// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2015, The Linux Foundation. All rights reserved. */ #include #include #include #include "dsi_phy.h" #define S_DIV_ROUND_UP(n, d) \ (((n) >= 0) ? (((n) + (d) - 1) / (d)) : (((n) - (d) + 1) / (d))) static inline s32 linear_inter(s32 tmax, s32 tmin, s32 percent, s32 min_result, bool even) { s32 v; v = (tmax - tmin) * percent; v = S_DIV_ROUND_UP(v, 100) + tmin; if (even && (v & 0x1)) return max_t(s32, min_result, v - 1); else return max_t(s32, min_result, v); } static void dsi_dphy_timing_calc_clk_zero(struct msm_dsi_dphy_timing *timing, s32 ui, s32 coeff, s32 pcnt) { s32 tmax, tmin, clk_z; s32 temp; /* reset */ temp = 300 * coeff - ((timing->clk_prepare >> 1) + 1) * 2 * ui; tmin = S_DIV_ROUND_UP(temp, ui) - 2; if (tmin > 255) { tmax = 511; clk_z = linear_inter(2 * tmin, tmin, pcnt, 0, true); } else { tmax = 255; clk_z = linear_inter(tmax, tmin, pcnt, 0, true); } /* adjust */ temp = (timing->hs_rqst + timing->clk_prepare + clk_z) & 0x7; timing->clk_zero = clk_z + 8 - temp; } int msm_dsi_dphy_timing_calc(struct msm_dsi_dphy_timing *timing, struct msm_dsi_phy_clk_request *clk_req) { const unsigned long bit_rate = clk_req->bitclk_rate; const unsigned long esc_rate = clk_req->escclk_rate; s32 ui, lpx; s32 tmax, tmin; s32 pcnt0 = 10; s32 pcnt1 = (bit_rate > 1200000000) ? 15 : 10; s32 pcnt2 = 10; s32 pcnt3 = (bit_rate > 180000000) ? 10 : 40; s32 coeff = 1000; /* Precision, should avoid overflow */ s32 temp; if (!bit_rate || !esc_rate) return -EINVAL; ui = mult_frac(NSEC_PER_MSEC, coeff, bit_rate / 1000); lpx = mult_frac(NSEC_PER_MSEC, coeff, esc_rate / 1000); tmax = S_DIV_ROUND_UP(95 * coeff, ui) - 2; tmin = S_DIV_ROUND_UP(38 * coeff, ui) - 2; timing->clk_prepare = linear_inter(tmax, tmin, pcnt0, 0, true); temp = lpx / ui; if (temp & 0x1) timing->hs_rqst = temp; else timing->hs_rqst = max_t(s32, 0, temp - 2); /* Calculate clk_zero after clk_prepare and hs_rqst */ dsi_dphy_timing_calc_clk_zero(timing, ui, coeff, pcnt2); temp = 105 * coeff + 12 * ui - 20 * coeff; tmax = S_DIV_ROUND_UP(temp, ui) - 2; tmin = S_DIV_ROUND_UP(60 * coeff, ui) - 2; timing->clk_trail = linear_inter(tmax, tmin, pcnt3, 0, true); temp = 85 * coeff + 6 * ui; tmax = S_DIV_ROUND_UP(temp, ui) - 2; temp = 40 * coeff + 4 * ui; tmin = S_DIV_ROUND_UP(temp, ui) - 2; timing->hs_prepare = linear_inter(tmax, tmin, pcnt1, 0, true); tmax = 255; temp = ((timing->hs_prepare >> 1) + 1) * 2 * ui + 2 * ui; temp = 145 * coeff + 10 * ui - temp; tmin = S_DIV_ROUND_UP(temp, ui) - 2; timing->hs_zero = linear_inter(tmax, tmin, pcnt2, 24, true); temp = 105 * coeff + 12 * ui - 20 * coeff; tmax = S_DIV_ROUND_UP(temp, ui) - 2; temp = 60 * coeff + 4 * ui; tmin = DIV_ROUND_UP(temp, ui) - 2; timing->hs_trail = linear_inter(tmax, tmin, pcnt3, 0, true); tmax = 255; tmin = S_DIV_ROUND_UP(100 * coeff, ui) - 2; timing->hs_exit = linear_inter(tmax, tmin, pcnt2, 0, true); tmax = 63; temp = ((timing->hs_exit >> 1) + 1) * 2 * ui; temp = 60 * coeff + 52 * ui - 24 * ui - temp; tmin = S_DIV_ROUND_UP(temp, 8 * ui) - 1; timing->shared_timings.clk_post = linear_inter(tmax, tmin, pcnt2, 0, false); tmax = 63; temp = ((timing->clk_prepare >> 1) + 1) * 2 * ui; temp += ((timing->clk_zero >> 1) + 1) * 2 * ui; temp += 8 * ui + lpx; tmin = S_DIV_ROUND_UP(temp, 8 * ui) - 1; if (tmin > tmax) { temp = linear_inter(2 * tmax, tmin, pcnt2, 0, false); timing->shared_timings.clk_pre = temp >> 1; timing->shared_timings.clk_pre_inc_by_2 = true; } else { timing->shared_timings.clk_pre = linear_inter(tmax, tmin, pcnt2, 0, false); timing->shared_timings.clk_pre_inc_by_2 = false; } timing->ta_go = 3; timing->ta_sure = 0; timing->ta_get = 4; DBG("PHY timings: %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d", timing->shared_timings.clk_pre, timing->shared_timings.clk_post, timing->shared_timings.clk_pre_inc_by_2, timing->clk_zero, timing->clk_trail, timing->clk_prepare, timing->hs_exit, timing->hs_zero, timing->hs_prepare, timing->hs_trail, timing->hs_rqst); return 0; } int msm_dsi_dphy_timing_calc_v2(struct msm_dsi_dphy_timing *timing, struct msm_dsi_phy_clk_request *clk_req) { const unsigned long bit_rate = clk_req->bitclk_rate; const unsigned long esc_rate = clk_req->escclk_rate; s32 ui, ui_x8; s32 tmax, tmin; s32 pcnt0 = 50; s32 pcnt1 = 50; s32 pcnt2 = 10; s32 pcnt3 = 30; s32 pcnt4 = 10; s32 pcnt5 = 2; s32 coeff = 1000; /* Precision, should avoid overflow */ s32 hb_en, hb_en_ckln, pd_ckln, pd; s32 val, val_ckln; s32 temp; if (!bit_rate || !esc_rate) return -EINVAL; timing->hs_halfbyte_en = 0; hb_en = 0; timing->hs_halfbyte_en_ckln = 0; hb_en_ckln = 0; timing->hs_prep_dly_ckln = (bit_rate > 100000000) ? 0 : 3; pd_ckln = timing->hs_prep_dly_ckln; timing->hs_prep_dly = (bit_rate > 120000000) ? 0 : 1; pd = timing->hs_prep_dly; val = (hb_en << 2) + (pd << 1); val_ckln = (hb_en_ckln << 2) + (pd_ckln << 1); ui = mult_frac(NSEC_PER_MSEC, coeff, bit_rate / 1000); ui_x8 = ui << 3; temp = S_DIV_ROUND_UP(38 * coeff - val_ckln * ui, ui_x8); tmin = max_t(s32, temp, 0); temp = (95 * coeff - val_ckln * ui) / ui_x8; tmax = max_t(s32, temp, 0); timing->clk_prepare = linear_inter(tmax, tmin, pcnt0, 0, false); temp = 300 * coeff - ((timing->clk_prepare << 3) + val_ckln) * ui; tmin = S_DIV_ROUND_UP(temp - 11 * ui, ui_x8) - 3; tmax = (tmin > 255) ? 511 : 255; timing->clk_zero = linear_inter(tmax, tmin, pcnt5, 0, false); tmin = DIV_ROUND_UP(60 * coeff + 3 * ui, ui_x8); temp = 105 * coeff + 12 * ui - 20 * coeff; tmax = (temp + 3 * ui) / ui_x8; timing->clk_trail = linear_inter(tmax, tmin, pcnt3, 0, false); temp = S_DIV_ROUND_UP(40 * coeff + 4 * ui - val * ui, ui_x8); tmin = max_t(s32, temp, 0); temp = (85 * coeff + 6 * ui - val * ui) / ui_x8; tmax = max_t(s32, temp, 0); timing->hs_prepare = linear_inter(tmax, tmin, pcnt1, 0, false); temp = 145 * coeff + 10 * ui - ((timing->hs_prepare << 3) + val) * ui; tmin = S_DIV_ROUND_UP(temp - 11 * ui, ui_x8) - 3; tmax = 255; timing->hs_zero = linear_inter(tmax, tmin, pcnt4, 0, false); tmin = DIV_ROUND_UP(60 * coeff + 4 * ui + 3 * ui, ui_x8); temp = 105 * coeff + 12 * ui - 20 * coeff; tmax = (temp + 3 * ui) / ui_x8; timing->hs_trail = linear_inter(tmax, tmin, pcnt3, 0, false); temp = 50 * coeff + ((hb_en << 2) - 8) * ui; timing->hs_rqst = S_DIV_ROUND_UP(temp, ui_x8); tmin = DIV_ROUND_UP(100 * coeff, ui_x8) - 1; tmax = 255; timing->hs_exit = linear_inter(tmax, tmin, pcnt2, 0, false); temp = 50 * coeff + ((hb_en_ckln << 2) - 