/* * Copyright 2017 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "vmm.h" #include #include #include #include #include #include #include static void gp100_vmm_pfn_unmap(struct nvkm_vmm *vmm, struct nvkm_mmu_pt *pt, u32 ptei, u32 ptes) { struct device *dev = vmm->mmu->subdev.device->dev; dma_addr_t addr; nvkm_kmap(pt->memory); while (ptes--) { u32 datalo = nvkm_ro32(pt->memory, pt->base + ptei * 8 + 0); u32 datahi = nvkm_ro32(pt->memory, pt->base + ptei * 8 + 4); u64 data = (u64)datahi << 32 | datalo; if ((data & (3ULL << 1)) != 0) { addr = (data >> 8) << 12; dma_unmap_page(dev, addr, PAGE_SIZE, DMA_BIDIRECTIONAL); } ptei++; } nvkm_done(pt->memory); } static bool gp100_vmm_pfn_clear(struct nvkm_vmm *vmm, struct nvkm_mmu_pt *pt, u32 ptei, u32 ptes) { bool dma = false; nvkm_kmap(pt->memory); while (ptes--) { u32 datalo = nvkm_ro32(pt->memory, pt->base + ptei * 8 + 0); u32 datahi = nvkm_ro32(pt->memory, pt->base + ptei * 8 + 4); u64 data = (u64)datahi << 32 | datalo; if ((data & BIT_ULL(0)) && (data & (3ULL << 1)) != 0) { VMM_WO064(pt, vmm, ptei * 8, data & ~BIT_ULL(0)); dma = true; } ptei++; } nvkm_done(pt->memory); return dma; } static void gp100_vmm_pgt_pfn(struct nvkm_vmm *vmm, struct nvkm_mmu_pt *pt, u32 ptei, u32 ptes, struct nvkm_vmm_map *map) { struct device *dev = vmm->mmu->subdev.device->dev; dma_addr_t addr; nvkm_kmap(pt->memory); for (; ptes; ptes--, map->pfn++) { u64 data = 0; if (!(*map->pfn & NVKM_VMM_PFN_V)) continue; if (!(*map->pfn & NVKM_VMM_PFN_W)) data |= BIT_ULL(6); /* RO. */ if (!(*map->pfn & NVKM_VMM_PFN_A)) data |= BIT_ULL(7); /* Atomic disable. */ if (!(*map->pfn & NVKM_VMM_PFN_VRAM)) { addr = *map->pfn >> NVKM_VMM_PFN_ADDR_SHIFT; addr = dma_map_page(dev, pfn_to_page(addr), 0, PAGE_SIZE, DMA_BIDIRECTIONAL); if (!WARN_ON(dma_mapping_error(dev, addr))) { data |= addr >> 4; data |= 2ULL << 1; /* SYSTEM_COHERENT_MEMORY. */ data |= BIT_ULL(3); /* VOL. */ data |= BIT_ULL(0); /* VALID. */ } } else { data |= (*map->pfn & NVKM_VMM_PFN_ADDR) >> 4; data |= BIT_ULL(0); /* VALID. */ } VMM_WO064(pt, vmm, ptei++ * 8, data); } nvkm_done(pt->memory); } static inline void gp100_vmm_pgt_pte(struct nvkm_vmm *vmm, struct nvkm_mmu_pt *pt, u32 ptei, u32 ptes, struct nvkm_vmm_map *map, u64 addr) { u64 data = (addr >> 4) | map->type; map->type += ptes * map->ctag; while (ptes--) { VMM_WO064(pt, vmm, ptei++ * 8, data); data += map->next; } } static void gp100_vmm_pgt_sgl(struct nvkm_vmm *vmm, struct nvkm_mmu_pt *pt, u32 ptei, u32 ptes, struct nvkm_vmm_map *map) { VMM_MAP_ITER_SGL(vmm, pt, ptei, ptes, map, gp100_vmm_pgt_pte); } static void gp100_vmm_pgt_dma(struct nvkm_vmm *vmm, struct nvkm_mmu_pt *pt, u32 ptei, u32 ptes, struct nvkm_vmm_map *map) { if (map->page->shift == PAGE_SHIFT) { VMM_SPAM(vmm, "DMAA %08x %08x PTE(s)", ptei, ptes); nvkm_kmap(pt->memory); while (ptes--) { const u64 data = (*map->dma++ >> 4) | map->type; VMM_WO064(pt, vmm, ptei++ * 8, data); map->type += map->ctag; } nvkm_done(pt->memory); return; } VMM_MAP_ITER_DMA(vmm, pt, ptei, ptes, map, gp100_vmm_pgt_pte); } static void gp100_vmm_pgt_mem(struct nvkm_vmm *vmm, struct nvkm_mmu_pt *pt, u32 ptei, u32 ptes, struct nvkm_vmm_map *map) { VMM_MAP_ITER_MEM(vmm, pt, ptei, ptes, map, gp100_vmm_pgt_pte); } static void gp100_vmm_pgt_sparse(struct nvkm_vmm *vmm, struct nvkm_mmu_pt *pt, u32 ptei, u32 ptes) { /* VALID_FALSE + VOL tells the MMU to treat the PTE as sparse. */ VMM_FO064(pt, vmm, ptei * 8, BIT_ULL(3) /* VOL. */, ptes); } static const struct nvkm_vmm_desc_func gp100_vmm_desc_spt = { .unmap = gf100_vmm_pgt_unmap, .sparse = gp100_vmm_pgt_sparse, .mem = gp100_vmm_pgt_mem, .dma = gp100_vmm_pgt_dma, .sgl = gp100_vmm_pgt_sgl, .pfn = gp100_vmm_pgt_pfn, .pfn_clear = gp100_vmm_pfn_clear, .pfn_unmap = gp100_vmm_pfn_unmap, }; static void gp100_vmm_lpt_invalid(struct nvkm_vmm *vmm, struct nvkm_mmu_pt *pt, u32 ptei, u32 ptes) { /* VALID_FALSE + PRIV tells the MMU to ignore corresponding SPTEs. */ VMM_FO064(pt, vmm, ptei * 8, BIT_ULL(5) /* PRIV. */, ptes); } static const struct nvkm_vmm_desc_func gp100_vmm_desc_lpt = { .invalid = gp100_vmm_lpt_invalid, .unmap = gf100_vmm_pgt_unmap, .sparse = gp100_vmm_pgt_sparse, .mem = gp100_vmm_pgt_mem, }; static inline void gp100_vmm_pd0_pte(struct nvkm_vmm *vmm, struct nvkm_mmu_pt *pt, u32 ptei, u32 ptes, struct nvkm_vmm_map *map, u64 addr) { u64 data = (addr >> 4) | map->type; map->type += ptes * map->ctag; while (ptes--) { VMM_WO128(pt, vmm, ptei++ * 0x10, data, 0ULL); data += map->next; } } static void gp100_vmm_pd0_mem(struct nvkm_vmm *vmm, struct nvkm_mmu_pt *pt, u32 ptei, u32 ptes, struct nvkm_vmm_map *map) { VMM_MAP_ITER_MEM(vmm, pt, ptei, ptes, map, gp100_vmm_pd0_pte); } static inline bool gp100_vmm_pde(struct nvkm_mmu_pt *pt, u64 *data) { switch (nvkm_memory_target(pt->memory)) { case NVKM_MEM_TARGET_VRAM: *data |= 1ULL << 1; break; case NVKM_MEM_TARGET_HOST: *data |= 2ULL << 1; *data |= BIT_ULL(3); /* VOL. */ break; case NVKM_MEM_TARGET_NCOH: *data |= 3ULL << 1; break; default: WARN_ON(1); return false; } *data |= pt->addr >> 4; return true; } static void gp100_vmm_pd0_pde(struct nvkm_vmm *vmm, struct nvkm_vmm_pt *pgd, u32 pdei) { struct nvkm_vmm_pt *pgt = pgd->pde[pdei]; struct nvkm_mmu_pt *pd = pgd->pt[0]; u64 data[2] = {}; if (pgt->pt[0] && !gp100_vmm_pde(pgt->pt[0], &data[0])) return; if (pgt->pt[1] && !gp100_vmm_pde(pgt->pt[1], &data[1])) return; nvkm_kmap(pd->memory); VMM_WO128(pd, vmm, pdei * 0x10, data[0], data[1]); nvkm_done(pd->memory); } static void gp100_vmm_pd0_sparse(struct nvkm_vmm *vmm, struct nvkm_mmu_pt *pt, u32 pdei, u32 pdes) { /* VALID_FALSE + VOL_BIG tells the MMU to treat the PDE as sparse. */ VMM_FO128(pt, vmm, pdei * 0x10, BIT_ULL(3) /* VOL_BIG. */, 0ULL, pdes); } static void gp100_vmm_pd0_unmap(struct nvkm_vmm *vmm, struct nvkm_mmu_pt *pt, u32 pdei, u32 pdes) { VMM_FO128(pt, vmm, pdei * 0x10, 0ULL, 