// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2016-2018, The Linux Foundation. All rights reserved. */ #include #include #include "dpu_kms.h" #include "dpu_hw_interrupts.h" #include "dpu_hw_util.h" #include "dpu_hw_mdss.h" /** * Register offsets in MDSS register file for the interrupt registers * w.r.t. the MDP base */ #define MDP_SSPP_TOP0_OFF 0x0 #define MDP_INTF_0_OFF 0x6A000 #define MDP_INTF_1_OFF 0x6A800 #define MDP_INTF_2_OFF 0x6B000 #define MDP_INTF_3_OFF 0x6B800 #define MDP_INTF_4_OFF 0x6C000 #define MDP_INTF_5_OFF 0x6C800 #define INTF_INTR_EN 0x1c0 #define INTF_INTR_STATUS 0x1c4 #define INTF_INTR_CLEAR 0x1c8 #define MDP_AD4_0_OFF 0x7C000 #define MDP_AD4_1_OFF 0x7D000 #define MDP_AD4_INTR_EN_OFF 0x41c #define MDP_AD4_INTR_CLEAR_OFF 0x424 #define MDP_AD4_INTR_STATUS_OFF 0x420 #define MDP_INTF_0_OFF_REV_7xxx 0x34000 #define MDP_INTF_1_OFF_REV_7xxx 0x35000 #define MDP_INTF_5_OFF_REV_7xxx 0x39000 /** * struct dpu_intr_reg - array of DPU register sets * @clr_off: offset to CLEAR reg * @en_off: offset to ENABLE reg * @status_off: offset to STATUS reg */ struct dpu_intr_reg { u32 clr_off; u32 en_off; u32 status_off; }; /* * struct dpu_intr_reg - List of DPU interrupt registers * * When making changes be sure to sync with dpu_hw_intr_reg */ static const struct dpu_intr_reg dpu_intr_set[] = { { MDP_SSPP_TOP0_OFF+INTR_CLEAR, MDP_SSPP_TOP0_OFF+INTR_EN, MDP_SSPP_TOP0_OFF+INTR_STATUS }, { MDP_SSPP_TOP0_OFF+INTR2_CLEAR, MDP_SSPP_TOP0_OFF+INTR2_EN, MDP_SSPP_TOP0_OFF+INTR2_STATUS }, { MDP_SSPP_TOP0_OFF+HIST_INTR_CLEAR, MDP_SSPP_TOP0_OFF+HIST_INTR_EN, MDP_SSPP_TOP0_OFF+HIST_INTR_STATUS }, { MDP_INTF_0_OFF+INTF_INTR_CLEAR, MDP_INTF_0_OFF+INTF_INTR_EN, MDP_INTF_0_OFF+INTF_INTR_STATUS }, { MDP_INTF_1_OFF+INTF_INTR_CLEAR, MDP_INTF_1_OFF+INTF_INTR_EN, MDP_INTF_1_OFF+INTF_INTR_STATUS }, { MDP_INTF_2_OFF+INTF_INTR_CLEAR, MDP_INTF_2_OFF+INTF_INTR_EN, MDP_INTF_2_OFF+INTF_INTR_STATUS }, { MDP_INTF_3_OFF+INTF_INTR_CLEAR, MDP_INTF_3_OFF+INTF_INTR_EN, MDP_INTF_3_OFF+INTF_INTR_STATUS }, { MDP_INTF_4_OFF+INTF_INTR_CLEAR, MDP_INTF_4_OFF+INTF_INTR_EN, MDP_INTF_4_OFF+INTF_INTR_STATUS }, { MDP_INTF_5_OFF+INTF_INTR_CLEAR, MDP_INTF_5_OFF+INTF_INTR_EN, MDP_INTF_5_OFF+INTF_INTR_STATUS }, { MDP_AD4_0_OFF + MDP_AD4_INTR_CLEAR_OFF, MDP_AD4_0_OFF + MDP_AD4_INTR_EN_OFF, MDP_AD4_0_OFF + MDP_AD4_INTR_STATUS_OFF, }, { MDP_AD4_1_OFF + MDP_AD4_INTR_CLEAR_OFF, MDP_AD4_1_OFF + MDP_AD4_INTR_EN_OFF, MDP_AD4_1_OFF + MDP_AD4_INTR_STATUS_OFF, }, { MDP_INTF_0_OFF_REV_7xxx+INTF_INTR_CLEAR, MDP_INTF_0_OFF_REV_7xxx+INTF_INTR_EN, MDP_INTF_0_OFF_REV_7xxx+INTF_INTR_STATUS }, { MDP_INTF_1_OFF_REV_7xxx+INTF_INTR_CLEAR, MDP_INTF_1_OFF_REV_7xxx+INTF_INTR_EN, MDP_INTF_1_OFF_REV_7xxx+INTF_INTR_STATUS }, { MDP_INTF_5_OFF_REV_7xxx+INTF_INTR_CLEAR, MDP_INTF_5_OFF_REV_7xxx+INTF_INTR_EN, MDP_INTF_5_OFF_REV_7xxx+INTF_INTR_STATUS }, }; #define DPU_IRQ_REG(irq_idx) (irq_idx / 32) #define DPU_IRQ_MASK(irq_idx) (BIT(irq_idx % 32)) static void dpu_hw_intr_clear_intr_status_nolock(struct dpu_hw_intr *intr, int irq_idx) { int reg_idx; if (!intr) return; reg_idx = DPU_IRQ_REG(irq_idx); DPU_REG_WRITE(&intr->hw, dpu_intr_set[reg_idx].clr_off, DPU_IRQ_MASK(irq_idx)); /* ensure register writes go through */ wmb(); } static void dpu_hw_intr_dispatch_irq(struct dpu_hw_intr *intr, void (*cbfunc)(void *, int), void *arg) { int reg_idx; int irq_idx; u32 irq_status; u32 enable_mask; int