8) * ui; timing->hs_rqst_ckln = S_DIV_ROUND_UP(temp, ui_x8); temp = 60 * coeff + 52 * ui - 43 * ui; tmin = DIV_ROUND_UP(temp, ui_x8) - 1; tmax = 63; timing->shared_timings.clk_post = linear_inter(tmax, tmin, pcnt2, 0, false); temp = 8 * ui + ((timing->clk_prepare << 3) + val_ckln) * ui; temp += (((timing->clk_zero + 3) << 3) + 11 - (pd_ckln << 1)) * ui; temp += hb_en_ckln ? (((timing->hs_rqst_ckln << 3) + 4) * ui) : (((timing->hs_rqst_ckln << 3) + 8) * ui); tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1; tmax = 63; if (tmin > tmax) { temp = linear_inter(tmax << 1, tmin, pcnt2, 0, false); timing->shared_timings.clk_pre = temp >> 1; timing->shared_timings.clk_pre_inc_by_2 = 1; } else { timing->shared_timings.clk_pre = linear_inter(tmax, tmin, pcnt2, 0, false); timing->shared_timings.clk_pre_inc_by_2 = 0; } timing->ta_go = 3; timing->ta_sure = 0; timing->ta_get = 4; DBG("%d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d", timing->shared_timings.clk_pre, timing->shared_timings.clk_post, timing->shared_timings.clk_pre_inc_by_2, timing->clk_zero, timing->clk_trail, timing->clk_prepare, timing->hs_exit, timing->hs_zero, timing->hs_prepare, timing->hs_trail, timing->hs_rqst, timing->hs_rqst_ckln, timing->hs_halfbyte_en, timing->hs_halfbyte_en_ckln, timing->hs_prep_dly, timing->hs_prep_dly_ckln); return 0; } int msm_dsi_dphy_timing_calc_v3(struct msm_dsi_dphy_timing *timing, struct msm_dsi_phy_clk_request *clk_req) { const unsigned long bit_rate = clk_req->bitclk_rate; const unsigned long esc_rate = clk_req->escclk_rate; s32 ui, ui_x8; s32 tmax, tmin; s32 pcnt0 = 50; s32 pcnt1 = 50; s32 pcnt2 = 10; s32 pcnt3 = 30; s32 pcnt4 = 10; s32 pcnt5 = 2; s32 coeff = 1000; /* Precision, should avoid overflow */ s32 hb_en, hb_en_ckln; s32 temp; if (!bit_rate || !esc_rate) return -EINVAL; timing->hs_halfbyte_en = 0; hb_en = 0; timing->hs_halfbyte_en_ckln = 0; hb_en_ckln = 0; ui = mult_frac(NSEC_PER_MSEC, coeff, bit_rate / 1000); ui_x8 = ui << 3; temp = S_DIV_ROUND_UP(38 * coeff, ui_x8); tmin = max_t(s32, temp, 0); temp = (95 * coeff) / ui_x8; tmax = max_t(s32, temp, 0); timing->clk_prepare = linear_inter(tmax, tmin, pcnt0, 0, false); temp = 300 * coeff - (timing->clk_prepare << 3) * ui; tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1; tmax = (tmin > 255) ? 511 : 255; timing->clk_zero = linear_inter(tmax, tmin, pcnt5, 0, false); tmin = DIV_ROUND_UP(60 * coeff + 3 * ui, ui_x8); temp = 105 * coeff + 12 * ui - 20 * coeff; tmax = (temp + 3 * ui) / ui_x8; timing->clk_trail = linear_inter(tmax, tmin, pcnt3, 0, false); temp = S_DIV_ROUND_UP(40 * coeff + 4 * ui, ui_x8); tmin = max_t(s32, temp, 0); temp = (85 * coeff + 6 * ui) / ui_x8; tmax = max_t(s32, temp, 0); timing->hs_prepare = linear_inter(tmax, tmin, pcnt1, 0, false); temp = 145 * coeff + 10 * ui - (timing->hs_prepare << 3) * ui; tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1; tmax = 255; timing->hs_zero = linear_inter(tmax, tmin, pcnt4, 0, false); tmin = DIV_ROUND_UP(60 * coeff + 4 * ui, ui_x8) - 1; temp = 105 * coeff + 12 * ui - 20 * coeff; tmax = (temp / ui_x8) - 1; timing->hs_trail = linear_inter(tmax, tmin, pcnt3, 0, false); temp = 50 * coeff + ((hb_en << 2) - 8) * ui; timing->hs_rqst = S_DIV_ROUND_UP(temp, ui_x8); tmin = DIV_ROUND_UP(100 * coeff, ui_x8) - 1; tmax = 255; timing->hs_exit = linear_inter(tmax, tmin, pcnt2, 0, false); temp = 50 * coeff + ((hb_en_ckln << 2) - 8) * ui; timing->hs_rqst_ckln = S_DIV_ROUND_UP(temp, ui_x8); temp = 60 * coeff + 52 * ui - 43 * ui; tmin = DIV_ROUND_UP(temp, ui_x8) - 1; tmax = 63; timing->shared_timings.clk_post = linear_inter(tmax, tmin, pcnt2, 0, false); temp = 8 * ui + (timing->clk_prepare << 3) * ui; temp += (((timing->clk_zero + 3) << 3) + 11) * ui; temp += hb_en_ckln ? (((timing->hs_rqst_ckln << 3) + 4) * ui) : (((timing->hs_rqst_ckln << 3) + 8) * ui); tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1; tmax = 63; if (tmin > tmax) { temp = linear_inter(tmax << 1, tmin, pcnt2, 0, false); timing->shared_timings.clk_pre = temp >> 1; timing->shared_timings.clk_pre_inc_by_2 = 1; } else { timing->shared_timings.clk_pre = linear_inter(tmax, tmin, pcnt2, 0, false); timing->shared_timings.clk_pre_inc_by_2 = 0; } timing->ta_go = 3; timing->ta_sure = 0; timing->ta_get = 4; DBG("%d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d", timing->shared_timings.clk_pre, timing->shared_timings.clk_post, timing->shared_timings.clk_pre_inc_by_2, timing->clk_zero, timing->clk_trail, timing->clk_prepare, timing->hs_exit, timing->hs_zero, timing->hs_prepare, timing->hs_trail, timing->hs_rqst, timing->hs_rqst_ckln, timing->hs_halfbyte_en, timing->hs_halfbyte_en_ckln, timing->hs_prep_dly, timing->hs_prep_dly_ckln); return 0; } int msm_dsi_dphy_timing_calc_v4(struct msm_dsi_dphy_timing *timing, struct msm_dsi_phy_clk_request *clk_req) { const unsigned long bit_rate = clk_req->bitclk_rate; const unsigned long esc_rate = clk_req->escclk_rate; s32 ui, ui_x8; s32 tmax, tmin; s32 pcnt_clk_prep = 50; s32 pcnt_clk_zero = 2; s32 pcnt_clk_trail = 30; s32 pcnt_hs_prep = 50; s32 pcnt_hs_zero = 10; s32 pcnt_hs_trail = 30; s32 pcnt_hs_exit = 10; s32 coeff = 1000; /* Precision, should avoid overflow */ s32 hb_en; s32 temp; if (!bit_rate || !esc_rate) return -EINVAL; hb_en = 0; ui = mult_frac(NSEC_PER_MSEC, coeff, bit_rate / 1000); ui_x8 = ui << 3; /* TODO: verify these calculations against latest downstream driver * everything except clk_post/clk_pre uses calculations from v3 based * on the downstream driver having the same calculations for v3 and v4 */ temp = S_DIV_ROUND_UP(38 * coeff, ui_x8); tmin = max_t(s32, temp, 0); temp = (95 * coeff) / ui_x8; tmax = max_t(s32, temp, 0); timing->clk_prepare = linear_inter(tmax, tmin, pcnt_clk_prep, 0, false); temp = 300 * coeff - (timing->clk_prepare << 3) * ui; tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1; tmax = (tmin > 255) ? 511 : 255; timing->clk_zero = linear_inter(tmax, tmin, pcnt_clk_zero, 0, false); tmin = DIV_ROUND_UP(60 * coeff + 3 * ui, ui_x8); temp = 105 * coeff + 12 * ui - 20 * coeff; tmax = (temp + 3 * ui) / ui_x8; timing->clk_trail = linear_inter(tmax, tmin, pcnt_clk_trail, 0, false); temp = S_DIV_ROUND_UP(40 * coeff + 4 * ui, ui_x8); tmin = max_t(s32, temp, 0); temp = (85 * coeff + 6 * ui) / ui_x8; tmax = max_t(s32, temp, 0); timing->hs_prepare = linear_inter(tmax, tmin, pcnt_hs_prep, 0, false); temp = 145 * coeff + 10 * ui - (timing->hs_prepare << 