/* * Copyright 2008 Advanced Micro Devices, Inc. * Copyright 2008 Red Hat Inc. * Copyright 2009 Jerome Glisse. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Dave Airlie * Alex Deucher * Jerome Glisse */ #include #include "radeon.h" #include "radeon_trace.h" /* * GPUVM * GPUVM is similar to the legacy gart on older asics, however * rather than there being a single global gart table * for the entire GPU, there are multiple VM page tables active * at any given time. The VM page tables can contain a mix * vram pages and system memory pages and system memory pages * can be mapped as snooped (cached system pages) or unsnooped * (uncached system pages). * Each VM has an ID associated with it and there is a page table * associated with each VMID. When execting a command buffer, * the kernel tells the ring what VMID to use for that command * buffer. VMIDs are allocated dynamically as commands are submitted. * The userspace drivers maintain their own address space and the kernel * sets up their pages tables accordingly when they submit their * command buffers and a VMID is assigned. * Cayman/Trinity support up to 8 active VMs at any given time; * SI supports 16. */ /** * radeon_vm_num_pdes - return the number of page directory entries * * @rdev: radeon_device pointer * * Calculate the number of page directory entries (cayman+). */ static unsigned radeon_vm_num_pdes(struct radeon_device *rdev) { return rdev->vm_manager.max_pfn >> radeon_vm_block_size; } /** * radeon_vm_directory_size - returns the size of the page directory in bytes * * @rdev: radeon_device pointer * * Calculate the size of the page directory in bytes (cayman+). */ static unsigned radeon_vm_directory_size(struct radeon_device *rdev) { return RADEON_GPU_PAGE_ALIGN(radeon_vm_num_pdes(rdev) * 8); } /** * radeon_vm_manager_init - init the vm manager * * @rdev: radeon_device pointer * * Init the vm manager (cayman+). * Returns 0 for success, error for failure. */ int radeon_vm_manager_init(struct radeon_device *rdev) { int r; if (!rdev->vm_manager.enabled) { r = radeon_asic_vm_init(rdev); if (r) return r; rdev->vm_manager.enabled = true; } return 0; } /** * radeon_vm_manager_fini - tear down the vm manager * * @rdev: radeon_device pointer * * Tear down the VM manager (cayman+). */ void radeon_vm_manager_fini(struct radeon_device *rdev) { int i; if (!rdev->vm_manager.enabled) return; for (i = 0; i < RADEON_NUM_VM; ++i) radeon_fence_unref(&rdev->vm_manager.active[i]); radeon_asic_vm_fini(rdev); rdev->vm_manager.enabled = false; } /** * radeon_vm_get_bos - add the vm BOs to a validation list * * @rdev: radeon_device pointer * @vm: vm providing the BOs * @head: head of validation list * * Add the page directory to the list of BOs to * validate for command submission (cayman+). */ struct radeon_bo_list *radeon_vm_get_bos(struct radeon_device *rdev, struct radeon_vm *vm, struct list_head *head) { struct radeon_bo_list *list; unsigned i, idx; list = kvmalloc_array(vm->max_pde_used + 2, sizeof(struct radeon_bo_list), GFP_KERNEL); if (!list) return NULL; /* add the vm page table to the list */ list[0].robj = vm->page_directory; list[0].preferred_domains = RADEON_GEM_DOMAIN_VRAM; list[0].allowed_domains = RADEON_GEM_DOMAIN_VRAM; list[0].tv.bo = &vm->page_directory->tbo; list[0].tv.num_shared = 1; list[0].tiling_flags = 0; list_add(&list[0].tv.head, head); for (i = 0, idx = 1; i <= vm->max_pde_used; i++) { if (!vm->page_tables[i].bo) continue; list[idx].robj = vm->page_tables[i].bo; list[idx].preferred_domains = RADEON_GEM_DOMAIN_VRAM; list[idx].allowed_domains = RADEON_GEM_DOMAIN_VRAM; list[idx].tv.bo = &list[idx].robj->tbo; list[idx].tv.num_shared = 1; list[idx].tiling_flags = 