// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2014-2018, The Linux Foundation. All rights reserved. * Copyright (C) 2013 Red Hat * Author: Rob Clark */ #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__ #include #include #include #include #include #include #include #include "msm_drv.h" #include "msm_mmu.h" #include "msm_gem.h" #include "disp/msm_disp_snapshot.h" #include "dpu_kms.h" #include "dpu_core_irq.h" #include "dpu_formats.h" #include "dpu_hw_vbif.h" #include "dpu_vbif.h" #include "dpu_encoder.h" #include "dpu_plane.h" #include "dpu_crtc.h" #define CREATE_TRACE_POINTS #include "dpu_trace.h" /* * To enable overall DRM driver logging * # echo 0x2 > /sys/module/drm/parameters/debug * * To enable DRM driver h/w logging * # echo > /sys/kernel/debug/dri/0/debug/hw_log_mask * * See dpu_hw_mdss.h for h/w logging mask definitions (search for DPU_DBG_MASK_) */ #define DPU_DEBUGFS_DIR "msm_dpu" #define DPU_DEBUGFS_HWMASKNAME "hw_log_mask" #define MIN_IB_BW 400000000ULL /* Min ib vote 400MB */ static int dpu_kms_hw_init(struct msm_kms *kms); static void _dpu_kms_mmu_destroy(struct dpu_kms *dpu_kms); #ifdef CONFIG_DEBUG_FS static int _dpu_danger_signal_status(struct seq_file *s, bool danger_status) { struct dpu_kms *kms = (struct dpu_kms *)s->private; struct dpu_danger_safe_status status; int i; if (!kms->hw_mdp) { DPU_ERROR("invalid arg(s)\n"); return 0; } memset(&status, 0, sizeof(struct dpu_danger_safe_status)); pm_runtime_get_sync(&kms->pdev->dev); if (danger_status) { seq_puts(s, "\nDanger signal status:\n"); if (kms->hw_mdp->ops.get_danger_status) kms->hw_mdp->ops.get_danger_status(kms->hw_mdp, &status); } else { seq_puts(s, "\nSafe signal status:\n"); if (kms->hw_mdp->ops.get_safe_status) kms->hw_mdp->ops.get_safe_status(kms->hw_mdp, &status); } pm_runtime_put_sync(&kms->pdev->dev); seq_printf(s, "MDP : 0x%x\n", status.mdp); for (i = SSPP_VIG0; i < SSPP_MAX; i++) seq_printf(s, "SSPP%d : 0x%x \t", i - SSPP_VIG0, status.sspp[i]); seq_puts(s, "\n"); return 0; } static int dpu_debugfs_danger_stats_show(struct seq_file *s, void *v) { return _dpu_danger_signal_status(s, true); } DEFINE_SHOW_ATTRIBUTE(dpu_debugfs_danger_stats); static int dpu_debugfs_safe_stats_show(struct seq_file *s, void *v) { return _dpu_danger_signal_status(s, false); } DEFINE_SHOW_ATTRIBUTE(dpu_debugfs_safe_stats); static void dpu_debugfs_danger_init(struct dpu_kms *dpu_kms, struct dentry *parent) { struct dentry *entry = debugfs_create_dir("danger", parent); debugfs_create_file("danger_status", 0600, entry, dpu_kms, &dpu_debugfs_danger_stats_fops); debugfs_create_file("safe_status", 0600, entry, dpu_kms, &dpu_debugfs_safe_stats_fops); } static int _dpu_debugfs_show_regset32(struct seq_file *s, void *data) { struct dpu_debugfs_regset32 *regset = s->private; struct dpu_kms *dpu_kms = regset->dpu_kms; void __iomem *base; uint32_t i, addr; if (!dpu_kms->mmio) return 0; base = dpu_kms->mmio + regset->offset; /* insert padding spaces, if needed */ if (regset->offset & 0xF) { seq_printf(s, "[%x]", regset->offset & ~0xF); for (i = 0; i < (regset->offset & 0xF); i += 4) seq_puts(s, " "); } pm_runtime_get_sync(&dpu_kms->pdev->dev); /* main register output */ for (i = 0; i < regset->blk_len; i += 4) { addr = regset->offset + i; if ((addr & 0xF) == 0x0) seq_printf(s, i ? "\n[%x]" : "[%x]", addr); seq_printf(s, " %08x", readl_relaxed(base + i)); } seq_puts(s, "\n"); pm_runtime_put_sync(&dpu_kms->pdev->dev); return 0; } static int dpu_debugfs_open_regset32(struct inode *inode, struct file *file) { return single_open(file, _dpu_debugfs_show_regset32, inode->i_private); } static const struct file_operations dpu_fops_regset32 = { .open = dpu_debugfs_open_regset32, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; void dpu_debugfs_setup_regset32(struct dpu_debugfs_regset32 *regset, uint32_t