3) * ui; tmin = S_DIV_ROUND_UP(temp, ui_x8) - 1; tmax = 255; timing->hs_zero = linear_inter(tmax, tmin, pcnt_hs_zero, 0, false); tmin = DIV_ROUND_UP(60 * coeff + 4 * ui, ui_x8) - 1; temp = 105 * coeff + 12 * ui - 20 * coeff; tmax = (temp / ui_x8) - 1; timing->hs_trail = linear_inter(tmax, tmin, pcnt_hs_trail, 0, false); temp = 50 * coeff + ((hb_en << 2) - 8) * ui; timing->hs_rqst = S_DIV_ROUND_UP(temp, ui_x8); tmin = DIV_ROUND_UP(100 * coeff, ui_x8) - 1; tmax = 255; timing->hs_exit = linear_inter(tmax, tmin, pcnt_hs_exit, 0, false); /* recommended min * = roundup((mipi_min_ns + t_hs_trail_ns)/(16*bit_clk_ns), 0) - 1 */ temp = 60 * coeff + 52 * ui + + (timing->hs_trail + 1) * ui_x8; tmin = DIV_ROUND_UP(temp, 16 * ui) - 1; tmax = 255; timing->shared_timings.clk_post = linear_inter(tmax, tmin, 5, 0, false); /* recommended min * val1 = (tlpx_ns + clk_prepare_ns + clk_zero_ns + hs_rqst_ns) * val2 = (16 * bit_clk_ns) * final = roundup(val1/val2, 0) - 1 */ temp = 52 * coeff + (timing->clk_prepare + timing->clk_zero + 1) * ui_x8 + 54 * coeff; tmin = DIV_ROUND_UP(temp, 16 * ui) - 1; tmax = 255; timing->shared_timings.clk_pre = DIV_ROUND_UP((tmax - tmin) * 125, 10000) + tmin; DBG("%d, %d, %d, %d, %d, %d, %d, %d, %d, %d", timing->shared_timings.clk_pre, timing->shared_timings.clk_post, timing->clk_zero, timing->clk_trail, timing->clk_prepare, timing->hs_exit, timing->hs_zero, timing->hs_prepare, timing->hs_trail, timing->hs_rqst); return 0; } int msm_dsi_cphy_timing_calc_v4(struct msm_dsi_dphy_timing *timing, struct msm_dsi_phy_clk_request *clk_req) { const unsigned long bit_rate = clk_req->bitclk_rate; const unsigned long esc_rate = clk_req->escclk_rate; s32 ui, ui_x7; s32 tmax, tmin; s32 coeff = 1000; /* Precision, should avoid overflow */ s32 temp; if (!bit_rate || !esc_rate) return -EINVAL; ui = mult_frac(NSEC_PER_MSEC, coeff, bit_rate / 1000); ui_x7 = ui * 7; temp = S_DIV_ROUND_UP(38 * coeff, ui_x7); tmin = max_t(s32, temp, 0); temp = (95 * coeff) / ui_x7; tmax = max_t(s32, temp, 0); timing->clk_prepare = linear_inter(tmax, tmin, 50, 0, false); tmin = DIV_ROUND_UP(50 * coeff, ui_x7); tmax = 255; timing->hs_rqst = linear_inter(tmax, tmin, 1, 0, false); tmin = DIV_ROUND_UP(100 * coeff, ui_x7) - 1; tmax = 255; timing->hs_exit = linear_inter(tmax, tmin, 10, 0, false); tmin = 1; tmax = 32; timing->shared_timings.clk_post = linear_inter(tmax, tmin, 80, 0, false); tmin = min_t(s32, 64, S_DIV_ROUND_UP(262 * coeff, ui_x7) - 1); tmax = 64; timing->shared_timings.clk_pre = linear_inter(tmax, tmin, 20, 0, false); DBG("%d, %d, %d, %d, %d", timing->shared_timings.clk_pre, timing->shared_timings.clk_post, timing->clk_prepare, timing->hs_exit, timing->hs_rqst); return 0; } static int dsi_phy_regulator_init(struct msm_dsi_phy *phy) { struct regulator_bulk_data *s = phy->supplies; const struct dsi_reg_entry *regs = phy->cfg->reg_cfg.regs; struct device *dev = &phy->pdev->dev; int num = phy->cfg->reg_cfg.num; int i, ret; for (i = 0; i < num; i++) s[i].supply = regs[i].name; ret = devm_regulator_bulk_get(dev, num, s); if (ret < 0) { if (ret != -EPROBE_DEFER) { DRM_DEV_ERROR(dev, "%s: failed to init regulator, ret=%d\n", __func__, ret); } return ret; } return 0; } static void