0ULL, pdes); } static void gp100_vmm_pd0_pfn_unmap(struct nvkm_vmm *vmm, struct nvkm_mmu_pt *pt, u32 ptei, u32 ptes) { struct device *dev = vmm->mmu->subdev.device->dev; dma_addr_t addr; nvkm_kmap(pt->memory); while (ptes--) { u32 datalo = nvkm_ro32(pt->memory, pt->base + ptei * 16 + 0); u32 datahi = nvkm_ro32(pt->memory, pt->base + ptei * 16 + 4); u64 data = (u64)datahi << 32 | datalo; if ((data & (3ULL << 1)) != 0) { addr = (data >> 8) << 12; dma_unmap_page(dev, addr, 1UL << 21, DMA_BIDIRECTIONAL); } ptei++; } nvkm_done(pt->memory); } static bool gp100_vmm_pd0_pfn_clear(struct nvkm_vmm *vmm, struct nvkm_mmu_pt *pt, u32 ptei, u32 ptes) { bool dma = false; nvkm_kmap(pt->memory); while (ptes--) { u32 datalo = nvkm_ro32(pt->memory, pt->base + ptei * 16 + 0); u32 datahi = nvkm_ro32(pt->memory, pt->base + ptei * 16 + 4); u64 data = (u64)datahi << 32 | datalo; if ((data & BIT_ULL(0)) && (data & (3ULL << 1)) != 0) { VMM_WO064(pt, vmm, ptei * 16, data & ~BIT_ULL(0)); dma = true; } ptei++; } nvkm_done(pt->memory); return dma; } static void gp100_vmm_pd0_pfn(struct nvkm_vmm *vmm, struct nvkm_mmu_pt *pt, u32 ptei, u32 ptes, struct nvkm_vmm_map *map) { struct device *dev = vmm->mmu->subdev.device->dev; dma_addr_t addr; nvkm_kmap(pt->memory); for (; ptes; ptes--, map->pfn++) { u64 data = 0; if (!(*map->pfn & NVKM_VMM_PFN_V)) continue; if (!(*map->pfn & NVKM_VMM_PFN_W)) data |= BIT_ULL(6); /* RO. */ if (!(*map->pfn & NVKM_VMM_PFN_A)) data |= BIT_ULL(7); /* Atomic disable. */ if (!(*map->pfn & NVKM_VMM_PFN_VRAM)) { addr = *map->pfn >> NVKM_VMM_PFN_ADDR_SHIFT; addr = dma_map_page(dev, pfn_to_page(addr), 0, 1UL << 21, DMA_BIDIRECTIONAL); if (!WARN_ON(dma_mapping_error(dev, addr))) { data |= addr >> 4; data |= 2ULL << 1; /* SYSTEM_COHERENT_MEMORY. */ data |= BIT_ULL(3); /* VOL. */ data |= BIT_ULL(0); /* VALID. */ } } else { data |= (*map->pfn & NVKM_VMM_PFN_ADDR) >> 4; data |= BIT_ULL(0); /* VALID. */ } VMM_WO064(pt, vmm, ptei++ * 16, data); } nvkm_done(pt->memory); } static const struct nvkm_vmm_desc_func gp100_vmm_desc_pd0 = { .unmap = gp100_vmm_pd0_unmap, .sparse = gp100_vmm_pd0_sparse, .pde = gp100_vmm_pd0_pde, .mem = gp100_vmm_pd0_mem, .pfn = gp100_vmm_pd0_pfn, .pfn_clear = gp100_vmm_pd0_pfn_clear, .pfn_unmap = gp100_vmm_pd0_pfn_unmap, }; static void gp100_vmm_pd1_pde(struct nvkm_vmm *vmm, struct nvkm_vmm_pt *pgd, u32 pdei) { struct nvkm_vmm_pt *pgt = pgd->pde[pdei]; struct nvkm_mmu_pt *pd = pgd->pt[0]; u64 data = 0; if (!gp100_vmm_pde(pgt->pt[0], &data)) return; nvkm_kmap(pd->memory); VMM_WO064(pd, vmm, pdei * 8, data); nvkm_done(pd->memory); } static const struct nvkm_vmm_desc_func gp100_vmm_desc_pd1 = { .unmap = gf100_vmm_pgt_unmap, .sparse = gp100_vmm_pgt_sparse, .pde = gp100_vmm_pd1_pde, }; const struct nvkm_vmm_desc gp100_vmm_desc_16[] = { { LPT, 5, 8, 0x0100, &gp100_vmm_desc_lpt }, { PGD, 8, 16, 0x1000, &gp100_vmm_desc_pd0 }, { PGD, 9, 8, 0x1000, &gp100_vmm_desc_pd1 }, { PGD, 