/* SPDX-License-Identifier: GPL-2.0 OR MIT */ /************************************************************************** * * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /* * Authors: Thomas Hellstrom */ #define pr_fmt(fmt) "[TTM] " fmt #include #include #include #include #include #include #include #include #include #include #include "ttm_module.h" /* default destructor */ static void ttm_bo_default_destroy(struct ttm_buffer_object *bo) { kfree(bo); } static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo, struct ttm_placement *placement) { struct drm_printer p = drm_debug_printer(TTM_PFX); struct ttm_resource_manager *man; int i, mem_type; drm_printf(&p, "No space for %p (%lu pages, %zuK, %zuM)\n", bo, bo->resource->num_pages, bo->base.size >> 10, bo->base.size >> 20); for (i = 0; i < placement->num_placement; i++) { mem_type = placement->placement[i].mem_type; drm_printf(&p, " placement[%d]=0x%08X (%d)\n", i, placement->placement[i].flags, mem_type); man = ttm_manager_type(bo->bdev, mem_type); ttm_resource_manager_debug(man, &p); } } static void ttm_bo_del_from_lru(struct ttm_buffer_object *bo) { struct ttm_device *bdev = bo->bdev; list_del_init(&bo->lru); if (bdev->funcs->del_from_lru_notify) bdev->funcs->del_from_lru_notify(bo); } static void ttm_bo_bulk_move_set_pos(struct ttm_lru_bulk_move_pos *pos, struct ttm_buffer_object *bo) { if (!pos->first) pos->first = bo; pos->last = bo; } void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo, struct ttm_resource *mem, struct ttm_lru_bulk_move *bulk) { struct ttm_device *bdev = bo->bdev; struct ttm_resource_manager *man; if (!bo->deleted) dma_resv_assert_held(bo->base.resv); if (bo->pin_count) { ttm_bo_del_from_lru(bo); return; } if (!mem) return; man = ttm_manager_type(bdev, mem->mem_type); list_move_tail(&bo->lru, &man->lru[bo->priority]); if (bdev->funcs->del_from_lru_notify) bdev->funcs->del_from_lru_notify(bo); if (bulk && !bo->pin_count) { switch (bo->resource->mem_type) { case TTM_PL_TT: ttm_bo_bulk_move_set_pos(&bulk->tt[bo->priority], bo); break; case TTM_PL_VRAM: ttm_bo_bulk_move_set_pos(&bulk->vram[bo->priority], bo); break; } } } EXPORT_SYMBOL(ttm_bo_move_to_lru_tail); void ttm_bo_bulk_move_lru_tail(struct ttm_lru_bulk_move *bulk) { unsigned i; for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { struct ttm_lru_bulk_move_pos *pos = &bulk->tt[i]; struct ttm_resource_manager *man; if (!pos->first) continue; dma_resv_assert_held(pos->first->base.resv); dma_resv_assert_held(pos->last->base.resv); man = ttm_manager_type(pos->first->bdev, TTM_PL_TT); list_bulk_move_tail(&man->lru[i], &pos->first->lru, &pos->last->lru); } for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { struct ttm_lru_bulk_move_pos *pos = &bulk->vram[i]; struct ttm_resource_manager *man; if (!pos->first) continue; dma_resv_assert_held(pos->first->base.resv); dma_resv_assert_held(pos->last->base.resv); man = ttm_manager_type(pos->first->bdev, TTM_PL_VRAM); list_bulk_move_tail(&man->lru[i], &pos->first->lru, &pos->last->lru); } } EXPORT_SYMBOL(ttm_bo_bulk_move_lru_tail); static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo, struct ttm_resource *mem, bool evict, struct ttm_operation_ctx *ctx, struct ttm_place *hop) { struct ttm_resource_manager *old_man, *new_man; struct ttm_device *bdev = bo->bdev; int ret; old_man = ttm_manager_type(bdev, bo->resource->mem_type); new_man = ttm_manager_type(bdev, mem->mem_type); ttm_bo_unmap_virtual(bo); /* * Create and bind a ttm if required. */ if (new_man->use_tt) { /* Zero init the new TTM structure if the old location should * have used one as well. */ ret = ttm_tt_create(bo, old_man->use_tt); if (ret) goto out_err; if (mem->mem_type != TTM_PL_SYSTEM) { ret = ttm_tt_populate(bo->bdev, bo->ttm, ctx); if (ret) goto out_err; } } ret = bdev->funcs->move(bo, evict, ctx, mem, hop); if (ret) { if (ret == -EMULTIHOP) return ret; goto out_err; } ctx->bytes_moved += bo->base.size; return 0; out_err: new_man = ttm_manager_type(bdev, bo->resource->mem_type); if (!new_man->use_tt) ttm_bo_tt_destroy(bo); return ret; } /* * Call bo::reserved. * Will release GPU memory type usage on destruction. * This is the place to put in driver specific hooks to release * driver private resources. * Will release the bo::reserved lock. */ static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo) { if (bo->bdev->funcs->delete_mem_notify) bo->bdev->funcs->delete_mem_notify(bo); ttm_bo_tt_destroy(bo); ttm_resource_free(bo, &bo->resource); } static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo) { int r; if (bo->base.resv == &bo->base._resv) return 0; BUG_ON(!dma_resv_trylock(&bo->base._resv)); r = dma_resv_copy_fences(&bo->base._resv, bo->base.resv); dma_resv_unlock(&bo->base._resv); if (r) return r; if (bo->type != ttm_bo_type_sg) { /* This works because the BO is about to be destroyed and nobody * reference it any more. The only tricky case is the trylock on * the resv object while holding the lru_lock. */ spin_lock(&bo->bdev->lru_lock); bo->base.resv = &bo->base._resv; spin_unlock(&bo->bdev->lru_lock); } return r; } static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo) { struct dma_resv *resv = &bo->base._resv; struct dma_resv_list *fobj; struct dma_fence *fence; int i; rcu_read_lock(); fobj = dma_resv_shared_list(resv); fence = dma_resv_excl_fence(resv); if (fence && !fence->ops->signaled) dma_fence_enable_sw_signaling(fence); for (i = 0; fobj && i < fobj->shared_count; ++i) { fence = rcu_dereference(fobj->shared[i]); if (!fence->ops->signaled) dma_fence_enable_sw_signaling(fence); } rcu_read_unlock(); } /** * ttm_bo_cleanup_refs * If bo idle, remove from lru lists, and unref. * If not idle, block if possible. * * Must be called with lru_lock and reservation held, this function * will drop the lru lock and optionally the reservation lock before returning. * * @bo: The buffer object to clean-up * @interruptible: Any sleeps should occur interruptibly. * @no_wait_gpu: Never wait for gpu. Return -EBUSY instead. * @unlock_resv: Unlock the reservation lock as well. */ static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo, bool interruptible, bool no_wait_gpu, bool unlock_resv) { struct dma_resv *resv = &bo->base._resv; int ret; if (dma_resv_test_signaled(resv, true)) ret = 0; else ret = -EBUSY; if (ret && !no_wait_gpu) { long lret; if (unlock_resv) dma_resv_unlock(bo->base.resv); spin_unlock(&bo->bdev->lru_lock); lret = dma_resv_wait_timeout(resv, true, interruptible, 30 * HZ); if (lret < 0) return lret; else if (lret == 0) return -EBUSY; spin_lock(&bo->bdev->lru_lock); if (unlock_resv && !dma_resv_trylock(bo->base.resv)) { /* * We raced, and lost, someone else holds the