bit; unsigned long irq_flags; if (!intr) return; /* * The dispatcher will save the IRQ status before calling here. * Now need to go through each IRQ status and find matching * irq lookup index. */ spin_lock_irqsave(&intr->irq_lock, irq_flags); for (reg_idx = 0; reg_idx < ARRAY_SIZE(dpu_intr_set); reg_idx++) { if (!test_bit(reg_idx, &intr->irq_mask)) continue; /* Read interrupt status */ irq_status = DPU_REG_READ(&intr->hw, dpu_intr_set[reg_idx].status_off); /* Read enable mask */ enable_mask = DPU_REG_READ(&intr->hw, dpu_intr_set[reg_idx].en_off); /* and clear the interrupt */ if (irq_status) DPU_REG_WRITE(&intr->hw, dpu_intr_set[reg_idx].clr_off, irq_status); /* Finally update IRQ status based on enable mask */ irq_status &= enable_mask; if (!irq_status) continue; /* * Search through matching intr status. */ while ((bit = ffs(irq_status)) != 0) { irq_idx = DPU_IRQ_IDX(reg_idx, bit - 1); /* * Once a match on irq mask, perform a callback * to the given cbfunc. cbfunc will take care * the interrupt status clearing. If cbfunc is * not provided, then the interrupt clearing * is here. */ if (cbfunc) cbfunc(arg, irq_idx); dpu_hw_intr_clear_intr_status_nolock(intr, irq_idx); /* * When callback finish, clear the irq_status * with the matching mask. Once irq_status * is all cleared, the search can be stopped. */ irq_status &= ~BIT(bit - 1); } } /* ensure register writes go through */ wmb(); spin_unlock_irqrestore(&intr->irq_lock, irq_flags); } static int dpu_hw_intr_enable_irq_locked(struct dpu_hw_intr *intr, int irq_idx) { int reg_idx; const struct dpu_intr_reg *reg; const char *dbgstr = NULL; uint32_t cache_irq_mask; if (!intr) return -EINVAL; if (irq_idx < 0 || irq_idx >= intr->total_irqs) { pr_err("invalid IRQ index: [%d]\n", irq_idx); return -EINVAL; } /* * The cache_irq_mask and hardware RMW operations needs to be done * under irq_lock and it's the caller's responsibility to ensure that's * held. */ assert_spin_locked(&intr->irq_lock); reg_idx = DPU_IRQ_REG(irq_idx); reg = &dpu_intr_set[reg_idx]; cache_irq_mask = intr->cache_irq_mask[reg_idx]; if (cache_irq_mask & DPU_IRQ_MASK(irq_idx)) { dbgstr = "DPU IRQ already set:"; } else { dbgstr = "DPU IRQ enabled:"; cache_irq_mask |= DPU_IRQ_MASK(irq_idx); /* Cleaning any pending interrupt */ DPU_REG_WRITE(&intr->hw, reg->clr_off, DPU_IRQ_MASK(irq_idx)); /* Enabling interrupts with the new mask */ DPU_REG_WRITE(&intr->hw, reg->en_off, cache_irq_mask); /* ensure register write goes through */ wmb(); intr->cache_irq_mask[reg_idx] = cache_irq_mask; } pr_debug("%s MASK:0x%.8lx, CACHE-MASK:0x%.8x\n", dbgstr, DPU_IRQ_MASK(irq_idx), cache_irq_mask); return 0; } static int dpu_hw_intr_disable_irq_locked(struct dpu_hw_intr *intr, int irq_idx) { int reg_idx; const struct dpu_intr_reg *reg; const char *dbgstr = NULL; uint32_t cache_irq_mask; if (!intr) return -EINVAL; if (irq_idx < 0 || irq_idx >= intr->total_irqs) { pr_err("invalid IRQ index: [%d]\n", irq_idx); return -EINVAL; } /* * The cache_irq_mask and hardware RMW operations needs to be done * under irq_lock and it's the caller's responsibility to ensure that's * held. */ assert_spin_locked(&intr->irq_lock); reg_idx = DPU_IRQ_REG(irq_idx); reg = &dpu_intr_set[reg_idx]; cache_irq_mask = intr->cache_irq_mask[reg_idx]; if ((cache_irq_mask & DPU_IRQ_MASK(irq_idx)) == 0) { dbgstr = "DPU IRQ is already cleared:"; } else { dbgstr = "DPU