0; list_add(&list[idx++].tv.head, head); } return list; } /** * radeon_vm_grab_id - allocate the next free VMID * * @rdev: radeon_device pointer * @vm: vm to allocate id for * @ring: ring we want to submit job to * * Allocate an id for the vm (cayman+). * Returns the fence we need to sync to (if any). * * Global and local mutex must be locked! */ struct radeon_fence *radeon_vm_grab_id(struct radeon_device *rdev, struct radeon_vm *vm, int ring) { struct radeon_fence *best[RADEON_NUM_RINGS] = {}; struct radeon_vm_id *vm_id = &vm->ids[ring]; unsigned choices[2] = {}; unsigned i; /* check if the id is still valid */ if (vm_id->id && vm_id->last_id_use && vm_id->last_id_use == rdev->vm_manager.active[vm_id->id]) return NULL; /* we definitely need to flush */ vm_id->pd_gpu_addr = ~0ll; /* skip over VMID 0, since it is the system VM */ for (i = 1; i < rdev->vm_manager.nvm; ++i) { struct radeon_fence *fence = rdev->vm_manager.active[i]; if (fence == NULL) { /* found a free one */ vm_id->id = i; trace_radeon_vm_grab_id(i, ring); return NULL; } if (radeon_fence_is_earlier(fence, best[fence->ring])) { best[fence->ring] = fence; choices[fence->ring == ring ? 0 : 1] = i; } } for (i = 0; i < 2; ++i) { if (choices[i]) { vm_id->id = choices[i]; trace_radeon_vm_grab_id(choices[i], ring); return rdev->vm_manager.active[choices[i]]; } } /* should never happen */ BUG(); return NULL; } /** * radeon_vm_flush - hardware flush the vm * * @rdev: radeon_device pointer * @vm: vm we want to flush * @ring: ring to use for flush * @updates: last vm update that is waited for * * Flush the vm (cayman+). * * Global and local mutex must be locked! */ void radeon_vm_flush(struct radeon_device *rdev, struct radeon_vm *vm, int ring, struct radeon_fence *updates) { uint64_t pd_addr = radeon_bo_gpu_offset(vm->page_directory); struct radeon_vm_id *vm_id = &vm->ids[ring]; if (pd_addr != vm_id->pd_gpu_addr || !vm_id->flushed_updates || radeon_fence_is_earlier(vm_id->flushed_updates, updates)) { trace_radeon_vm_flush(pd_addr, ring, vm->ids[ring].id); radeon_fence_unref(&vm_id->flushed_updates); vm_id->flushed_updates = radeon_fence_ref(updates); vm_id->pd_gpu_addr = pd_addr; radeon_ring_vm_flush(rdev, &rdev->ring[ring], vm_id->id, vm_id->pd_gpu_addr); } } /** * radeon_vm_fence - remember fence for vm * * @rdev: radeon_device pointer * @vm: vm we want to fence * @fence: fence to remember * * Fence the vm (cayman+). * Set the fence used to protect page table and id. * * Global and local mutex must be locked! */ void radeon_vm_fence(struct radeon_device *rdev, struct radeon_vm *vm, struct radeon_fence *fence) { unsigned vm_id = vm->ids[fence->ring].id; radeon_fence_unref(&rdev->vm_manager.active[vm_id]); rdev->vm_manager.active[vm_id] = radeon_fence_ref(fence); radeon_fence_unref(&vm->ids[fence->ring].last_id_use); vm->ids[fence->ring].last_id_use = radeon_fence_ref(fence); } /** * radeon_vm_bo_find - find the bo_va for a specific vm & bo * * @vm: requested vm * @bo: requested buffer object * * Find @bo inside the requested vm (cayman+). * Search inside the @bos vm list for the requested vm * Returns the found bo_va or NULL if none is found * * Object has to be reserved! */ struct radeon_bo_va *radeon_vm_bo_find(struct radeon_vm *vm, struct radeon_bo *bo) { struct radeon_bo_va *bo_va; list_for_each_entry(bo_va, &bo->va, bo_list) { if (bo_va->vm == vm) return bo_va; } return NULL; } /** * radeon_vm_bo_add - add a bo to a specific vm * * @rdev: radeon_device pointer * @vm: requested vm * @bo: radeon buffer object * * Add @bo into the requested vm (cayman+). * Add @bo to the list of bos associated with the vm * Returns newly added bo_va or NULL for failure * * Object has to be reserved! */ struct