reservation now, * and is probably busy in ttm_bo_cleanup_memtype_use. * * Even if it's not the case, because we finished waiting any * delayed destruction would succeed, so just return success * here. */ spin_unlock(&bo->bdev->lru_lock); return 0; } ret = 0; } if (ret || unlikely(list_empty(&bo->ddestroy))) { if (unlock_resv) dma_resv_unlock(bo->base.resv); spin_unlock(&bo->bdev->lru_lock); return ret; } ttm_bo_del_from_lru(bo); list_del_init(&bo->ddestroy); spin_unlock(&bo->bdev->lru_lock); ttm_bo_cleanup_memtype_use(bo); if (unlock_resv) dma_resv_unlock(bo->base.resv); ttm_bo_put(bo); return 0; } /* * Traverse the delayed list, and call ttm_bo_cleanup_refs on all * encountered buffers. */ bool ttm_bo_delayed_delete(struct ttm_device *bdev, bool remove_all) { struct list_head removed; bool empty; INIT_LIST_HEAD(&removed); spin_lock(&bdev->lru_lock); while (!list_empty(&bdev->ddestroy)) { struct ttm_buffer_object *bo; bo = list_first_entry(&bdev->ddestroy, struct ttm_buffer_object, ddestroy); list_move_tail(&bo->ddestroy, &removed); if (!ttm_bo_get_unless_zero(bo)) continue; if (remove_all || bo->base.resv != &bo->base._resv) { spin_unlock(&bdev->lru_lock); dma_resv_lock(bo->base.resv, NULL); spin_lock(&bdev->lru_lock); ttm_bo_cleanup_refs(bo, false, !remove_all, true); } else if (dma_resv_trylock(bo->base.resv)) { ttm_bo_cleanup_refs(bo, false, !remove_all, true); } else { spin_unlock(&bdev->lru_lock); } ttm_bo_put(bo); spin_lock(&bdev->lru_lock); } list_splice_tail(&removed, &bdev->ddestroy); empty = list_empty(&bdev->ddestroy); spin_unlock(&bdev->lru_lock); return empty; } static void ttm_bo_release(struct kref *kref) { struct ttm_buffer_object *bo = container_of(kref, struct ttm_buffer_object, kref); struct ttm_device *bdev = bo->bdev; int ret; WARN_ON_ONCE(bo->pin_count); if (!bo->deleted) { ret = ttm_bo_individualize_resv(bo); if (ret) { /* Last resort, if we fail to allocate memory for the * fences block for the BO to become idle */ dma_resv_wait_timeout(bo->base.resv, true, false, 30 * HZ); } if (bo->bdev->funcs->release_notify) bo->bdev->funcs->release_notify(bo); drm_vma_offset_remove(bdev->vma_manager, &bo->base.vma_node); ttm_mem_io_free(bdev, bo->resource); } if (!dma_resv_test_signaled(bo->base.resv, true) || !dma_resv_trylock(bo->base.resv)) { /* The BO is not idle, resurrect it for delayed destroy */ ttm_bo_flush_all_fences(bo); bo->deleted = true; spin_lock(&bo->bdev->lru_lock); /* * Make pinned bos immediately available to * shrinkers, now that they are queued for * destruction. * * FIXME: QXL is triggering this. Can be removed when the * driver is fixed. */ if (bo->pin_count) { bo->pin_count = 0; ttm_bo_move_to_lru_tail(bo, bo->resource, NULL); } kref_init(&bo->kref); list_add_tail(&bo->ddestroy, &bdev->ddestroy); spin_unlock(&bo->bdev->lru_lock); schedule_delayed_work(&bdev->wq, ((HZ / 100) < 1) ? 1 : HZ / 100); return; } spin_lock(&bo->bdev->lru_lock); ttm_bo_del_from_lru(bo); list_del(&bo->ddestroy); spin_unlock(&bo->bdev->lru_lock); ttm_bo_cleanup_memtype_use(bo); dma_resv_unlock(bo->base.resv); atomic_dec(&ttm_glob.bo_count); dma_fence_put(bo->moving); bo->destroy(bo); } void ttm_bo_put(struct ttm_buffer_object *bo) { kref_put(&bo->kref, ttm_bo_release); } EXPORT_SYMBOL(ttm_bo_put); int ttm_bo_lock_delayed_workqueue(struct ttm_device *bdev) { return cancel_delayed_work_sync(&bdev->wq); } EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue); void ttm_bo_unlock_delayed_workqueue(struct ttm_device *bdev, int resched) { if (resched) schedule_delayed_work(&bdev->wq, ((HZ / 100) < 1) ? 