dsi_phy_regulator_disable(struct msm_dsi_phy *phy) { struct regulator_bulk_data *s = phy->supplies; const struct dsi_reg_entry *regs = phy->cfg->reg_cfg.regs; int num = phy->cfg->reg_cfg.num; int i; DBG(""); for (i = num - 1; i >= 0; i--) if (regs[i].disable_load >= 0) regulator_set_load(s[i].consumer, regs[i].disable_load); regulator_bulk_disable(num, s); } static int dsi_phy_regulator_enable(struct msm_dsi_phy *phy) { struct regulator_bulk_data *s = phy->supplies; const struct dsi_reg_entry *regs = phy->cfg->reg_cfg.regs; struct device *dev = &phy->pdev->dev; int num = phy->cfg->reg_cfg.num; int ret, i; DBG(""); for (i = 0; i < num; i++) { if (regs[i].enable_load >= 0) { ret = regulator_set_load(s[i].consumer, regs[i].enable_load); if (ret < 0) { DRM_DEV_ERROR(dev, "regulator %d set op mode failed, %d\n", i, ret); goto fail; } } } ret = regulator_bulk_enable(num, s); if (ret < 0) { DRM_DEV_ERROR(dev, "regulator enable failed, %d\n", ret); goto fail; } return 0; fail: for (i--; i >= 0; i--) regulator_set_load(s[i].consumer, regs[i].disable_load); return ret; } static int dsi_phy_enable_resource(struct msm_dsi_phy *phy) { struct device *dev = &phy->pdev->dev; int ret; ret = pm_runtime_resume_and_get(dev); if (ret) return ret; ret = clk_prepare_enable(phy->ahb_clk); if (ret) { DRM_DEV_ERROR(dev, "%s: can't enable ahb clk, %d\n", __func__, ret); pm_runtime_put_sync(dev); } return ret; } static void dsi_phy_disable_resource(struct msm_dsi_phy *phy) { clk_disable_unprepare(phy->ahb_clk); pm_runtime_put_autosuspend(&phy->pdev->dev); } static const struct of_device_id dsi_phy_dt_match[] = { #ifdef CONFIG_DRM_MSM_DSI_28NM_PHY { .compatible = "qcom,dsi-phy-28nm-hpm", .data = &dsi_phy_28nm_hpm_cfgs }, { .compatible = "qcom,dsi-phy-28nm-hpm-fam-b", .data = &dsi_phy_28nm_hpm_famb_cfgs }, { .compatible = "qcom,dsi-phy-28nm-lp", .data = &dsi_phy_28nm_lp_cfgs }, #endif #ifdef CONFIG_DRM_MSM_DSI_20NM_PHY { .compatible = "qcom,dsi-phy-20nm", .data = &dsi_phy_20nm_cfgs }, #endif #ifdef CONFIG_DRM_MSM_DSI_28NM_8960_PHY { .compatible = "qcom,dsi-phy-28nm-8960", .data = &dsi_phy_28nm_8960_cfgs }, #endif #ifdef CONFIG_DRM_MSM_DSI_14NM_PHY { .compatible = "qcom,dsi-phy-14nm", .data = &dsi_phy_14nm_cfgs }, { .compatible = "qcom,dsi-phy-14nm-660", .data = &dsi_phy_14nm_660_cfgs }, #endif #ifdef CONFIG_DRM_MSM_DSI_10NM_PHY { .compatible = "qcom,dsi-phy-10nm", .data = &dsi_phy_10nm_cfgs }, { .compatible = "qcom,dsi-phy-10nm-8998", .data = &dsi_phy_10nm_8998_cfgs }, #endif #ifdef CONFIG_DRM_MSM_DSI_7NM_PHY { .compatible = "qcom,dsi-phy-7nm", .data = &dsi_phy_7nm_cfgs }, { .compatible = "qcom,dsi-phy-7nm-8150", .data = &dsi_phy_7nm_8150_cfgs }, { .compatible = "qcom,sc7280-dsi-phy-7nm", .data = &dsi_phy_7nm_7280_cfgs }, #endif {} }; /* * Currently, we only support one SoC for each PHY type. When we have multiple * SoCs for the same PHY, we can try to make the index searching a bit more * clever. */ static int dsi_phy_get_id(struct msm_dsi_phy *phy) { struct platform_device *pdev = phy->pdev; const struct msm_dsi_phy_cfg *cfg = phy->cfg; struct resource *res; int i; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dsi_phy"); if (!res) return -EINVAL; for (i = 0; i < cfg->num_dsi_phy; i++) { if (cfg->io_start[i] == res->start) return i; } return -EINVAL; } static int dsi_phy_driver_probe(struct platform_device *pdev) { struct msm_dsi_phy *phy; struct device *dev = &pdev->dev; u32 phy_type; int ret; phy = devm_kzalloc(dev, sizeof(*phy), GFP_KERNEL); if (!phy) return -ENOMEM; phy->provided_clocks = devm_kzalloc(dev, struct_size(phy->provided_clocks, hws, NUM_PROVIDED_CLKS), GFP_KERNEL); if (!phy->provided_clocks) return -ENOMEM; phy->provided_clocks->num = NUM_PROVIDED_CLKS; phy->cfg = of_device_get_match_data(&pdev->dev); if (!phy->cfg) return -ENODEV; phy->pdev = pdev; phy->id = dsi_phy_get_id(phy); if (phy->id < 0) { ret = phy->id; DRM_DEV_ERROR(dev, "%s: couldn't identify PHY index, %d\n", __func__, ret); goto fail; } phy->regulator_ldo_mode = of_property_read_bool(dev->of_node, "qcom,dsi-phy-regulator-ldo-mode"); if (!of_property_read_u32(dev->of_node, "phy-type", &phy_type)) phy->cphy_mode = (phy_type == PHY_TYPE_CPHY); phy->base = msm_ioremap_size(pdev, "dsi_phy", "DSI_PHY", &phy->base_size); if (IS_ERR(phy->base)) { DRM_DEV_ERROR(dev, "%s: failed to map phy base\n", __func__); ret = -ENOMEM; goto fail; } phy->pll_base = msm_ioremap_size(pdev, "dsi_pll", "DSI_PLL", &phy->pll_size); if (IS_ERR(phy->pll_base)) { DRM_DEV_ERROR(&pdev->dev, "%s: failed to map pll base\n", __func__); ret = -ENOMEM; goto fail; } if (phy->cfg->has_phy_lane) { phy->lane_base = msm_ioremap_size(pdev, "dsi_phy_lane", "DSI_PHY_LANE", &phy->lane_size); if (IS_ERR(phy->lane_base)) { DRM_DEV_ERROR(&pdev->dev, "%s: failed to map phy lane base\n", __func__); ret = -ENOMEM; goto fail; } } if (phy->cfg->has_phy_regulator) { phy->reg_base = msm_ioremap_size(pdev, "dsi_phy_regulator", "DSI_PHY_REG", &phy->reg_size); if (IS_ERR(phy->reg_base)) { DRM_DEV_ERROR(&pdev->dev, "%s: failed to map phy regulator base\n", __func__); ret = -ENOMEM; goto fail; } } ret = dsi_phy_regulator_init(phy); if (ret) goto fail; phy->ahb_clk = msm_clk_get(pdev, "iface"); if (IS_ERR(phy->ahb_clk)) { DRM_DEV_ERROR(dev, "%s: Unable to get ahb clk\n", __func__); ret = PTR_ERR(phy->ahb_clk); goto fail; } ret = devm_pm_runtime_enable(&pdev->dev); if (ret) return ret; /* PLL init will call into clk_register which requires * register access, so we need to enable power and ahb clock. */ ret = dsi_phy_enable_resource(phy); if (ret) goto fail; if (phy->cfg->ops.pll_init) { ret = phy->cfg->ops.pll_init(phy); if (ret) { DRM_DEV_INFO(dev, "%s: pll init failed: %d, need separate pll clk driver\n", __func__, ret); goto fail; } } ret = devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get, phy->provided_clocks); if (ret) { DRM_DEV_ERROR(dev, "%s: failed to register clk provider: %d\n", __func__, ret); goto fail; } dsi_phy_disable_resource(phy); platform_set_drvdata(pdev, phy); return 0; fail: return ret; } static struct platform_driver dsi_phy_platform_driver = { .probe = dsi_phy_driver_probe, .driver = { .name = "msm_dsi_phy", .of_match_table = dsi_phy_dt_match, }, }; void __init msm_dsi_phy_driver_register(void) { platform_driver_register(&dsi_phy_platform_driver); } void __exit msm_dsi_phy_driver_unregister(void) { platform_driver_unregister(&dsi_phy_platform_driver); } int msm_dsi_phy_enable(struct