radeon_bo_va *radeon_vm_bo_add(struct radeon_device *rdev, struct radeon_vm *vm, struct radeon_bo *bo) { struct radeon_bo_va *bo_va; bo_va = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL); if (bo_va == NULL) return NULL; bo_va->vm = vm; bo_va->bo = bo; bo_va->it.start = 0; bo_va->it.last = 0; bo_va->flags = 0; bo_va->ref_count = 1; INIT_LIST_HEAD(&bo_va->bo_list); INIT_LIST_HEAD(&bo_va->vm_status); mutex_lock(&vm->mutex); list_add_tail(&bo_va->bo_list, &bo->va); mutex_unlock(&vm->mutex); return bo_va; } /** * radeon_vm_set_pages - helper to call the right asic function * * @rdev: radeon_device pointer * @ib: indirect buffer to fill with commands * @pe: addr of the page entry * @addr: dst addr to write into pe * @count: number of page entries to update * @incr: increase next addr by incr bytes * @flags: hw access flags * * Traces the parameters and calls the right asic functions * to setup the page table using the DMA. */ static void radeon_vm_set_pages(struct radeon_device *rdev, struct radeon_ib *ib, uint64_t pe, uint64_t addr, unsigned count, uint32_t incr, uint32_t flags) { trace_radeon_vm_set_page(pe, addr, count, incr, flags); if ((flags & R600_PTE_GART_MASK) == R600_PTE_GART_MASK) { uint64_t src = rdev->gart.table_addr + (addr >> 12) * 8; radeon_asic_vm_copy_pages(rdev, ib, pe, src, count); } else if ((flags & R600_PTE_SYSTEM) || (count < 3)) { radeon_asic_vm_write_pages(rdev, ib, pe, addr, count, incr, flags); } else { radeon_asic_vm_set_pages(rdev, ib, pe, addr, count, incr, flags); } } /** * radeon_vm_clear_bo - initially clear the page dir/table * * @rdev: radeon_device pointer * @bo: bo to clear */ static int radeon_vm_clear_bo(struct radeon_device *rdev, struct radeon_bo *bo) { struct ttm_operation_ctx ctx = { true, false }; struct radeon_ib ib; unsigned entries; uint64_t addr; int r; r = radeon_bo_reserve(bo, false); if (r) return r; r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); if (r) goto error_unreserve; addr = radeon_bo_gpu_offset(bo); entries = radeon_bo_size(bo) / 8; r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, 256); if (r) goto error_unreserve; ib.length_dw = 0; radeon_vm_set_pages(rdev, &ib, addr, 0, entries, 0, 0); radeon_asic_vm_pad_ib(rdev, &ib); WARN_ON(ib.length_dw > 64); r = radeon_ib_schedule(rdev, &ib, NULL, false); if (r) goto error_free; ib.fence->is_vm_update = true; radeon_bo_fence(bo, ib.fence, false); error_free: radeon_ib_free(rdev, &ib); error_unreserve: radeon_bo_unreserve(bo); return r; } /** * radeon_vm_bo_set_addr - set bos virtual address inside a vm * * @rdev: radeon_device pointer * @bo_va: bo_va to store the address * @soffset: requested offset of the buffer in the VM address space * @flags: attributes of pages (read/write/valid/etc.) * * Set offset of @bo_va (cayman+). * Validate and set the offset requested within the vm address space. * Returns 0 for success, error for failure. * * Object has to be reserved and gets unreserved by this function! */ int radeon_vm_bo_set_addr(struct radeon_device *rdev, struct radeon_bo_va *bo_va, uint64_t soffset, uint32_t flags) { uint64_t size = radeon_bo_size(bo_va->bo); struct radeon_vm *vm = bo_va->vm; unsigned last_pfn, pt_idx; uint64_t eoffset; int r; if (soffset) { /* make sure object fit at this offset */ eoffset = soffset + size - 1; if (soffset >= eoffset) { r = -EINVAL; goto error_unreserve; } last_pfn = eoffset / RADEON_GPU_PAGE_SIZE; if (last_pfn >= rdev->vm_manager.max_pfn) { dev_err(rdev->dev, "va above limit (0x%08X >= 0x%08X)\n", last_pfn, rdev->vm_manager.max_pfn); r = -EINVAL; goto error_unreserve; } } else { eoffset = last_pfn = 0; } mutex_lock(&vm->mutex); soffset /= RADEON_GPU_PAGE_SIZE; eoffset /= RADEON_GPU_PAGE_SIZE; if (soffset || eoffset) { struct interval_tree_node *it; it = interval_tree_iter_first(&vm->va, soffset, eoffset); if (it && it != &bo_va->it) { struct radeon_bo_va *tmp; tmp = container_of(it, struct radeon_bo_va, it); /* bo and tmp overlap, invalid offset */ dev_err(rdev->dev, "bo %p va 0x%010Lx conflict with " "(bo %p 0x%010lx 0x%010lx)\n", bo_va->bo, soffset, tmp->bo, tmp->it.start, tmp->it.last); mutex_unlock(&vm->mutex); r = -EINVAL; goto error_unreserve; } } if (bo_va->it.start || bo_va->it.last) { /* add a clone of the bo_va to clear the old address */ struct radeon_bo_va *tmp; tmp = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL); if (!tmp) { mutex_unlock(&vm->mutex); r = -ENOMEM; goto error_unreserve; } tmp->it.start = bo_va->it.start; tmp->it.last = bo_va->it.last; tmp->vm = vm; tmp->bo = radeon_bo_ref(bo_va->bo); interval_tree_remove(&bo_va->it, &vm->va); spin_lock(&vm->status_lock); bo_va->it.start = 0; bo_va->it.last = 0; list_del_init(&bo_va->vm_status); list_add(&tmp->vm_status, &vm->freed); spin_unlock(&vm->status_lock); } if (soffset || eoffset) { spin_lock(&vm->status_lock); bo_va->it.start = soffset; bo_va->it.last = eoffset; list_add(&bo_va->vm_status, &vm->cleared); spin_unlock(&vm->status_lock); interval_tree_insert(&bo_va->it, &vm->va); } bo_va->flags = flags; soffset >>= radeon_vm_block_size; eoffset >>= radeon_vm_block_size; BUG_ON(eoffset >= radeon_vm_num_pdes(rdev)); if (eoffset > vm->max_pde_used) vm->max_pde_used = eoffset; radeon_bo_unreserve(bo_va->bo); /* walk over the address space and allocate the page tables */ for (pt_idx = soffset; pt_idx <= eoffset; ++pt_idx) { struct radeon_bo *pt; if (vm->page_tables[pt_idx].bo) continue; /* drop mutex to allocate and clear page table */ mutex_unlock(&vm->mutex); r = radeon_bo_create(rdev, RADEON_VM_PTE_COUNT * 8, RADEON_GPU_PAGE_SIZE, true, RADEON_GEM_DOMAIN_VRAM, 0, NULL, NULL, &pt); if (r) return r; r = radeon_vm_clear_bo(rdev, pt); if (r) { radeon_bo_unref(&pt); return r; } /* aquire mutex again */ mutex_lock(&vm->mutex); if (vm->page_tables[pt_idx].bo) { /* someone else allocated the pt in the meantime */ mutex_unlock(&vm->mutex); radeon_bo_unref(&pt); mutex_lock(&vm->mutex); continue; } vm->page_tables[pt_idx].addr = 0; vm->page_tables[pt_idx].bo = pt; } mutex_unlock(&vm->mutex); return 0; error_unreserve: radeon_bo_unreserve(bo_va->bo); return r; } /** * radeon_vm_map_gart - get the physical address of a gart page * * @rdev: radeon_device pointer * @addr: the unmapped addr * * Look up the physical address of the page that the pte resolves * to (cayman+). * Returns the physical address of the page. */ uint64_t radeon_vm_map_gart(struct radeon_device *rdev, uint64_t addr) { uint64_t result; /* page table offset */ result = rdev->gart.pages_entry[addr >> RADEON_GPU_PAGE_SHIFT]; result &= ~RADEON_GPU_PAGE_MASK; return result; } /** * radeon_vm_page_flags - translate page flags to what the hw uses * * @flags: flags comming from userspace * * Translate the flags the userspace ABI uses to hw flags. */ static uint32_t radeon_vm_page_flags(uint32_t flags) { uint32_t hw_flags = 0; hw_flags |= (flags & RADEON_VM_PAGE_VALID) ? R600_PTE_VALID : 0; hw_flags |= (flags & RADEON_VM_PAGE_READABLE) ? R600_PTE_READABLE : 0; hw_flags |= (flags & RADEON_VM_PAGE_WRITEABLE) ? R600_PTE_WRITEABLE : 0; if (flags & RADEON_VM_PAGE_SYSTEM) { hw_flags |= R600_PTE_SYSTEM; hw_flags |= (flags & RADEON_VM_PAGE_SNOOPED) ? R600_PTE_SNOOPED : 0; } return hw_flags; } /** * radeon_vm_update_page_directory - make sure that page directory is valid * * @rdev: radeon_device pointer * @vm: requested vm * * Allocates new page tables if necessary * and updates the page directory (cayman+). * Returns 0 for success, error for failure. * * Global and local mutex must be locked! */ int radeon_vm_update_page_directory(struct radeon_device *rdev, struct radeon_vm *vm) { struct radeon_bo *pd = vm->page_directory; uint64_t pd_addr = radeon_bo_gpu_offset(pd); uint32_t incr = RADEON_VM_PTE_COUNT * 8; uint64_t last_pde = ~0, last_pt = ~0; unsigned count = 0, pt_idx, ndw; struct radeon_ib ib; int r; /* padding, etc. */ ndw = 64; /* assume the worst case */ ndw += vm->max_pde_used * 6; /* update too big for an IB */ if (ndw > 0xfffff) return -ENOMEM; r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, ndw * 4); if (r) return r; ib.length_dw = 0; /* walk over the address space and update the page directory */ for (pt_idx = 0; pt_idx <= vm->max_pde_used; ++pt_idx) { struct radeon_bo *bo = vm->page_tables[pt_idx].bo; uint64_t pde, pt; if (bo == NULL) continue; pt = radeon_bo_gpu_offset(bo); if (vm->page_tables[pt_idx].addr == pt) continue; vm->page_tables[pt_idx].addr = pt; pde = pd_addr + pt_idx * 8; if (((last_pde + 8 * count) != pde) || ((last_pt + incr * count) != pt)) { if (count) { radeon_vm_set_pages(rdev, &ib, last_pde, last_pt, count, incr, R600_PTE_VALID); } count = 1; last_pde = pde; last_pt = pt; } else { ++count; } } if (count) radeon_vm_set_pages(rdev, &ib, last_pde, last_pt, count, incr, R600_PTE_VALID); if (ib.length_dw != 0) { radeon_asic_vm_pad_ib(rdev, &ib); radeon_sync_resv(rdev, &ib.sync, pd->tbo.base.resv, true); WARN_ON(ib.length_dw > ndw); r = radeon_ib_schedule(rdev, &ib, NULL, false); if (r) { radeon_ib_free(rdev, &ib); return r; } ib.fence->is_vm_update = true; radeon_bo_fence(pd, ib.fence, false); } radeon_ib_free(rdev, &ib); return 0; } /** * radeon_vm_frag_ptes - add fragment information to PTEs * * @rdev: radeon_device pointer * @ib: IB for the update * @pe_start: first PTE to handle * @pe_end: last PTE to handle * @addr: addr those PTEs should point to * @flags: hw mapping flags * * Global and local mutex must be locked! */ static void radeon_vm_frag_ptes(struct radeon_device *rdev, struct radeon_ib *ib, uint64_t pe_start, uint64_t pe_end, uint64_t addr, uint32_t flags) { /** * The MC L1 TLB supports variable sized pages, based on a fragment * field in the PTE. When this field is set to a non-zero value, page * granularity is increased from 4KB to (1 << (12 + frag)). The PTE * flags are considered valid for all PTEs within the fragment range * and corresponding mappings are assumed to be physically contiguous. * * The L1 TLB can store a single PTE for the whole fragment, * significantly increasing the space available for translation * caching. This leads to large improvements in throughput when the * TLB is under pressure. * * The L2 TLB distributes small and large fragments into two * asymmetric partitions. The large fragment cache is significantly * larger. Thus, we try to use large fragments wherever possible. * Userspace can support this by aligning virtual base address and * allocation size to the fragment size. */ /* NI is optimized for 256KB fragments, SI and newer for 64KB */ uint64_t frag_flags = ((rdev->family == CHIP_CAYMAN) || (rdev->family == CHIP_ARUBA)) ? R600_PTE_FRAG_256KB : R600_PTE_FRAG_64KB; uint64_t frag_align = ((rdev->family == CHIP_CAYMAN) || (rdev->family == CHIP_ARUBA)) ? 0x200 : 0x80; uint64_t frag_start = ALIGN(pe_start, frag_align); uint64_t frag_end = pe_end & ~(frag_align - 1); unsigned count; /* system pages are non continuously */ if ((flags & R600_PTE_SYSTEM) || !