1 : HZ / 100); } EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue); static int ttm_bo_bounce_temp_buffer(struct ttm_buffer_object *bo, struct ttm_resource **mem, struct ttm_operation_ctx *ctx, struct ttm_place *hop) { struct ttm_placement hop_placement; struct ttm_resource *hop_mem; int ret; hop_placement.num_placement = hop_placement.num_busy_placement = 1; hop_placement.placement = hop_placement.busy_placement = hop; /* find space in the bounce domain */ ret = ttm_bo_mem_space(bo, &hop_placement, &hop_mem, ctx); if (ret) return ret; /* move to the bounce domain */ ret = ttm_bo_handle_move_mem(bo, hop_mem, false, ctx, NULL); if (ret) { ttm_resource_free(bo, &hop_mem); return ret; } return 0; } static int ttm_bo_evict(struct ttm_buffer_object *bo, struct ttm_operation_ctx *ctx) { struct ttm_device *bdev = bo->bdev; struct ttm_resource *evict_mem; struct ttm_placement placement; struct ttm_place hop; int ret = 0; memset(&hop, 0, sizeof(hop)); dma_resv_assert_held(bo->base.resv); placement.num_placement = 0; placement.num_busy_placement = 0; bdev->funcs->evict_flags(bo, &placement); if (!placement.num_placement && !placement.num_busy_placement) { ret = ttm_bo_wait(bo, true, false); if (ret) return ret; /* * Since we've already synced, this frees backing store * immediately. */ return ttm_bo_pipeline_gutting(bo); } ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx); if (ret) { if (ret != -ERESTARTSYS) { pr_err("Failed to find memory space for buffer 0x%p eviction\n", bo); ttm_bo_mem_space_debug(bo, &placement); } goto out; } do { ret = ttm_bo_handle_move_mem(bo, evict_mem, true, ctx, &hop); if (ret != -EMULTIHOP) break; ret = ttm_bo_bounce_temp_buffer(bo, &evict_mem, ctx, &hop); } while (!ret); if (ret) { ttm_resource_free(bo, &evict_mem); if (ret != -ERESTARTSYS && ret != -EINTR) pr_err("Buffer eviction failed\n"); } out: return ret; } bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo, const struct ttm_place *place) { dma_resv_assert_held(bo->base.resv); if (bo->resource->mem_type == TTM_PL_SYSTEM) return true; /* Don't evict this BO if it's outside of the * requested placement range */ if (place->fpfn >= (bo->resource->start + bo->resource->num_pages) || (place->lpfn && place->lpfn <= bo->resource->start)) return false; return true; } EXPORT_SYMBOL(ttm_bo_eviction_valuable); /* * Check the target bo is allowable to be evicted or swapout, including cases: * * a. if share same reservation object with ctx->resv, have assumption * reservation objects should already be locked, so not lock again and * return true directly when either the opreation allow_reserved_eviction * or the target bo already is in delayed free list; * * b. Otherwise, trylock it. */ static bool ttm_bo_evict_swapout_allowable(struct ttm_buffer_object *bo, struct ttm_operation_ctx *ctx, const struct ttm_place *place, bool *locked, bool *busy) { bool ret = false; if (bo->pin_count) { *locked = false; if (busy) *busy = false; return false; } if (bo->base.resv == ctx->resv) { dma_resv_assert_held(bo->base.resv); if (ctx->allow_res_evict) ret = true; *locked = false; if (busy) *busy = false; } else { ret = dma_resv_trylock(bo->base.resv); *locked = ret; if (busy) *busy = !ret; } if (ret && place && !bo->bdev->funcs->eviction_valuable(bo, place)) { ret = false; if (*locked) { dma_resv_unlock(bo->base.resv); *locked = false; } } return ret; } /** * ttm_mem_evict_wait_busy - wait for a busy BO to become available * * @busy_bo: BO which couldn't be locked with trylock * @ctx: operation context * @ticket: acquire ticket * * Try to lock a busy buffer object to avoid failing eviction. */ static int ttm_mem_evict_wait_busy(struct ttm_buffer_object *busy_bo, struct ttm_operation_ctx *ctx, struct ww_acquire_ctx *ticket) { int r; if (!busy_bo || !ticket) return -EBUSY; if (ctx->interruptible) r = dma_resv_lock_interruptible(busy_bo->base.resv, ticket); else r = dma_resv_lock(busy_bo->base.resv, ticket); /* * TODO: It would be better to keep the BO locked until allocation is at * least tried one more time, but that would mean a much larger rework * of TTM. */ if (!r) dma_resv_unlock(busy_bo->base.resv); return r == -EDEADLK ? -EBUSY : r; } int ttm_mem_evict_first(struct ttm_device *bdev, struct ttm_resource_manager *man, const struct ttm_place *place, struct ttm_operation_ctx *ctx, struct ww_acquire_ctx *ticket) { struct ttm_buffer_object *bo = NULL, *busy_bo = NULL; bool locked = false; unsigned i; int ret; spin_lock(&bdev->lru_lock); for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) { list_for_each_entry(bo, &man->lru[i], lru) { bool busy; if (!ttm_bo_evict_swapout_allowable(bo, ctx, place, &locked, &busy)) { if (busy && !busy_bo && ticket != dma_resv_locking_ctx(bo->base.resv)) busy_bo = bo; continue; } if (!ttm_bo_get_unless_zero(bo)) { if (locked) dma_resv_unlock(bo->base.resv); continue; } break; } /* If the inner loop terminated early, we have our candidate */ if (&bo->lru != &man->lru[i]) break; bo = NULL; } if (!bo) { if (busy_bo && !ttm_bo_get_unless_zero(busy_bo)) busy_bo = NULL; spin_unlock(&bdev->lru_lock); ret = ttm_mem_evict_wait_busy(busy_bo, ctx, ticket); if (busy_bo) ttm_bo_put(busy_bo); return ret; } if (bo->deleted) { ret = ttm_bo_cleanup_refs(bo, ctx->interruptible, ctx->no_wait_gpu, locked); ttm_bo_put(bo); return ret; } spin_unlock(&bdev->lru_lock); ret = ttm_bo_evict(bo, ctx); if (locked) ttm_bo_unreserve(bo); else ttm_bo_move_to_lru_tail_unlocked(bo); ttm_bo_put(bo); return ret; } /* * Add the last move fence to the BO and reserve a new shared slot. We only use * a shared slot to avoid unecessary sync and rely on the subsequent bo move to * either stall or use an exclusive fence respectively set bo->moving. */ static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo, struct ttm_resource_manager *man, struct ttm_resource *mem, bool no_wait_gpu) { struct dma_fence *fence; int ret; spin_lock(&man->move_lock); fence = dma_fence_get(man->move); spin_unlock(&man->move_lock); if (!fence) return 0; if (no_wait_gpu) { ret = dma_fence_is_signaled(fence) ? 