9, 8, 0x1000, &gp100_vmm_desc_pd1 }, { PGD, 2, 8, 0x1000, &gp100_vmm_desc_pd1 }, {} }; const struct nvkm_vmm_desc gp100_vmm_desc_12[] = { { SPT, 9, 8, 0x1000, &gp100_vmm_desc_spt }, { PGD, 8, 16, 0x1000, &gp100_vmm_desc_pd0 }, { PGD, 9, 8, 0x1000, &gp100_vmm_desc_pd1 }, { PGD, 9, 8, 0x1000, &gp100_vmm_desc_pd1 }, { PGD, 2, 8, 0x1000, &gp100_vmm_desc_pd1 }, {} }; int gp100_vmm_valid(struct nvkm_vmm *vmm, void *argv, u32 argc, struct nvkm_vmm_map *map) { const enum nvkm_memory_target target = nvkm_memory_target(map->memory); const struct nvkm_vmm_page *page = map->page; union { struct gp100_vmm_map_vn vn; struct gp100_vmm_map_v0 v0; } *args = argv; struct nvkm_device *device = vmm->mmu->subdev.device; struct nvkm_memory *memory = map->memory; u8 kind, kind_inv, priv, ro, vol; int kindn, aper, ret = -ENOSYS; const u8 *kindm; map->next = (1ULL << page->shift) >> 4; map->type = 0; if (!(ret = nvif_unpack(ret, &argv, &argc, args->v0, 0, 0, false))) { vol = !!args->v0.vol; ro = !!args->v0.ro; priv = !!args->v0.priv; kind = args->v0.kind; } else if (!(ret = nvif_unvers(ret, &argv, &argc, args->vn))) { vol = target == NVKM_MEM_TARGET_HOST; ro = 0; priv = 0; kind = 0x00; } else { VMM_DEBUG(vmm, "args"); return ret; } aper = vmm->func->aper(target); if (WARN_ON(aper < 0)) return aper; kindm = vmm->mmu->func->kind(vmm->mmu, &kindn, &kind_inv); if (kind >= kindn || kindm[kind] == kind_inv) { VMM_DEBUG(vmm, "kind %02x", kind); return -EINVAL; } if (kindm[kind] != kind) { u64 tags = nvkm_memory_size(memory) >> 16; if (aper != 0 || !(page->type & NVKM_VMM_PAGE_COMP)) { VMM_DEBUG(vmm, "comp %d %02x", aper, page->type); return -EINVAL; } ret = nvkm_memory_tags_get(memory, device, tags, nvkm_ltc_tags_clear, &map->tags); if (ret) { VMM_DEBUG(vmm, "comp %d", ret); return ret; } if (map->tags->mn) { tags = map->tags->mn->offset + (map->offset >> 16); map->ctag |= ((1ULL << page->shift) >> 16) << 36; map->type |= tags << 36; map->next |= map->ctag; } else { kind = kindm[kind]; } } map->type |= BIT(0); map->type |= (u64)aper << 1; map->type |= (u64) vol << 3; map->type |= (u64)priv << 5; map->type |= (u64) ro << 6; map->type |= (u64)kind << 56; return 0; } static int gp100_vmm_fault_cancel(struct nvkm_vmm *vmm, void *argv, u32 argc) { struct nvkm_device *device = vmm->mmu->subdev.device; union { struct gp100_vmm_fault_cancel_v0 v0; } *args = argv; int ret = -ENOSYS; u32 inst, aper; if ((ret = nvif_unpack(ret, &argv, &argc, args->v0, 0, 0, false))) return ret; /* Translate MaxwellFaultBufferA instance pointer to the same * format as the NV_GR_FECS_CURRENT_CTX register. */ aper = (args->v0.inst >> 8) & 3; args->v0.inst >>= 12; args->v0.inst |= aper << 28; args->v0.inst |= 0x80000000; if (!WARN_ON(nvkm_gr_ctxsw_pause(device))) { if ((inst = nvkm_gr_ctxsw_inst(device)) == args->v0.inst) { gf100_vmm_invalidate(vmm, 0x0000001b /* CANCEL_TARGETED. */ | (args->v0.hub << 20) | (args->v0.gpc << 15) | (args->v0.client << 9)); } WARN_ON(nvkm_gr_ctxsw_resume(device)); } return 0; } static int gp100_vmm_fault_replay(struct nvkm_vmm *vmm, void *argv, u32 argc) { union { struct gp100_vmm_fault_replay_vn vn; } *args = argv; int ret = -ENOSYS; if (!