(flags & R600_PTE_VALID) || (frag_start >= frag_end)) { count = (pe_end - pe_start) / 8; radeon_vm_set_pages(rdev, ib, pe_start, addr, count, RADEON_GPU_PAGE_SIZE, flags); return; } /* handle the 4K area at the beginning */ if (pe_start != frag_start) { count = (frag_start - pe_start) / 8; radeon_vm_set_pages(rdev, ib, pe_start, addr, count, RADEON_GPU_PAGE_SIZE, flags); addr += RADEON_GPU_PAGE_SIZE * count; } /* handle the area in the middle */ count = (frag_end - frag_start) / 8; radeon_vm_set_pages(rdev, ib, frag_start, addr, count, RADEON_GPU_PAGE_SIZE, flags | frag_flags); /* handle the 4K area at the end */ if (frag_end != pe_end) { addr += RADEON_GPU_PAGE_SIZE * count; count = (pe_end - frag_end) / 8; radeon_vm_set_pages(rdev, ib, frag_end, addr, count, RADEON_GPU_PAGE_SIZE, flags); } } /** * radeon_vm_update_ptes - make sure that page tables are valid * * @rdev: radeon_device pointer * @vm: requested vm * @ib: indirect buffer to use for the update * @start: start of GPU address range * @end: end of GPU address range * @dst: destination address to map to * @flags: mapping flags * * Update the page tables in the range @start - @end (cayman+). * * Global and local mutex must be locked! */ static int radeon_vm_update_ptes(struct radeon_device *rdev, struct radeon_vm *vm, struct radeon_ib *ib, uint64_t start, uint64_t end, uint64_t dst, uint32_t flags) { uint64_t mask = RADEON_VM_PTE_COUNT - 1; uint64_t last_pte = ~0, last_dst = ~0; unsigned count = 0; uint64_t addr; /* walk over the address space and update the page tables */ for (addr = start; addr < end; ) { uint64_t pt_idx = addr >> radeon_vm_block_size; struct radeon_bo *pt = vm->page_tables[pt_idx].bo; unsigned nptes; uint64_t pte; int r; radeon_sync_resv(rdev, &ib->sync, pt->tbo.base.resv, true); r = dma_resv_reserve_shared(pt->tbo.base.resv, 1); if (r) return r; if ((addr & ~mask) == (end & ~mask)) nptes = end - addr; else nptes = RADEON_VM_PTE_COUNT - (addr & mask); pte = radeon_bo_gpu_offset(pt); pte += (addr & mask) * 8; if ((last_pte + 8 * count) != pte) { if (count) { radeon_vm_frag_ptes(rdev, ib, last_pte, last_pte + 8 * count, last_dst, flags); } count = nptes; last_pte = pte; last_dst = dst; } else { count += nptes; } addr += nptes; dst += nptes * RADEON_GPU_PAGE_SIZE; } if (count) { radeon_vm_frag_ptes(rdev, ib, last_pte, last_pte + 8 * count, last_dst, flags); } return 0; } /** * radeon_vm_fence_pts - fence page tables after an update * * @vm: requested vm * @start: start of GPU address range * @end: end of GPU address range * @fence: fence to use * * Fence the page tables in the range @start - @end (cayman+). * * Global and local mutex must be locked! */ static void radeon_vm_fence_pts(struct radeon_vm *vm, uint64_t start, uint64_t end, struct radeon_fence *fence) { unsigned i; start >>= radeon_vm_block_size; end = (end - 1) >> radeon_vm_block_size; for (i = start; i <= end; ++i) radeon_bo_fence(vm->page_tables[i].bo, fence, true); } /** * radeon_vm_bo_update - map a bo into the vm page table * * @rdev: radeon_device pointer * @bo_va: radeon buffer virtual address object * @mem: ttm mem * * Fill in the page table entries for @bo (cayman+). * Returns 0 for success, -EINVAL for failure. * * Object have to be reserved and mutex must be locked! */ int radeon_vm_bo_update(struct radeon_device *rdev, struct radeon_bo_va *bo_va, struct ttm_resource *mem) { struct radeon_vm *vm = bo_va->vm; struct radeon_ib ib; unsigned nptes, ncmds, ndw; uint64_t addr; uint32_t flags; int r; if (!bo_va->it.start) { dev_err(rdev->dev, "bo %p don't has a mapping in vm %p\n", bo_va->bo, vm); return -EINVAL; } spin_lock(&vm->status_lock); if (mem) { if (list_empty(&bo_va->vm_status)) { spin_unlock(&vm->status_lock); return 0; } list_del_init(&bo_va->vm_status); } else { list_del(&bo_va->vm_status); list_add(&bo_va->vm_status, &vm->cleared); } spin_unlock(&vm->status_lock); bo_va->flags &= ~RADEON_VM_PAGE_VALID; bo_va->flags &= ~RADEON_VM_PAGE_SYSTEM; bo_va->flags &= ~RADEON_VM_PAGE_SNOOPED; if (bo_va->bo && radeon_ttm_tt_is_readonly(rdev, bo_va->bo->tbo.ttm)) bo_va->flags &= ~RADEON_VM_PAGE_WRITEABLE; if (mem) { addr = (u64)mem->start << PAGE_SHIFT; if (mem->mem_type != TTM_PL_SYSTEM) bo_va->flags |= RADEON_VM_PAGE_VALID; if (mem->mem_type == TTM_PL_TT) { bo_va->flags |= RADEON_VM_PAGE_SYSTEM; if (!