0 : -EBUSY; dma_fence_put(fence); return ret; } dma_resv_add_shared_fence(bo->base.resv, fence); ret = dma_resv_reserve_shared(bo->base.resv, 1); if (unlikely(ret)) { dma_fence_put(fence); return ret; } dma_fence_put(bo->moving); bo->moving = fence; return 0; } /* * Repeatedly evict memory from the LRU for @mem_type until we create enough * space, or we've evicted everything and there isn't enough space. */ static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo, const struct ttm_place *place, struct ttm_resource **mem, struct ttm_operation_ctx *ctx) { struct ttm_device *bdev = bo->bdev; struct ttm_resource_manager *man; struct ww_acquire_ctx *ticket; int ret; man = ttm_manager_type(bdev, place->mem_type); ticket = dma_resv_locking_ctx(bo->base.resv); do { ret = ttm_resource_alloc(bo, place, mem); if (likely(!ret)) break; if (unlikely(ret != -ENOSPC)) return ret; ret = ttm_mem_evict_first(bdev, man, place, ctx, ticket); if (unlikely(ret != 0)) return ret; } while (1); return ttm_bo_add_move_fence(bo, man, *mem, ctx->no_wait_gpu); } /* * Creates space for memory region @mem according to its type. * * This function first searches for free space in compatible memory types in * the priority order defined by the driver. If free space isn't found, then * ttm_bo_mem_force_space is attempted in priority order to evict and find * space. */ int ttm_bo_mem_space(struct ttm_buffer_object *bo, struct ttm_placement *placement, struct ttm_resource **mem, struct ttm_operation_ctx *ctx) { struct ttm_device *bdev = bo->bdev; bool type_found = false; int i, ret; ret = dma_resv_reserve_shared(bo->base.resv, 1); if (unlikely(ret)) return ret; for (i = 0; i < placement->num_placement; ++i) { const struct ttm_place *place = &placement->placement[i]; struct ttm_resource_manager *man; man = ttm_manager_type(bdev, place->mem_type); if (!man || !ttm_resource_manager_used(man)) continue; type_found = true; ret = ttm_resource_alloc(bo, place, mem); if (ret == -ENOSPC) continue; if (unlikely(ret)) goto error; ret = ttm_bo_add_move_fence(bo, man, *mem, ctx->no_wait_gpu); if (unlikely(ret)) { ttm_resource_free(bo, mem); if (ret == -EBUSY) continue; goto error; } return 0; } for (i = 0; i < placement->num_busy_placement; ++i) { const struct ttm_place *place = &placement->busy_placement[i]; struct ttm_resource_manager *man; man = ttm_manager_type(bdev, place->mem_type); if (!man || !ttm_resource_manager_used(man)) continue; type_found = true; ret = ttm_bo_mem_force_space(bo, place, mem, ctx); if (likely(!ret)) return 0; if (ret && ret != -EBUSY) goto error; } ret = -ENOMEM; if (!type_found) { pr_err(TTM_PFX "No compatible memory type found\n"); ret = -EINVAL; } error: if (bo->resource->mem_type == TTM_PL_SYSTEM && !bo->pin_count) ttm_bo_move_to_lru_tail_unlocked(bo); return ret; } EXPORT_SYMBOL(ttm_bo_mem_space); static int ttm_bo_move_buffer(struct ttm_buffer_object *bo, struct ttm_placement *placement, struct ttm_operation_ctx *ctx) { struct ttm_resource *mem; struct ttm_place hop; int ret; dma_resv_assert_held(bo->base.resv); /* * Determine where to move the buffer. * * If driver determines move is going to need * an extra step then it will return -EMULTIHOP * and the buffer will be moved to the temporary * stop and the driver will be called to make * the second hop. */ ret = ttm_bo_mem_space(bo, placement, &mem, ctx); if (ret) return ret; bounce: ret = ttm_bo_handle_move_mem(bo, mem, false, ctx, &hop); if (ret == -EMULTIHOP) { ret = ttm_bo_bounce_temp_buffer(bo, &mem, ctx, &hop); if (ret) goto out; /* try and move to final place now. */ goto bounce; } out: if (ret) ttm_resource_free(bo, &mem); return ret; } static bool ttm_bo_places_compat(const struct ttm_place *places, unsigned num_placement, struct ttm_resource *mem, uint32_t *new_flags) { unsigned i; if (mem->placement & TTM_PL_FLAG_TEMPORARY) return false; for (i = 0; i < num_placement; i++) { const struct ttm_place *heap = &places[i]; if ((mem->start < heap->fpfn || (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn))) continue; *new_flags = heap->flags; if ((mem->mem_type == heap->mem_type) && (!