offset, uint32_t length, struct dpu_kms *dpu_kms) { if (regset) { regset->offset = offset; regset->blk_len = length; regset->dpu_kms = dpu_kms; } } void dpu_debugfs_create_regset32(const char *name, umode_t mode, void *parent, struct dpu_debugfs_regset32 *regset) { if (!name || !regset || !regset->dpu_kms || !regset->blk_len) return; /* make sure offset is a multiple of 4 */ regset->offset = round_down(regset->offset, 4); debugfs_create_file(name, mode, parent, regset, &dpu_fops_regset32); } static int dpu_kms_debugfs_init(struct msm_kms *kms, struct drm_minor *minor) { struct dpu_kms *dpu_kms = to_dpu_kms(kms); void *p = dpu_hw_util_get_log_mask_ptr(); struct dentry *entry; struct drm_device *dev; struct msm_drm_private *priv; if (!p) return -EINVAL; dev = dpu_kms->dev; priv = dev->dev_private; entry = debugfs_create_dir("debug", minor->debugfs_root); debugfs_create_x32(DPU_DEBUGFS_HWMASKNAME, 0600, entry, p); dpu_debugfs_danger_init(dpu_kms, entry); dpu_debugfs_vbif_init(dpu_kms, entry); dpu_debugfs_core_irq_init(dpu_kms, entry); if (priv->dp) msm_dp_debugfs_init(priv->dp, minor); return dpu_core_perf_debugfs_init(dpu_kms, entry); } #endif /* Global/shared object state funcs */ /* * This is a helper that returns the private state currently in operation. * Note that this would return the "old_state" if called in the atomic check * path, and the "new_state" after the atomic swap has been done. */ struct dpu_global_state * dpu_kms_get_existing_global_state(struct dpu_kms *dpu_kms) { return to_dpu_global_state(dpu_kms->global_state.state); } /* * This acquires the modeset lock set aside for global state, creates * a new duplicated private object state. */ struct dpu_global_state *dpu_kms_get_global_state(struct drm_atomic_state *s) { struct msm_drm_private *priv = s->dev->dev_private; struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms); struct drm_private_state *priv_state; int ret; ret = drm_modeset_lock(&dpu_kms->global_state_lock, s->acquire_ctx); if (ret) return ERR_PTR(ret); priv_state = drm_atomic_get_private_obj_state(s, &dpu_kms->global_state); if (IS_ERR(priv_state)) return ERR_CAST(priv_state); return to_dpu_global_state(priv_state); } static struct drm_private_state * dpu_kms_global_duplicate_state(struct drm_private_obj *obj) { struct dpu_global_state *state; state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL); if (!state) return NULL; __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base); return &state->base; } static void dpu_kms_global_destroy_state(struct drm_private_obj *obj, struct drm_private_state *state) { struct dpu_global_state *dpu_state = to_dpu_global_state(state); kfree(dpu_state); } static const struct drm_private_state_funcs dpu_kms_global_state_funcs = { .atomic_duplicate_state = dpu_kms_global_duplicate_state, .atomic_destroy_state = dpu_kms_global_destroy_state, }; static int dpu_kms_global_obj_init(struct dpu_kms *dpu_kms) { struct dpu_global_state *state; drm_modeset_lock_init(&dpu_kms->global_state_lock); state = kzalloc(sizeof(*state), GFP_KERNEL); if (!state) return -ENOMEM; drm_atomic_private_obj_init(dpu_kms->dev, &dpu_kms->global_state, &state->base, &dpu_kms_global_state_funcs); return 0; } static int dpu_kms_parse_data_bus_icc_path(struct dpu_kms *dpu_kms) { struct icc_path *path0; struct icc_path *path1; struct drm_device *dev = dpu_kms->dev; path0 = of_icc_get(dev->dev, "mdp0-mem"); path1 = of_icc_get(dev->dev, "mdp1-mem"); if (IS_ERR_OR_NULL(path0)) return PTR_ERR_OR_ZERO(path0); dpu_kms->path[0] = path0; dpu_kms->num_paths = 1; if (!IS_ERR_OR_NULL(path1)) { dpu_kms->path[1] = path1; dpu_kms->num_paths++; } return 0; } static int dpu_kms_enable_vblank(struct msm_kms *kms, struct drm_crtc *crtc) { return dpu_crtc_vblank(crtc, true); } static void dpu_kms_disable_vblank(struct msm_kms *kms, struct drm_crtc *crtc) { dpu_crtc_vblank(crtc, false); } static void dpu_kms_enable_commit(struct msm_kms *kms) { struct dpu_kms *dpu_kms = to_dpu_kms(kms); pm_runtime_get_sync(&dpu_kms->pdev->dev); } static void dpu_kms_disable_commit(struct msm_kms *kms) { struct dpu_kms *dpu_kms = to_dpu_kms(kms); pm_runtime_put_sync(&dpu_kms->pdev->dev); } static ktime_t dpu_kms_vsync_time(struct msm_kms *kms, struct drm_crtc *crtc) { struct drm_encoder *encoder; drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) { ktime_t vsync_time; if (dpu_encoder_vsync_time(encoder, &vsync_time) == 0) return vsync_time; } return ktime_get(); } static void dpu_kms_prepare_commit(struct msm_kms *kms, struct drm_atomic_state *state) { struct drm_crtc *crtc; struct drm_crtc_state *crtc_state; struct drm_encoder *encoder; int i; if (!kms) return; /* Call prepare_commit for all affected encoders */ for_each_new_crtc_in_state(state, crtc, crtc_state, i) { drm_for_each_encoder_mask(encoder, crtc->dev, crtc_state->encoder_mask) { dpu_encoder_prepare_commit(encoder); } } } static void dpu_kms_flush_commit(struct msm_kms *kms, unsigned crtc_mask) { struct dpu_kms *dpu_kms = to_dpu_kms(kms); struct drm_crtc *crtc; for_each_crtc_mask(dpu_kms->dev, crtc, crtc_mask) { if (!crtc->state->active) continue; trace_dpu_kms_commit(DRMID(crtc)); dpu_crtc_commit_kickoff(crtc); } } /* * Override the encoder enable since we need to setup the inline rotator and do * some crtc magic before enabling any bridge that might be present. */ void dpu_kms_encoder_enable(struct drm_encoder *encoder) { const struct drm_encoder_helper_funcs *funcs = encoder->helper_private; struct drm_device *dev = encoder->dev; struct drm_crtc *crtc; /* Forward this enable call to the commit hook */ if (funcs && funcs->commit) funcs->commit(encoder); drm_for_each_crtc(crtc, dev) { if (!(crtc->state->encoder_mask & drm_encoder_mask(encoder))) continue; trace_dpu_kms_enc_enable(DRMID(crtc)); } } static void dpu_kms_complete_commit(struct msm_kms *kms, unsigned crtc_mask) { struct dpu_kms *dpu_kms = to_dpu_kms(kms); struct drm_crtc *crtc; DPU_ATRACE_BEGIN("kms_complete_commit"); for_each_crtc_mask(dpu_kms->dev, crtc, crtc_mask) dpu_crtc_complete_commit(crtc); DPU_ATRACE_END("kms_complete_commit"); } static void dpu_kms_wait_for_commit_done(struct msm_kms *kms, struct drm_crtc *crtc) { struct drm_encoder *encoder; struct drm_device *dev; int ret; if (!kms || !crtc || !crtc->state) { DPU_ERROR("invalid params\n"); return; } dev = crtc->dev; if (!crtc->state->enable) { DPU_DEBUG("[crtc:%d] not enable\n", crtc->base.id); return; } if (!crtc->state->active) { DPU_DEBUG("[crtc:%d] not active\n", crtc->base.id); return; } list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { if (encoder->crtc != crtc) continue; /* * Wait for post-flush if necessary to delay before * plane_cleanup. For example, wait for vsync in case of video * mode panels. This may be a no-op for command mode panels. */ trace_dpu_kms_wait_for_commit_done(DRMID(crtc)); ret = dpu_encoder_wait_for_event(encoder, MSM_ENC_COMMIT_DONE); if (ret && ret != -EWOULDBLOCK) { DPU_ERROR("wait for commit done returned %d\n", ret); break; } } } static void dpu_kms_wait_flush(struct msm_kms *kms, unsigned crtc_mask) { struct dpu_kms *dpu_kms = to_dpu_kms(kms); struct drm_crtc *crtc; for_each_crtc_mask(dpu_kms->dev, crtc, crtc_mask) dpu_kms_wait_for_commit_done(kms, crtc); } static int _dpu_kms_initialize_dsi(struct drm_device *dev, struct msm_drm_private *priv, struct dpu_kms *dpu_kms) { struct drm_encoder *encoder = NULL; struct msm_display_info info; int i, rc = 0; if (!