(bo_va->bo->flags & (RADEON_GEM_GTT_WC | RADEON_GEM_GTT_UC))) bo_va->flags |= RADEON_VM_PAGE_SNOOPED; } else { addr += rdev->vm_manager.vram_base_offset; } } else { addr = 0; } trace_radeon_vm_bo_update(bo_va); nptes = bo_va->it.last - bo_va->it.start + 1; /* reserve space for one command every (1 << BLOCK_SIZE) entries or 2k dwords (whatever is smaller) */ ncmds = (nptes >> min(radeon_vm_block_size, 11)) + 1; /* padding, etc. */ ndw = 64; flags = radeon_vm_page_flags(bo_va->flags); if ((flags & R600_PTE_GART_MASK) == R600_PTE_GART_MASK) { /* only copy commands needed */ ndw += ncmds * 7; } else if (flags & R600_PTE_SYSTEM) { /* header for write data commands */ ndw += ncmds * 4; /* body of write data command */ ndw += nptes * 2; } else { /* set page commands needed */ ndw += ncmds * 10; /* two extra commands for begin/end of fragment */ ndw += 2 * 10; } /* update too big for an IB */ if (ndw > 0xfffff) return -ENOMEM; r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, ndw * 4); if (r) return r; ib.length_dw = 0; if (!(bo_va->flags & RADEON_VM_PAGE_VALID)) { unsigned i; for (i = 0; i < RADEON_NUM_RINGS; ++i) radeon_sync_fence(&ib.sync, vm->ids[i].last_id_use); } r = radeon_vm_update_ptes(rdev, vm, &ib, bo_va->it.start, bo_va->it.last + 1, addr, radeon_vm_page_flags(bo_va->flags)); if (r) { radeon_ib_free(rdev, &ib); return r; } radeon_asic_vm_pad_ib(rdev, &ib); WARN_ON(ib.length_dw > ndw); r = radeon_ib_schedule(rdev, &ib, NULL, false); if (r) { radeon_ib_free(rdev, &ib); return r; } ib.fence->is_vm_update = true; radeon_vm_fence_pts(vm, bo_va->it.start, bo_va->it.last + 1, ib.fence); radeon_fence_unref(&bo_va->last_pt_update); bo_va->last_pt_update = radeon_fence_ref(ib.fence); radeon_ib_free(rdev, &ib); return 0; } /** * radeon_vm_clear_freed - clear freed BOs in the PT * * @rdev: radeon_device pointer * @vm: requested vm * * Make sure all freed BOs are cleared in the PT. * Returns 0 for success. * * PTs have to be reserved and mutex must be locked! */ int radeon_vm_clear_freed(struct radeon_device *rdev, struct radeon_vm *vm) { struct radeon_bo_va *bo_va; int r = 0; spin_lock(&vm->status_lock); while (!list_empty(&vm->freed)) { bo_va = list_first_entry(&vm->freed, struct radeon_bo_va, vm_status); spin_unlock(&vm->status_lock); r = radeon_vm_bo_update(rdev, bo_va, NULL); radeon_bo_unref(&bo_va->bo); radeon_fence_unref(&bo_va->last_pt_update); spin_lock(&vm->status_lock); list_del(&bo_va->vm_status); kfree(bo_va); if (r) break; } spin_unlock(&vm->status_lock); return r; } /** * radeon_vm_clear_invalids - clear invalidated BOs in the PT * * @rdev: radeon_device pointer * @vm: requested vm * * Make sure all invalidated BOs are cleared in the PT. * Returns 0 for success. * * PTs have to be reserved and mutex must be locked! */ int radeon_vm_clear_invalids(struct radeon_device *rdev, struct radeon_vm *vm) { struct radeon_bo_va *bo_va; int r; spin_lock(&vm->status_lock); while (!list_empty(&vm->invalidated)) { bo_va = list_first_entry(&vm->invalidated, struct radeon_bo_va, vm_status); spin_unlock(&vm->status_lock); r = radeon_vm_bo_update(rdev, bo_va, NULL); if (r) return r; spin_lock(&vm->status_lock); } spin_unlock(&vm->status_lock); return 0; } /** * radeon_vm_bo_rmv - remove a bo to a specific vm * * @rdev: radeon_device