(*new_flags & TTM_PL_FLAG_CONTIGUOUS) || (mem->placement & TTM_PL_FLAG_CONTIGUOUS))) return true; } return false; } bool ttm_bo_mem_compat(struct ttm_placement *placement, struct ttm_resource *mem, uint32_t *new_flags) { if (ttm_bo_places_compat(placement->placement, placement->num_placement, mem, new_flags)) return true; if ((placement->busy_placement != placement->placement || placement->num_busy_placement > placement->num_placement) && ttm_bo_places_compat(placement->busy_placement, placement->num_busy_placement, mem, new_flags)) return true; return false; } EXPORT_SYMBOL(ttm_bo_mem_compat); int ttm_bo_validate(struct ttm_buffer_object *bo, struct ttm_placement *placement, struct ttm_operation_ctx *ctx) { int ret; uint32_t new_flags; dma_resv_assert_held(bo->base.resv); /* * Remove the backing store if no placement is given. */ if (!placement->num_placement && !placement->num_busy_placement) return ttm_bo_pipeline_gutting(bo); /* * Check whether we need to move buffer. */ if (!ttm_bo_mem_compat(placement, bo->resource, &new_flags)) { ret = ttm_bo_move_buffer(bo, placement, ctx); if (ret) return ret; } /* * We might need to add a TTM. */ if (!bo->resource || bo->resource->mem_type == TTM_PL_SYSTEM) { ret = ttm_tt_create(bo, true); if (ret) return ret; } return 0; } EXPORT_SYMBOL(ttm_bo_validate); int ttm_bo_init_reserved(struct ttm_device *bdev, struct ttm_buffer_object *bo, size_t size, enum ttm_bo_type type, struct ttm_placement *placement, uint32_t page_alignment, struct ttm_operation_ctx *ctx, struct sg_table *sg, struct dma_resv *resv, void (*destroy) (struct ttm_buffer_object *)) { static const struct ttm_place sys_mem = { .mem_type = TTM_PL_SYSTEM }; bool locked; int ret; bo->destroy = destroy ? destroy : ttm_bo_default_destroy; kref_init(&bo->kref); INIT_LIST_HEAD(&bo->lru); INIT_LIST_HEAD(&bo->ddestroy); bo->bdev = bdev; bo->type = type; bo->page_alignment = page_alignment; bo->moving = NULL; bo->pin_count = 0; bo->sg = sg; if (resv) { bo->base.resv = resv; dma_resv_assert_held(bo->base.resv); } else { bo->base.resv = &bo->base._resv; } atomic_inc(&ttm_glob.bo_count); ret = ttm_resource_alloc(bo, &sys_mem, &bo->resource); if (unlikely(ret)) { ttm_bo_put(bo); return ret; } /* * For ttm_bo_type_device buffers, allocate * address space from the device. */ if (bo->type == ttm_bo_type_device || bo->type == ttm_bo_type_sg) ret = drm_vma_offset_add(bdev->vma_manager, &bo->base.vma_node, bo->resource->num_pages); /* passed reservation objects should already be locked, * since otherwise lockdep will be angered in radeon. */ if (!resv) { locked = dma_resv_trylock(bo->base.resv); WARN_ON(!locked); } if (likely(!ret)) ret = ttm_bo_validate(bo, placement, ctx); if (unlikely(ret)) { if (!resv) ttm_bo_unreserve(bo); ttm_bo_put(bo); return ret; } ttm_bo_move_to_lru_tail_unlocked(bo); return ret; } EXPORT_SYMBOL(ttm_bo_init_reserved); int ttm_bo_init(struct ttm_device *bdev, struct ttm_buffer_object *bo, size_t size, enum ttm_bo_type