msm_dsi_phy *phy, struct msm_dsi_phy_clk_request *clk_req, struct msm_dsi_phy_shared_timings *shared_timings) { struct device *dev; int ret; if (!phy || !phy->cfg->ops.enable) return -EINVAL; dev = &phy->pdev->dev; ret = dsi_phy_enable_resource(phy); if (ret) { DRM_DEV_ERROR(dev, "%s: resource enable failed, %d\n", __func__, ret); goto res_en_fail; } ret = dsi_phy_regulator_enable(phy); if (ret) { DRM_DEV_ERROR(dev, "%s: regulator enable failed, %d\n", __func__, ret); goto reg_en_fail; } ret = phy->cfg->ops.enable(phy, clk_req); if (ret) { DRM_DEV_ERROR(dev, "%s: phy enable failed, %d\n", __func__, ret); goto phy_en_fail; } memcpy(shared_timings, &phy->timing.shared_timings, sizeof(*shared_timings)); /* * Resetting DSI PHY silently changes its PLL registers to reset status, * which will confuse clock driver and result in wrong output rate of * link clocks. Restore PLL status if its PLL is being used as clock * source. */ if (phy->usecase != MSM_DSI_PHY_SLAVE) { ret = msm_dsi_phy_pll_restore_state(phy); if (ret) { DRM_DEV_ERROR(dev, "%s: failed to restore phy state, %d\n", __func__, ret); goto pll_restor_fail; } } return 0; pll_restor_fail: if (phy->cfg->ops.disable) phy->cfg->ops.disable(phy); phy_en_fail: dsi_phy_regulator_disable(phy); reg_en_fail: dsi_phy_disable_resource(phy); res_en_fail: return ret; } void msm_dsi_phy_disable(struct msm_dsi_phy *phy) { if (!phy || !phy->cfg->ops.disable) return; phy->cfg->ops.disable(phy); dsi_phy_regulator_disable(phy); dsi_phy_disable_resource(phy); } void msm_dsi_phy_set_usecase(struct msm_dsi_phy *phy, enum msm_dsi_phy_usecase uc) { if (phy) phy->usecase = uc; } /* Returns true if we have to clear DSI_LANE_CTRL.HS_REQ_SEL_PHY */ bool msm_dsi_phy_set_continuous_clock(struct msm_dsi_phy *phy, bool enable) { if (!phy || !phy->cfg->ops.set_continuous_clock) return false; return phy->cfg->ops.set_continuous_clock(phy, enable); } int msm_dsi_phy_get_clk_provider(struct msm_dsi_phy *phy, struct clk **byte_clk_provider, struct clk **pixel_clk_provider) { if (byte_clk_provider) *byte_clk_provider = phy->provided_clocks->hws[DSI_BYTE_PLL_CLK]->clk; if (pixel_clk_provider) *pixel_clk_provider = phy->provided_clocks->hws[DSI_PIXEL_PLL_CLK]->clk; return 0; } void msm_dsi_phy_pll_save_state(struct msm_dsi_phy *phy) { if (phy->cfg->ops.save_pll_state) { phy->cfg->ops.save_pll_state(phy); phy->state_saved = true; } } int msm_dsi_phy_pll_restore_state(struct msm_dsi_phy *phy) { int ret; if (phy->cfg->ops.restore_pll_state && phy->state_saved) { ret = phy->cfg->ops.restore_pll_state(phy); if (ret) return ret; phy->state_saved = false; } return 0; } void msm_dsi_phy_snapshot(struct msm_disp_state *disp_state, struct msm_dsi_phy *phy) { msm_disp_snapshot_add_block(disp_state, phy->base_size, phy->base, "dsi%d_phy", phy->id); /* Do not try accessing PLL registers if it is switched off */ if (phy->pll_on) msm_disp_snapshot_add_block(disp_state, phy->pll_size, phy->pll_base, "dsi%d_pll", phy->id); if (phy->lane_base) msm_disp_snapshot_add_block(disp_state, phy->lane_size, phy->lane_base, "dsi%d_lane", phy->id); if (phy->reg_base) msm_disp_snapshot_add_block(disp_state, phy->reg_size, phy->reg_base, "dsi%d_reg", phy->id); }