_CTRL, INT_ACK, 1); WREG32_SOC15(MP1, 0, regMP1_SMN_IH_SW_INT_CTRL, data); switch (ctxid) { case 0x3: dev_dbg(adev->dev, "Switched to AC mode!\n"); smu_v13_0_ack_ac_dc_interrupt(&adev->smu); break; case 0x4: dev_dbg(adev->dev, "Switched to DC mode!\n"); smu_v13_0_ack_ac_dc_interrupt(&adev->smu); break; case 0x7: /* * Increment the throttle interrupt counter */ atomic64_inc(&smu->throttle_int_counter); if (!atomic_read(&adev->throttling_logging_enabled)) return 0; if (__ratelimit(&adev->throttling_logging_rs)) schedule_work(&smu->throttling_logging_work); break; } } } return 0; } static const struct amdgpu_irq_src_funcs smu_v13_0_irq_funcs = { .set = smu_v13_0_set_irq_state, .process = smu_v13_0_irq_process, }; int smu_v13_0_register_irq_handler(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; struct amdgpu_irq_src *irq_src = &smu->irq_source; int ret = 0; irq_src->num_types = 1; irq_src->funcs = &smu_v13_0_irq_funcs; ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM, THM_11_0__SRCID__THM_DIG_THERM_L2H, irq_src); if (ret) return ret; ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM, THM_11_0__SRCID__THM_DIG_THERM_H2L, irq_src); if (ret) return ret; /* Register CTF(GPIO_19) interrupt */ ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_ROM_SMUIO, SMUIO_11_0__SRCID__SMUIO_GPIO19, irq_src); if (ret) return ret; ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_MP1, 0xfe, irq_src); if (ret) return ret; return ret; } int smu_v13_0_get_max_sustainable_clocks_by_dc(struct smu_context *smu, struct pp_smu_nv_clock_table *max_clocks) { struct smu_table_context *table_context = &smu->smu_table; struct smu_13_0_max_sustainable_clocks *sustainable_clocks = NULL; if (!max_clocks || !table_context->max_sustainable_clocks) return -EINVAL; sustainable_clocks = table_context->max_sustainable_clocks; max_clocks->dcfClockInKhz = (unsigned int) sustainable_clocks->dcef_clock * 1000; max_clocks->displayClockInKhz = (unsigned int) sustainable_clocks->display_clock * 1000; max_clocks->phyClockInKhz = (unsigned int) sustainable_clocks->phy_clock * 1000; max_clocks->pixelClockInKhz = (unsigned int) sustainable_clocks->pixel_clock * 1000; max_clocks->uClockInKhz = (unsigned int) sustainable_clocks->uclock * 1000; max_clocks->socClockInKhz = (unsigned int) sustainable_clocks->soc_clock * 1000; max_clocks->dscClockInKhz = 0; max_clocks->dppClockInKhz = 0; max_clocks->fabricClockInKhz = 0; return 0; } int smu_v13_0_set_azalia_d3_pme(struct smu_context *smu) { int ret = 0; ret = smu_cmn_send_smc_msg(smu, SMU_MSG_BacoAudioD3PME, NULL); return ret; } int smu_v13_0_mode1_reset(struct smu_context *smu) { u32 smu_version; int ret = 0; /* * PM FW support SMU_MSG_GfxDeviceDriverReset from 68.07 */ smu_cmn_get_smc_version(smu, NULL, &smu_version); if (smu_version < 0x00440700) ret = smu_cmn_send_smc_msg(smu, SMU_MSG_Mode1Reset, NULL); else ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GfxDeviceDriverReset, SMU_RESET_MODE_1, NULL); if (!ret) msleep(SMU13_MODE1_RESET_WAIT_TIME_IN_MS); return ret; } static int smu_v13_0_wait_for_reset_complete(struct smu_context *smu, uint64_t event_arg) { int ret = 0; dev_dbg(smu->adev->dev, "waiting for smu reset complete\n"); ret = smu_cmn_send_smc_msg(smu, SMU_MSG_GfxDriverResetRecovery, NULL); return ret; } int smu_v13_0_wait_for_event(struct smu_context *smu, enum smu_event_type event, uint64_t event_arg) { int ret = -EINVAL; switch (event) { case SMU_EVENT_RESET_COMPLETE: ret = smu_v13_0_wait_for_reset_complete(smu, event_arg); break; default: break; } return ret; } int smu_v13_0_mode2_reset(struct smu_context *smu) { int ret; ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GfxDeviceDriverReset, SMU_RESET_MODE_2, NULL); /*TODO: mode2 reset wait time should be shorter, add ASIC specific func if required */ if (!ret) msleep(SMU13_MODE1_RESET_WAIT_TIME_IN_MS); return ret; } int smu_v13_0_get_dpm_ultimate_freq(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t *min, uint32_t *max) { int ret = 0, clk_id = 0; uint32_t param = 0; uint32_t clock_limit; if (!smu_cmn_clk_dpm_is_enabled(smu, clk_type)) { switch (clk_type) { case SMU_MCLK: case SMU_UCLK: clock_limit = smu->smu_table.boot_values.uclk; break; case SMU_GFXCLK: case SMU_SCLK: clock_limit = smu->smu_table.boot_values.gfxclk; break; case SMU_SOCCLK: clock_limit = smu->smu_table.boot_values.socclk; break; default: clock_limit = 0; break; } /* clock in Mhz unit */ if (min) *min = clock_limit / 100; if (max) *max = clock_limit / 100; return 0; } clk_id = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_CLK, clk_type); if (clk_id < 0) { ret = -EINVAL; goto failed; } param = (clk_id & 0xffff) << 16; if (max) { ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq, param, max); if (ret) goto failed; } if (min) { ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GetMinDpmFreq, param, min); if (ret) goto failed; } failed: return ret; } int smu_v13_0_set_soft_freq_limited_range(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t min, uint32_t max) { struct amdgpu_device *adev = smu->adev; int ret = 0, clk_id = 0; uint32_t param; if (!smu_cmn_clk_dpm_is_enabled(smu, clk_type)) return 0; clk_id = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_CLK, clk_type); if (clk_id < 0) return clk_id; if (clk_type == SMU_GFXCLK) amdgpu_gfx_off_ctrl(adev, false); if (max > 0) { param = (uint32_t)((clk_id << 16) | (max & 0xffff)); ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxByFreq, param, NULL); if (ret) goto out; } if (min > 0) { param = (uint32_t)((clk_id << 16) | (min & 0xffff)); ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMinByFreq, param, NULL); if (ret) goto out; } out: if (clk_type == SMU_GFXCLK) amdgpu_gfx_off_ctrl(adev, true); return ret; } int smu_v13_0_set_hard_freq_limited_range(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t min, uint32_t max) { int ret = 0, clk_id = 0; uint32_t param; if (min <= 0 && max <= 0) return -EINVAL; if (!smu_cmn_clk_dpm_is_enabled(smu, clk_type)) return 0; clk_id = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_CLK, clk_type); if (clk_id < 0) return clk_id; if (max > 0) { param = (uint32_t)((clk_id << 16) | (max & 0xffff)); ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetHardMaxByFreq, param, NULL); if (ret) return ret; } if (min > 0) { param = (uint32_t)((clk_id << 16) | (min & 0xffff)); ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinByFreq, param, NULL); if (ret) return ret; } return ret; } int smu_v13_0_set_performance_level(struct smu_context *smu, enum amd_dpm_forced_level level) { struct smu_13_0_dpm_context *dpm_context = smu->smu_dpm.dpm_context; struct smu_13_0_dpm_table *gfx_table = &dpm_context->dpm_tables.gfx_table; struct smu_13_0_dpm_table *mem_table = &dpm_context->dpm_tables.uclk_table; struct smu_13_0_dpm_table *soc_table = &dpm_context->dpm_tables.soc_table; struct smu_umd_pstate_table *pstate_table = &smu->pstate_table; struct amdgpu_device *adev = smu->adev; uint32_t sclk_min = 0, sclk_max = 0; uint32_t mclk_min = 0, mclk_max = 0; uint32_t socclk_min = 0, socclk_max = 0; int ret = 0; switch (level) { case AMD_DPM_FORCED_LEVEL_HIGH: sclk_min = sclk_max = gfx_table->max; mclk_min = mclk_max = mem_table->max; socclk_min = socclk_max = soc_table->max; break; case AMD_DPM_FORCED_LEVEL_LOW: sclk_min = sclk_max = gfx_table->min; mclk_min = mclk_max = mem_table->min; socclk_min = socclk_max = soc_table->min; break; case AMD_DPM_FORCED_LEVEL_AUTO: sclk_min = gfx_table->min; sclk_max = gfx_table->max; mclk_min = mem_table->min; mclk_max = mem_table->max; socclk_min = soc_table->min; socclk_max = soc_table->max; break; case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD: sclk_min = sclk_max = pstate_table->gfxclk_pstate.standard; mclk_min = mclk_max = pstate_table->uclk_pstate.standard; socclk_min = socclk_max = pstate_table->socclk_pstate.standard; break; case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK: sclk_min = sclk_max = pstate_table->gfxclk_pstate.min; break; case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK: mclk_min = mclk_max = pstate_table->uclk_pstate.min; break; case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK: sclk_min = sclk_max = pstate_table->gfxclk_pstate.peak; mclk_min = mclk_max = pstate_table->uclk_pstate.peak; socclk_min = socclk_max = pstate_table->socclk_pstate.peak; break; case AMD_DPM_FORCED_LEVEL_MANUAL: case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT: return 0; default: dev_err(adev->dev, "Invalid performance level %d\n", level); return -EINVAL; } mclk_min = mclk_max = 0; socclk_min = socclk_max = 0; if (sclk_min && sclk_max) { ret = smu_v13_0_set_soft_freq_limited_range(smu, SMU_GFXCLK, sclk_min, sclk_max); if (ret) return ret; pstate_table->gfxclk_pstate.curr.min = sclk_min; pstate_table->gfxclk_pstate.curr.max = sclk_max; } if (mclk_min && mclk_max) { ret = smu_v13_0_set_soft_freq_limited_range(smu, SMU_MCLK, mclk_min, mclk_max); if (ret) return ret; pstate_table->uclk_pstate.curr.min = mclk_min; pstate_table->uclk_pstate.curr.max = mclk_max; } if (socclk_min && socclk_max) { ret = smu_v13_0_set_soft_freq_limited_range(smu, SMU_SOCCLK, socclk_min, socclk_max); if (ret) return ret; pstate_table->socclk_pstate.curr.min = socclk_min; pstate_table->socclk_pstate.curr.max = socclk_max; } return ret; } int smu_v13_0_set_power_source(struct smu_context *smu, enum smu_power_src_type power_src) { int pwr_source; pwr_source = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_PWR, (uint32_t)power_src); if (pwr_source < 0) return -EINVAL; return smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_NotifyPowerSource, pwr_source, NULL); } int smu_v13_0_get_dpm_freq_by_index(struct smu_context *smu, enum smu_clk_type clk_type, uint16_t level, uint32_t *value) { int ret = 0, clk_id = 0; uint32_t param; if (!value) return -EINVAL; if (!smu_cmn_clk_dpm_is_enabled(smu, clk_type)) return 0; clk_id = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_CLK, clk_type); if (clk_id < 0) return clk_id; param = (uint32_t)(((clk_id & 0xffff) << 16) | (level & 0xffff)); ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GetDpmFreqByIndex, param, value); if (ret) return ret; /* * BIT31: 0 - Fine grained DPM, 1 - Dicrete DPM * now, we un-support it */ *value = *value & 0x7fffffff; return ret; } int smu_v13_0_get_dpm_level_count(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t *value) { int ret; ret = smu_v13_0_get_dpm_freq_by_index(smu, clk_type, 0xff, value); /* FW returns 0 based max level, increment by one */ if (!ret && value) ++(*value); return ret; } int smu_v13_0_set_single_dpm_table(struct smu_context *smu, enum smu_clk_type clk_type, struct smu_13_0_dpm_table *single_dpm_table) { int ret = 0; uint32_t clk; int i; ret = smu_v13_0_get_dpm_level_count(smu, clk_type, &single_dpm_table->count); if (ret) { dev_err(smu->adev->dev, "[%s] failed to get dpm levels!\n", __func__); return ret; } for (i = 0; i < single_dpm_table->count; i++) { ret = smu_v13_0_get_dpm_freq_by_index(smu, clk_type, i, &clk); if (ret) { dev_err(smu->adev->dev, "[%s] failed to get dpm freq by index!\n", __func__); return ret; } single_dpm_table->dpm_levels[i].value = clk; single_dpm_table->dpm_levels[i].enabled = true; if (i == 0) single_dpm_table->min = clk; else if (i == single_dpm_table->count - 1) single_dpm_table->max = clk; } return 0; } int smu_v13_0_get_dpm_level_range(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t *min_value, uint32_t *max_value) { uint32_t level_count = 0; int ret = 0; if (!min_value && !max_value) return -EINVAL; if (min_value) { /* by default, level 0 clock value as min value */ ret = smu_v13_0_get_dpm_freq_by_index(smu, clk_type, 0, min_value); if (ret) return ret; } if (max_value) { ret = smu_v13_0_get_dpm_level_count(smu, clk_type, &level_count); if (ret) return ret; ret = smu_v13_0_get_dpm_freq_by_index(smu, clk_type, level_count - 1, max_value); if (ret) return ret; } return ret; } int smu_v13_0_get_current_pcie_link_width_level(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; return (RREG32_PCIE(smnPCIE_LC_LINK_WIDTH_CNTL) & PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD_MASK) >> PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD__SHIFT; } int smu_v13_0_get_current_pcie_link_width(struct smu_context *smu) { uint32_t width_level; width_level = smu_v13_0_get_current_pcie_link_width_level(smu); if (width_level > LINK_WIDTH_MAX) width_level = 0; return link_width[width_level]; } int smu_v13_0_get_current_pcie_link_speed_level(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; return (RREG32_PCIE(smnPCIE_LC_SPEED_CNTL) & PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE_MASK) >> PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE__SHIFT; } int smu_v13_0_get_current_pcie_link_speed(struct smu_context *smu) { uint32_t speed_level; speed_level = smu_v13_0_get_current_pcie_link_speed_level(smu); if (speed_level > LINK_SPEED_MAX) speed_level = 0; return link_speed[speed_level]; }