type, struct ttm_placement *placement, uint32_t page_alignment, bool interruptible, struct sg_table *sg, struct dma_resv *resv, void (*destroy) (struct ttm_buffer_object *)) { struct ttm_operation_ctx ctx = { interruptible, false }; int ret; ret = ttm_bo_init_reserved(bdev, bo, size, type, placement, page_alignment, &ctx, sg, resv, destroy); if (ret) return ret; if (!resv) ttm_bo_unreserve(bo); return 0; } EXPORT_SYMBOL(ttm_bo_init); /* * buffer object vm functions. */ void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo) { struct ttm_device *bdev = bo->bdev; drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping); ttm_mem_io_free(bdev, bo->resource); } EXPORT_SYMBOL(ttm_bo_unmap_virtual); int ttm_bo_wait(struct ttm_buffer_object *bo, bool interruptible, bool no_wait) { long timeout = 15 * HZ; if (no_wait) { if (dma_resv_test_signaled(bo->base.resv, true)) return 0; else return -EBUSY; } timeout = dma_resv_wait_timeout(bo->base.resv, true, interruptible, timeout); if (timeout < 0) return timeout; if (timeout == 0) return -EBUSY; dma_resv_add_excl_fence(bo->base.resv, NULL); return 0; } EXPORT_SYMBOL(ttm_bo_wait); int ttm_bo_swapout(struct ttm_buffer_object *bo, struct ttm_operation_ctx *ctx, gfp_t gfp_flags) { struct ttm_place place; bool locked; int ret; /* * While the bo may already reside in SYSTEM placement, set * SYSTEM as new placement to cover also the move further below. * The driver may use the fact that we're moving from SYSTEM * as an indication that we're about to swap out. */ memset(&place, 0, sizeof(place)); place.mem_type = TTM_PL_SYSTEM; if (!ttm_bo_evict_swapout_allowable(bo, ctx, &place, &locked, NULL)) return -EBUSY; if (!bo->ttm || !ttm_tt_is_populated(bo->ttm) || bo->ttm->page_flags & TTM_PAGE_FLAG_SG || bo->ttm->page_flags & TTM_PAGE_FLAG_SWAPPED || !ttm_bo_get_unless_zero(bo)) { if (locked) dma_resv_unlock(bo->base.resv); return -EBUSY; } if (bo->deleted) { ret = ttm_bo_cleanup_refs(bo, false, false, locked); ttm_bo_put(bo); return ret == -EBUSY ? -ENOSPC : ret; } ttm_bo_del_from_lru(bo); /* TODO: Cleanup the locking */ spin_unlock(&bo->bdev->lru_lock); /* * Move to system cached */ if (bo->resource->mem_type != TTM_PL_SYSTEM) { struct ttm_operation_ctx ctx = { false, false }; struct ttm_resource *evict_mem; struct ttm_place hop; memset(&hop, 0, sizeof(hop)); ret = ttm_resource_alloc(bo, &place, &evict_mem); if (unlikely(ret)) goto out; ret = ttm_bo_handle_move_mem(bo, evict_mem, true, &ctx, &hop); if (unlikely(ret != 0)) { WARN(ret == -EMULTIHOP, "Unexpected multihop in swaput - likely driver bug.\n"); ttm_resource_free(bo, &evict_mem); goto out; } } /* * Make sure BO is idle. */ ret = ttm_bo_wait(bo, false, false); if (unlikely(ret != 0)) goto out; ttm_bo_unmap_virtual(bo); /* * Swap out. Buffer will be swapped in again as soon as * anyone tries to access a ttm page. */ if (bo->bdev->funcs->swap_notify) bo->bdev->funcs->swap_notify(bo); if (ttm_tt_is_populated(bo->ttm)) ret = ttm_tt_swapout(bo->bdev, bo->ttm, gfp_flags); out: /* * Unreserve without putting on LRU to avoid swapping out an * already swapped buffer. */ if (locked) dma_resv_unlock(bo->base.resv); ttm_bo_put(bo); return ret == -EBUSY ? -ENOSPC : ret; } void ttm_bo_tt_destroy(struct ttm_buffer_object *bo) { if (bo->ttm == NULL) return; ttm_tt_destroy(bo->bdev, bo->ttm); bo->ttm = NULL; }