(priv->dsi[0] || priv->dsi[1])) return rc; /* * We support following confiurations: * - Single DSI host (dsi0 or dsi1) * - Two independent DSI hosts * - Bonded DSI0 and DSI1 hosts * * TODO: Support swapping DSI0 and DSI1 in the bonded setup. */ for (i = 0; i < ARRAY_SIZE(priv->dsi); i++) { int other = (i + 1) % 2; if (!priv->dsi[i]) continue; if (msm_dsi_is_bonded_dsi(priv->dsi[i]) && !msm_dsi_is_master_dsi(priv->dsi[i])) continue; encoder = dpu_encoder_init(dev, DRM_MODE_ENCODER_DSI); if (IS_ERR(encoder)) { DPU_ERROR("encoder init failed for dsi display\n"); return PTR_ERR(encoder); } priv->encoders[priv->num_encoders++] = encoder; memset(&info, 0, sizeof(info)); info.intf_type = encoder->encoder_type; rc = msm_dsi_modeset_init(priv->dsi[i], dev, encoder); if (rc) { DPU_ERROR("modeset_init failed for dsi[%d], rc = %d\n", i, rc); break; } info.h_tile_instance[info.num_of_h_tiles++] = i; info.capabilities = msm_dsi_is_cmd_mode(priv->dsi[i]) ? MSM_DISPLAY_CAP_CMD_MODE : MSM_DISPLAY_CAP_VID_MODE; if (msm_dsi_is_bonded_dsi(priv->dsi[i]) && priv->dsi[other]) { rc = msm_dsi_modeset_init(priv->dsi[other], dev, encoder); if (rc) { DPU_ERROR("modeset_init failed for dsi[%d], rc = %d\n", other, rc); break; } info.h_tile_instance[info.num_of_h_tiles++] = other; } rc = dpu_encoder_setup(dev, encoder, &info); if (rc) DPU_ERROR("failed to setup DPU encoder %d: rc:%d\n", encoder->base.id, rc); } return rc; } static int _dpu_kms_initialize_displayport(struct drm_device *dev, struct msm_drm_private *priv, struct dpu_kms *dpu_kms) { struct drm_encoder *encoder = NULL; struct msm_display_info info; int rc = 0; if (!priv->dp) return rc; encoder = dpu_encoder_init(dev, DRM_MODE_ENCODER_TMDS); if (IS_ERR(encoder)) { DPU_ERROR("encoder init failed for dsi display\n"); return PTR_ERR(encoder); } memset(&info, 0, sizeof(info)); rc = msm_dp_modeset_init(priv->dp, dev, encoder); if (rc) { DPU_ERROR("modeset_init failed for DP, rc = %d\n", rc); drm_encoder_cleanup(encoder); return rc; } priv->encoders[priv->num_encoders++] = encoder; info.num_of_h_tiles = 1; info.capabilities = MSM_DISPLAY_CAP_VID_MODE; info.intf_type = encoder->encoder_type; rc = dpu_encoder_setup(dev, encoder, &info); if (rc) DPU_ERROR("failed to setup DPU encoder %d: rc:%d\n", encoder->base.id, rc); return rc; } /** * _dpu_kms_setup_displays - create encoders, bridges and connectors * for underlying displays * @dev: Pointer to drm device structure * @priv: Pointer to private drm device data * @dpu_kms: Pointer to dpu kms structure * Returns: Zero on success */ static int _dpu_kms_setup_displays(struct drm_device *dev, struct msm_drm_private *priv, struct dpu_kms *dpu_kms) { int rc = 0; rc = _dpu_kms_initialize_dsi(dev, priv, dpu_kms); if (rc) { DPU_ERROR("initialize_dsi failed, rc = %d\n", rc); return rc; } rc = _dpu_kms_initialize_displayport(dev, priv, dpu_kms); if (rc) { DPU_ERROR("initialize_DP failed, rc = %d\n", rc); return rc; } return rc; } static void _dpu_kms_drm_obj_destroy(struct dpu_kms *dpu_kms) { struct msm_drm_private *priv; int i; priv = dpu_kms->dev->dev_private; for (i = 0; i < priv->num_crtcs; i++) priv->crtcs[i]->funcs->destroy(priv->crtcs[i]); priv->num_crtcs = 0; for (i = 0; i < priv->num_planes; i++) priv->planes[i]->funcs->destroy(priv->planes[i]); priv->num_planes = 0; for (i = 0; i < priv->num_connectors; i++) priv->connectors[i]->funcs->destroy(priv->connectors[i]); priv->num_connectors = 0; for (i = 0; i < priv->num_encoders; i++) priv->encoders[i]->funcs->destroy(priv->encoders[i]); priv->num_encoders = 0; } static int _dpu_kms_drm_obj_init(struct dpu_kms *dpu_kms) { struct drm_device *dev; struct drm_plane *primary_planes[MAX_PLANES], *plane; struct drm_plane *cursor_planes[MAX_PLANES] = { NULL }; struct drm_crtc *crtc; struct msm_drm_private *priv; struct dpu_mdss_cfg *catalog; int primary_planes_idx = 0, cursor_planes_idx = 0, i, ret; int max_crtc_count; dev = dpu_kms->dev; priv = dev->dev_private; catalog = dpu_kms->catalog; /* * Create encoder and query display drivers to create * bridges and connectors */ ret = _dpu_kms_setup_displays(dev, priv, dpu_kms); if (ret) goto fail; max_crtc_count = min(catalog->mixer_count, priv->num_encoders); /* Create the planes, keeping track of one primary/cursor per crtc */ for (i = 0; i < catalog->sspp_count; i++) { enum drm_plane_type type; if ((catalog->sspp[i].features & BIT(DPU_SSPP_CURSOR)) && cursor_planes_idx < max_crtc_count) type = DRM_PLANE_TYPE_CURSOR; else if (primary_planes_idx < max_crtc_count) type = DRM_PLANE_TYPE_PRIMARY; else type = DRM_PLANE_TYPE_OVERLAY; DPU_DEBUG("Create plane type %d with features %lx (cur %lx)\n", type, catalog->sspp[i].features, catalog->sspp[i].features & BIT(DPU_SSPP_CURSOR)); plane = dpu_plane_init(dev, catalog->sspp[i].id, type, (1UL << max_crtc_count) - 1, 0); if (IS_ERR(plane)) { DPU_ERROR("dpu_plane_init failed\n"); ret = PTR_ERR(plane); goto fail; } priv->planes[priv->num_planes++] = plane; if (type == DRM_PLANE_TYPE_CURSOR) cursor_planes[cursor_planes_idx++] = plane; else if (type == DRM_PLANE_TYPE_PRIMARY) primary_planes[primary_planes_idx++] = plane; } max_crtc_count = min(max_crtc_count, primary_planes_idx); /* Create one CRTC per encoder */ for (i = 0; i < max_crtc_count; i++) { crtc = dpu_crtc_init(dev, primary_planes[i], cursor_planes[i]); if (IS_ERR(crtc)) { ret = PTR_ERR(crtc); goto fail; } priv->crtcs[priv->num_crtcs++] = crtc; } /* All CRTCs are compatible with all encoders */ for (i = 0; i < priv->num_encoders; i++) priv->encoders[i]->possible_crtcs = (1 << priv->num_crtcs) - 1; return 0; fail: _dpu_kms_drm_obj_destroy(dpu_kms); return ret; } static long dpu_kms_round_pixclk(struct msm_kms *kms, unsigned long rate, struct drm_encoder *encoder) { return rate; } static void _dpu_kms_hw_destroy(struct dpu_kms *dpu_kms) { int i; if (dpu_kms->hw_intr) dpu_hw_intr_destroy(dpu_kms->hw_intr); dpu_kms->hw_intr = NULL; /* safe to call these more than once during shutdown */ _dpu_kms_mmu_destroy(dpu_kms); if (dpu_kms->catalog) { for (i = 0; i < ARRAY_SIZE(dpu_kms->hw_vbif); i++) { if (dpu_kms->hw_vbif[i]) { dpu_hw_vbif_destroy(dpu_kms->hw_vbif[i]); dpu_kms->hw_vbif[i] = NULL; } } } if (dpu_kms->rm_init) dpu_rm_destroy(&dpu_kms->rm); dpu_kms->rm_init = false; if (dpu_kms->catalog) dpu_hw_catalog_deinit(dpu_kms->catalog); dpu_kms->catalog = NULL; if (dpu_kms->vbif[VBIF_NRT]) devm_iounmap(&dpu_kms->pdev->dev, dpu_kms->vbif[VBIF_NRT]); dpu_kms->vbif[VBIF_NRT] = NULL; if (dpu_kms->vbif[VBIF_RT]) devm_iounmap(&dpu_kms->pdev->dev, dpu_kms->vbif[VBIF_RT]); dpu_kms->vbif[VBIF_RT] = NULL; if (dpu_kms->hw_mdp) dpu_hw_mdp_destroy(dpu_kms->hw_mdp); dpu_kms->hw_mdp = NULL; if (dpu_kms->mmio) devm_iounmap(&dpu_kms->pdev->dev, dpu_kms->mmio); dpu_kms->mmio = NULL; } static void dpu_kms_destroy(struct msm_kms *kms) { struct dpu_kms *dpu_kms; if (!kms) { DPU_ERROR("invalid kms\n"); return; } dpu_kms = to_dpu_kms(kms); _dpu_kms_hw_destroy(dpu_kms); msm_kms_destroy(&dpu_kms->base); } static irqreturn_t dpu_irq(struct msm_kms *kms) { struct dpu_kms *dpu_kms = to_dpu_kms(kms); return dpu_core_irq(dpu_kms); } static void dpu_irq_preinstall(struct msm_kms *kms) { struct dpu_kms *dpu_kms = to_dpu_kms(kms); dpu_core_irq_preinstall(dpu_kms); } static int dpu_irq_postinstall(struct msm_kms *kms) { struct msm_drm_private *priv; struct dpu_kms *dpu_kms = to_dpu_kms(kms); if (!dpu_kms || !dpu_kms->dev) return -EINVAL; priv = dpu_kms->dev->dev_private; if (!priv) return -EINVAL; msm_dp_irq_postinstall(priv->dp); return 0; } static void dpu_irq_uninstall(struct msm_kms *kms) { struct dpu_kms *dpu_kms = to_dpu_kms(kms); dpu_core_irq_uninstall(dpu_kms); } static void dpu_kms_mdp_snapshot(struct msm_disp_state *disp_state, struct msm_kms *kms) { int i; struct dpu_kms *dpu_kms; struct dpu_mdss_cfg *cat; struct dpu_hw_mdp *top; dpu_kms = to_dpu_kms(kms); cat = dpu_kms->catalog; top = dpu_kms->hw_mdp; pm_runtime_get_sync(&dpu_kms->pdev->dev); /* dump