pointer * @bo_va: requested bo_va * * Remove @bo_va->bo from the requested vm (cayman+). * * Object have to be reserved! */ void radeon_vm_bo_rmv(struct radeon_device *rdev, struct radeon_bo_va *bo_va) { struct radeon_vm *vm = bo_va->vm; list_del(&bo_va->bo_list); mutex_lock(&vm->mutex); if (bo_va->it.start || bo_va->it.last) interval_tree_remove(&bo_va->it, &vm->va); spin_lock(&vm->status_lock); list_del(&bo_va->vm_status); if (bo_va->it.start || bo_va->it.last) { bo_va->bo = radeon_bo_ref(bo_va->bo); list_add(&bo_va->vm_status, &vm->freed); } else { radeon_fence_unref(&bo_va->last_pt_update); kfree(bo_va); } spin_unlock(&vm->status_lock); mutex_unlock(&vm->mutex); } /** * radeon_vm_bo_invalidate - mark the bo as invalid * * @rdev: radeon_device pointer * @bo: radeon buffer object * * Mark @bo as invalid (cayman+). */ void radeon_vm_bo_invalidate(struct radeon_device *rdev, struct radeon_bo *bo) { struct radeon_bo_va *bo_va; list_for_each_entry(bo_va, &bo->va, bo_list) { spin_lock(&bo_va->vm->status_lock); if (list_empty(&bo_va->vm_status) && (bo_va->it.start || bo_va->it.last)) list_add(&bo_va->vm_status, &bo_va->vm->invalidated); spin_unlock(&bo_va->vm->status_lock); } } /** * radeon_vm_init - initialize a vm instance * * @rdev: radeon_device pointer * @vm: requested vm * * Init @vm fields (cayman+). */ int radeon_vm_init(struct radeon_device *rdev, struct radeon_vm *vm) { const unsigned align = min(RADEON_VM_PTB_ALIGN_SIZE, RADEON_VM_PTE_COUNT * 8); unsigned pd_size, pd_entries, pts_size; int i, r; vm->ib_bo_va = NULL; for (i = 0; i < RADEON_NUM_RINGS; ++i) { vm->ids[i].id = 0; vm->ids[i].flushed_updates = NULL; vm->ids[i].last_id_use = NULL; } mutex_init(&vm->mutex); vm->va = RB_ROOT_CACHED; spin_lock_init(&vm->status_lock); INIT_LIST_HEAD(&vm->invalidated); INIT_LIST_HEAD(&vm->freed); INIT_LIST_HEAD(&vm->cleared); pd_size = radeon_vm_directory_size(rdev); pd_entries = radeon_vm_num_pdes(rdev); /* allocate page table array */ pts_size = pd_entries * sizeof(struct radeon_vm_pt); vm->page_tables = kzalloc(pts_size, GFP_KERNEL); if (vm->page_tables == NULL) { DRM_ERROR("Cannot allocate memory for page table array\n"); return -ENOMEM; } r = radeon_bo_create(rdev, pd_size, align, true, RADEON_GEM_DOMAIN_VRAM, 0, NULL, NULL, &vm->page_directory); if (r) { kfree(vm->page_tables); vm->page_tables = NULL; return r; } r = radeon_vm_clear_bo(rdev, vm->page_directory); if (r) { radeon_bo_unref(&vm->page_directory); vm->page_directory = NULL; kfree(vm->page_tables); vm->page_tables = NULL; return r; } return 0; } /** * radeon_vm_fini - tear down a vm instance * * @rdev: radeon_device pointer * @vm: requested vm * * Tear down @vm (cayman+). * Unbind the VM and remove all bos from the vm bo list */ void radeon_vm_fini(struct radeon_device *rdev, struct radeon_vm *vm) { struct radeon_bo_va *bo_va, *tmp; int i, r; if (!RB_EMPTY_ROOT(&vm->va.rb_root)) dev_err(rdev->dev, "still active bo inside vm\n"); rbtree_postorder_for_each_entry_safe(bo_va, tmp, &vm->va.rb_root, it.rb) { interval_tree_remove(&bo_va->it, &vm->va); r = radeon_bo_reserve(bo_va->bo, false); if (!r) { list_del_init(&bo_va->bo_list); radeon_bo_unreserve(bo_va->bo); radeon_fence_unref(&bo_va->last_pt_update); kfree(bo_va); } } list_for_each_entry_safe(bo_va, tmp, &vm->freed, vm_status) { radeon_bo_unref(&bo_va->bo); radeon_fence_unref(&bo_va->last_pt_update); kfree(bo_va); } for (i = 0; i < radeon_vm_num_pdes(rdev); i++) radeon_bo_unref(&vm->page_tables[i].bo); kfree(vm->page_tables); radeon_bo_unref(&vm->page_directory); for (i = 0; i < RADEON_NUM_RINGS; ++i) { radeon_fence_unref(&vm->ids[i].flushed_updates); radeon_fence_unref(&vm->ids[i].last_id_use); } mutex_destroy(&vm->mutex); }