IRQ mask disable:"; cache_irq_mask &= ~DPU_IRQ_MASK(irq_idx); /* Disable interrupts based on the new mask */ DPU_REG_WRITE(&intr->hw, reg->en_off, cache_irq_mask); /* Cleaning any pending interrupt */ DPU_REG_WRITE(&intr->hw, reg->clr_off, DPU_IRQ_MASK(irq_idx)); /* ensure register write goes through */ wmb(); intr->cache_irq_mask[reg_idx] = cache_irq_mask; } pr_debug("%s MASK:0x%.8lx, CACHE-MASK:0x%.8x\n", dbgstr, DPU_IRQ_MASK(irq_idx), cache_irq_mask); return 0; } static int dpu_hw_intr_clear_irqs(struct dpu_hw_intr *intr) { int i; if (!intr) return -EINVAL; for (i = 0; i < ARRAY_SIZE(dpu_intr_set); i++) { if (test_bit(i, &intr->irq_mask)) DPU_REG_WRITE(&intr->hw, dpu_intr_set[i].clr_off, 0xffffffff); } /* ensure register writes go through */ wmb(); return 0; } static int dpu_hw_intr_disable_irqs(struct dpu_hw_intr *intr) { int i; if (!intr) return -EINVAL; for (i = 0; i < ARRAY_SIZE(dpu_intr_set); i++) { if (test_bit(i, &intr->irq_mask)) DPU_REG_WRITE(&intr->hw, dpu_intr_set[i].en_off, 0x00000000); } /* ensure register writes go through */ wmb(); return 0; } static u32 dpu_hw_intr_get_interrupt_status(struct dpu_hw_intr *intr, int irq_idx, bool clear) { int reg_idx; unsigned long irq_flags; u32 intr_status; if (!intr) return 0; if (irq_idx < 0 || irq_idx >= intr->total_irqs) { pr_err("invalid IRQ index: [%d]\n", irq_idx); return 0; } spin_lock_irqsave(&intr->irq_lock, irq_flags); reg_idx = DPU_IRQ_REG(irq_idx); intr_status = DPU_REG_READ(&intr->hw, dpu_intr_set[reg_idx].status_off) & DPU_IRQ_MASK(irq_idx); if (intr_status && clear) DPU_REG_WRITE(&intr->hw, dpu_intr_set[reg_idx].clr_off, intr_status); /* ensure register writes go through */ wmb(); spin_unlock_irqrestore(&intr->irq_lock, irq_flags); return intr_status; } static unsigned long dpu_hw_intr_lock(struct dpu_hw_intr *intr) { unsigned long irq_flags; spin_lock_irqsave(&intr->irq_lock, irq_flags); return irq_flags; } static void dpu_hw_intr_unlock(struct dpu_hw_intr *intr, unsigned long irq_flags) { spin_unlock_irqrestore(&intr->irq_lock, irq_flags); } static void __setup_intr_ops(struct dpu_hw_intr_ops *ops) { ops->enable_irq_locked = dpu_hw_intr_enable_irq_locked; ops->disable_irq_locked = dpu_hw_intr_disable_irq_locked; ops->dispatch_irqs = dpu_hw_intr_dispatch_irq; ops->clear_all_irqs = dpu_hw_intr_clear_irqs; ops->disable_all_irqs = dpu_hw_intr_disable_irqs; ops->get_interrupt_status = dpu_hw_intr_get_interrupt_status; ops->lock = dpu_hw_intr_lock; ops->unlock = dpu_hw_intr_unlock; } static void __intr_offset(struct dpu_mdss_cfg *m, void __iomem *addr, struct dpu_hw_blk_reg_map *hw) { hw->base_off = addr; hw->blk_off = m->mdp[0].base; hw->hwversion = m->hwversion; } struct dpu_hw_intr *dpu_hw_intr_init(void __iomem *addr, struct dpu_mdss_cfg *m) { struct dpu_hw_intr *intr; if (!addr || !m) return ERR_PTR(-EINVAL); intr = kzalloc(sizeof(*intr), GFP_KERNEL); if (!intr) return ERR_PTR(-ENOMEM); __intr_offset(m, addr, &intr->hw); __setup_intr_ops(&intr->ops); intr->total_irqs = ARRAY_SIZE(dpu_intr_set) * 32; intr->cache_irq_mask = kcalloc(ARRAY_SIZE(dpu_intr_set), sizeof(u32), GFP_KERNEL); if (intr->cache_irq_mask == NULL) { kfree(intr); return ERR_PTR(-ENOMEM); } intr->irq_mask = m->mdss_irqs; spin_lock_init(&intr->irq_lock); return intr; } void dpu_hw_intr_destroy(struct dpu_hw_intr *intr) { if (intr) { kfree(intr->cache_irq_mask); kfree(intr); } }