(ret = nvif_unvers(ret, &argv, &argc, args->vn))) { gf100_vmm_invalidate(vmm, 0x0000000b); /* REPLAY_GLOBAL. */ } return ret; } int gp100_vmm_mthd(struct nvkm_vmm *vmm, struct nvkm_client *client, u32 mthd, void *argv, u32 argc) { switch (mthd) { case GP100_VMM_VN_FAULT_REPLAY: return gp100_vmm_fault_replay(vmm, argv, argc); case GP100_VMM_VN_FAULT_CANCEL: return gp100_vmm_fault_cancel(vmm, argv, argc); default: break; } return -EINVAL; } void gp100_vmm_invalidate_pdb(struct nvkm_vmm *vmm, u64 addr) { struct nvkm_device *device = vmm->mmu->subdev.device; nvkm_wr32(device, 0x100cb8, lower_32_bits(addr)); nvkm_wr32(device, 0x100cec, upper_32_bits(addr)); } void gp100_vmm_flush(struct nvkm_vmm *vmm, int depth) { u32 type = (5 /* CACHE_LEVEL_UP_TO_PDE3 */ - depth) << 24; if (atomic_read(&vmm->engref[NVKM_SUBDEV_BAR])) type |= 0x00000004; /* HUB_ONLY */ type |= 0x00000001; /* PAGE_ALL */ gf100_vmm_invalidate(vmm, type); } int gp100_vmm_join(struct nvkm_vmm *vmm, struct nvkm_memory *inst) { u64 base = BIT_ULL(10) /* VER2 */ | BIT_ULL(11) /* 64KiB */; if (vmm->replay) { base |= BIT_ULL(4); /* FAULT_REPLAY_TEX */ base |= BIT_ULL(5); /* FAULT_REPLAY_GCC */ } return gf100_vmm_join_(vmm, inst, base); } static const struct nvkm_vmm_func gp100_vmm = { .join = gp100_vmm_join, .part = gf100_vmm_part, .aper = gf100_vmm_aper, .valid = gp100_vmm_valid, .flush = gp100_vmm_flush, .mthd = gp100_vmm_mthd, .invalidate_pdb = gp100_vmm_invalidate_pdb, .page = { { 47, &gp100_vmm_desc_16[4], NVKM_VMM_PAGE_Sxxx }, { 38, &gp100_vmm_desc_16[3], NVKM_VMM_PAGE_Sxxx }, { 29, &gp100_vmm_desc_16[2], NVKM_VMM_PAGE_Sxxx }, { 21, &gp100_vmm_desc_16[1], NVKM_VMM_PAGE_SVxC }, { 16, &gp100_vmm_desc_16[0], NVKM_VMM_PAGE_SVxC }, { 12, &gp100_vmm_desc_12[0], NVKM_VMM_PAGE_SVHx }, {} } }; int gp100_vmm_new_(const struct nvkm_vmm_func *func, struct nvkm_mmu *mmu, bool managed, u64 addr, u64 size, void *argv, u32 argc, struct lock_class_key *key, const char *name, struct nvkm_vmm **pvmm) { union { struct gp100_vmm_vn vn; struct gp100_vmm_v0 v0; } *args = argv; int ret = -ENOSYS; bool replay; if (!(ret = nvif_unpack(ret, &argv, &argc, args->v0, 0, 0, false))) { replay = args->v0.fault_replay != 0; } else if (!(ret = nvif_unvers(ret, &argv, &argc, args->vn))) { replay = false; } else return ret; ret = nvkm_vmm_new_(func, mmu, 0, managed, addr, size, key, name, pvmm); if (ret) return ret; (*pvmm)->replay = replay; return 0; } int gp100_vmm_new(struct nvkm_mmu *mmu, bool managed, u64 addr, u64 size, void *argv, u32 argc, struct lock_class_key *key, const char *name, struct nvkm_vmm **pvmm) { return gp100_vmm_new_(&gp100_vmm, mmu, managed, addr, size, argv, argc, key, name, pvmm); }