CTL sub-blocks HW regs info */ for (i = 0; i < cat->ctl_count; i++) msm_disp_snapshot_add_block(disp_state, cat->ctl[i].len, dpu_kms->mmio + cat->ctl[i].base, "ctl_%d", i); /* dump DSPP sub-blocks HW regs info */ for (i = 0; i < cat->dspp_count; i++) msm_disp_snapshot_add_block(disp_state, cat->dspp[i].len, dpu_kms->mmio + cat->dspp[i].base, "dspp_%d", i); /* dump INTF sub-blocks HW regs info */ for (i = 0; i < cat->intf_count; i++) msm_disp_snapshot_add_block(disp_state, cat->intf[i].len, dpu_kms->mmio + cat->intf[i].base, "intf_%d", i); /* dump PP sub-blocks HW regs info */ for (i = 0; i < cat->pingpong_count; i++) msm_disp_snapshot_add_block(disp_state, cat->pingpong[i].len, dpu_kms->mmio + cat->pingpong[i].base, "pingpong_%d", i); /* dump SSPP sub-blocks HW regs info */ for (i = 0; i < cat->sspp_count; i++) msm_disp_snapshot_add_block(disp_state, cat->sspp[i].len, dpu_kms->mmio + cat->sspp[i].base, "sspp_%d", i); msm_disp_snapshot_add_block(disp_state, top->hw.length, dpu_kms->mmio + top->hw.blk_off, "top"); pm_runtime_put_sync(&dpu_kms->pdev->dev); } static const struct msm_kms_funcs kms_funcs = { .hw_init = dpu_kms_hw_init, .irq_preinstall = dpu_irq_preinstall, .irq_postinstall = dpu_irq_postinstall, .irq_uninstall = dpu_irq_uninstall, .irq = dpu_irq, .enable_commit = dpu_kms_enable_commit, .disable_commit = dpu_kms_disable_commit, .vsync_time = dpu_kms_vsync_time, .prepare_commit = dpu_kms_prepare_commit, .flush_commit = dpu_kms_flush_commit, .wait_flush = dpu_kms_wait_flush, .complete_commit = dpu_kms_complete_commit, .enable_vblank = dpu_kms_enable_vblank, .disable_vblank = dpu_kms_disable_vblank, .check_modified_format = dpu_format_check_modified_format, .get_format = dpu_get_msm_format, .round_pixclk = dpu_kms_round_pixclk, .destroy = dpu_kms_destroy, .snapshot = dpu_kms_mdp_snapshot, #ifdef CONFIG_DEBUG_FS .debugfs_init = dpu_kms_debugfs_init, #endif }; static void _dpu_kms_mmu_destroy(struct dpu_kms *dpu_kms) { struct msm_mmu *mmu; if (!dpu_kms->base.aspace) return; mmu = dpu_kms->base.aspace->mmu; mmu->funcs->detach(mmu); msm_gem_address_space_put(dpu_kms->base.aspace); dpu_kms->base.aspace = NULL; } static int _dpu_kms_mmu_init(struct dpu_kms *dpu_kms) { struct iommu_domain *domain; struct msm_gem_address_space *aspace; struct msm_mmu *mmu; domain = iommu_domain_alloc(&platform_bus_type); if (!domain) return 0; mmu = msm_iommu_new(dpu_kms->dev->dev, domain); if (IS_ERR(mmu)) { iommu_domain_free(domain); return PTR_ERR(mmu); } aspace = msm_gem_address_space_create(mmu, "dpu1", 0x1000, 0x100000000 - 0x1000); if (IS_ERR(aspace)) { mmu->funcs->destroy(mmu); return PTR_ERR(aspace); } dpu_kms->base.aspace = aspace; return 0; } static struct dss_clk *_dpu_kms_get_clk(struct dpu_kms *dpu_kms, char *clock_name) { struct dss_module_power *mp = &dpu_kms->mp; int i; for (i = 0; i < mp->num_clk; i++) { if (!strcmp(mp->clk_config[i].clk_name, clock_name)) return &mp->clk_config[i]; } return NULL; } u64 dpu_kms_get_clk_rate(struct dpu_kms *dpu_kms, char *clock_name) { struct dss_clk *clk; clk = _dpu_kms_get_clk(dpu_kms, clock_name); if (!clk) return -EINVAL; return clk_get_rate(clk->clk); } static int dpu_kms_hw_init(struct msm_kms *kms) { struct dpu_kms *dpu_kms; struct drm_device *dev; int i, rc = -EINVAL; if (!kms) { DPU_ERROR("invalid kms\n"); return rc; } dpu_kms = to_dpu_kms(kms); dev = dpu_kms->dev; rc = dpu_kms_global_obj_init(dpu_kms); if (rc) return rc; atomic_set(&dpu_kms->bandwidth_ref, 0); dpu_kms->mmio = msm_ioremap(dpu_kms->pdev, "mdp", "mdp"); if (IS_ERR(dpu_kms->mmio)) { rc = PTR_ERR(dpu_kms->mmio); DPU_ERROR("mdp register memory map failed: %d\n", rc); dpu_kms->mmio = NULL; goto error; } DRM_DEBUG("mapped dpu address space @%pK\n", dpu_kms->mmio); dpu_kms->vbif[VBIF_RT] = msm_ioremap(dpu_kms->pdev, "vbif", "vbif"); if (IS_ERR(dpu_kms->vbif[VBIF_RT])) { rc = PTR_ERR(dpu_kms->vbif[VBIF_RT]); DPU_ERROR("vbif register memory map failed: %d\n", rc); dpu_kms->vbif[VBIF_RT] = NULL; goto error; } dpu_kms->vbif[VBIF_NRT] = msm_ioremap_quiet(dpu_kms->pdev, "vbif_nrt", "vbif_nrt"); if (IS_ERR(dpu_kms->vbif[VBIF_NRT])) { dpu_kms->vbif[VBIF_NRT] = NULL; DPU_DEBUG("VBIF NRT is not defined"); } dpu_kms->reg_dma = msm_ioremap_quiet(dpu_kms->pdev, "regdma", "regdma"); if (IS_ERR(dpu_kms->reg_dma)) { dpu_kms->reg_dma = NULL; DPU_DEBUG("REG_DMA is not defined"); } dpu_kms_parse_data_bus_icc_path(dpu_kms); rc = pm_runtime_resume_and_get(&dpu_kms->pdev->dev); if (rc < 0) goto error; dpu_kms->core_rev = readl_relaxed(dpu_kms->mmio + 0x0); pr_info("dpu hardware revision:0x%x\n", dpu_kms->core_rev); dpu_kms->catalog = dpu_hw_catalog_init(dpu_kms->core_rev); if (IS_ERR_OR_NULL(dpu_kms->catalog)) { rc = PTR_ERR(dpu_kms->catalog); if (!dpu_kms->catalog) rc = -EINVAL; DPU_ERROR("catalog init failed: %d\n", rc); dpu_kms->catalog = NULL; goto power_error; } /* * Now we need to read the HW catalog and initialize resources such as * clocks, regulators, GDSC/MMAGIC, ioremap the register ranges etc */ rc = _dpu_kms_mmu_init(dpu_kms); if (rc) { DPU_ERROR("dpu_kms_mmu_init failed: %d\n", rc); goto power_error; } rc = dpu_rm_init(&dpu_kms->rm, dpu_kms->catalog, dpu_kms->mmio); if (rc) { DPU_ERROR("rm init failed: %d\n", rc); goto power_error; } dpu_kms->rm_init = true; dpu_kms->hw_mdp = dpu_hw_mdptop_init(MDP_TOP, dpu_kms->mmio, dpu_kms->catalog); if (IS_ERR(dpu_kms->hw_mdp)) { rc = PTR_ERR(dpu_kms->hw_mdp); DPU_ERROR("failed to get hw_mdp: %d\n", rc); dpu_kms->hw_mdp = NULL; goto power_error; } for (i = 0; i < dpu_kms->catalog->vbif_count; i++) { u32 vbif_idx = dpu_kms->catalog->vbif[i].id; dpu_kms->hw_vbif[vbif_idx] = dpu_hw_vbif_init(vbif_idx, dpu_kms->vbif[vbif_idx], dpu_kms->catalog); if (IS_ERR_OR_NULL(dpu_kms->hw_vbif[vbif_idx])) { rc = PTR_ERR(dpu_kms->hw_vbif[vbif_idx]); if (!dpu_kms->hw_vbif[vbif_idx]) rc = -EINVAL; DPU_ERROR("failed to init vbif %d: %d\n", vbif_idx, rc); dpu_kms->hw_vbif[vbif_idx] = NULL; goto power_error; } } rc = dpu_core_perf_init(&dpu_kms->perf, dev, dpu_kms->catalog, _dpu_kms_get_clk(dpu_kms, "core")); if (rc) { DPU_ERROR("failed to init perf %d\n", rc); goto perf_err; } dpu_kms->hw_intr = dpu_hw_intr_init(dpu_kms->mmio, dpu_kms->catalog); if (IS_ERR_OR_NULL(dpu_kms->hw_intr)) { rc = PTR_ERR(dpu_kms->hw_intr); DPU_ERROR("hw_intr init failed: %d\n", rc); dpu_kms->hw_intr = NULL; goto hw_intr_init_err; } dev->mode_config.min_width = 0; dev->mode_config.min_height = 0; /* * max crtc width is equal to the max mixer width * 2 and max height is * is 4K */ dev->mode_config.max_width = dpu_kms->catalog->caps->max_mixer_width * 2; dev->mode_config.max_height = 4096; dev->max_vblank_count = 0xffffffff; /* Disable vblank irqs aggressively for power-saving */ dev->vblank_disable_immediate = true; /* * _dpu_kms_drm_obj_init should create the DRM related objects * i.e. CRTCs, planes, encoders, connectors and so forth */ rc = _dpu_kms_drm_obj_init(dpu_kms); if (rc) { DPU_ERROR("modeset init failed: %d\n", rc); goto drm_obj_init_err; } dpu_vbif_init_memtypes(dpu_kms); pm_runtime_put_sync(&dpu_kms->pdev->dev); return 0; drm_obj_init_err: dpu_core_perf_destroy(&dpu_kms->perf); hw_intr_init_err: perf_err: power_error: pm_runtime_put_sync(&dpu_kms->pdev->dev); error: _dpu_kms_hw_destroy(dpu_kms); return rc; } struct msm_kms *dpu_kms_init(struct drm_device *dev) { struct msm_drm_private *priv; struct dpu_kms *dpu_kms; int irq; if (!dev) { DPU_ERROR("drm device node invalid\n"); return ERR_PTR(-EINVAL); } priv = dev->dev_private; dpu_kms = to_dpu_kms(priv->kms); irq = irq_of_parse_and_map(dpu_kms->pdev->dev.of_node, 0); if (irq < 0) { DPU_ERROR("failed to get irq: %d\n", irq); return ERR_PTR(irq); } dpu_kms->base.irq = irq; return &dpu_kms->base; } static int dpu_bind(struct device *dev, struct device *master, void *data) { struct drm_device *ddev = dev_get_drvdata(master); struct platform_device *pdev = to_platform_device(dev); struct msm_drm_private *priv = ddev->dev_private; struct dpu_kms *dpu_kms; struct dss_module_power *mp; int ret = 0; dpu_kms = devm_kzalloc(&pdev->dev, sizeof(*dpu_kms), GFP_KERNEL); if (!dpu_kms) return -ENOMEM; ret = devm_pm_opp_set_clkname(dev, "core"); if (ret) return ret; /* OPP table is optional */ ret = devm_pm_opp_of_add_table(dev); if (ret && ret != -ENODEV) { dev_err(dev, "invalid OPP table in device tree\n"); return ret; } mp = &dpu_kms->mp; ret = msm_dss_parse_clock(pdev, mp); if (ret) { DPU_ERROR("failed to parse clocks, ret=%d\n", ret); return ret; } platform_set_drvdata(pdev, dpu_kms); ret = msm_kms_init(&dpu_kms->base, &kms_funcs); if (ret) { DPU_ERROR("failed to init kms, ret=%d\n", ret); return ret; } dpu_kms->dev = ddev; dpu_kms->pdev = pdev; pm_runtime_enable(&pdev->dev); dpu_kms->rpm_enabled = true; priv->kms = &dpu_kms->base; return 0; } static void dpu_unbind(struct device *dev, struct device *master, void *data) { struct platform_device *pdev = to_platform_device(dev); struct dpu_kms *dpu_kms = platform_get_drvdata(pdev); struct dss_module_power *mp = &dpu_kms->mp; msm_dss_put_clk(mp->clk_config, mp->num_clk); devm_kfree(&pdev->dev, mp->clk_config); mp->num_clk = 0; if (dpu_kms->rpm_enabled) pm_runtime_disable(&pdev->dev); } static const struct component_ops dpu_ops = { .bind = dpu_bind, .unbind = dpu_unbind, }; static int dpu_dev_probe(struct platform_device *pdev) { return component_add(&pdev->dev, &dpu_ops); } static int dpu_dev_remove(struct platform_device *pdev) { component_del(&pdev->dev, &dpu_ops); return 0; } static int __maybe_unused dpu_runtime_suspend(struct device *dev) { int i, rc = -1; struct platform_device *pdev = to_platform_device(dev); struct dpu_kms *dpu_kms = platform_get_drvdata(pdev); struct dss_module_power *mp = &dpu_kms->mp; /* Drop the performance state vote */ dev_pm_opp_set_rate(dev, 0); rc = msm_dss_enable_clk(mp->clk_config, mp->num_clk, false); if (rc) DPU_ERROR("clock disable failed rc:%d\n", rc); for (i = 0; i < dpu_kms->num_paths; i++) icc_set_bw(dpu_kms->path[i], 0, 0); return rc; } static int __maybe_unused dpu_runtime_resume(struct device *dev) { int rc = -1; struct platform_device *pdev = to_platform_device(dev); struct dpu_kms *dpu_kms = platform_get_drvdata(pdev); struct drm_encoder *encoder; struct drm_device *ddev; struct dss_module_power *mp = &dpu_kms->mp; int i; ddev = dpu_kms->dev; WARN_ON(!(dpu_kms->num_paths)); /* Min vote of BW is required before turning on AXI clk */ for (i = 0; i < dpu_kms->num_paths; i++) icc_set_bw(dpu_kms->path[i], 0, Bps_to_icc(MIN_IB_BW)); rc = msm_dss_enable_clk(mp->clk_config, mp->num_clk, true); if (rc) { DPU_ERROR("clock enable failed rc:%d\n", rc); return rc; } dpu_vbif_init_memtypes(dpu_kms); drm_for_each_encoder(encoder, ddev) dpu_encoder_virt_runtime_resume(encoder); return rc; } static const struct dev_pm_ops dpu_pm_ops = { SET_RUNTIME_PM_OPS(dpu_runtime_suspend, dpu_runtime_resume, NULL) SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) }; static const struct of_device_id dpu_dt_match[] = { { .compatible = "qcom,sdm845-dpu", }, { .compatible = "qcom,sc7180-dpu", }, { .compatible = "qcom,sc7280-dpu", }, { .compatible = "qcom,sm8150-dpu", }, { .compatible = "qcom,sm8250-dpu", }, {} }; MODULE_DEVICE_TABLE(of, dpu_dt_match); static struct platform_driver dpu_driver = { .probe = dpu_dev_probe, .remove = dpu_dev_remove, .driver = { .name = "msm_dpu", .of_match_table = dpu_dt_match, .pm = &dpu_pm_ops, }, }; void __init msm_dpu_register(void) { platform_driver_register(&dpu_driver); } void __exit msm_dpu_unregister(void) { platform_driver_unregister(&dpu_driver); }