// SPDX-License-Identifier: GPL-2.0-only /* * IIO driver for the light sensor ISL29028. * ISL29028 is Concurrent Ambient Light and Proximity Sensor * * Copyright (c) 2012, NVIDIA CORPORATION. All rights reserved. * Copyright (c) 2016-2017 Brian Masney * * Datasheets: * - http://www.intersil.com/content/dam/Intersil/documents/isl2/isl29028.pdf * - http://www.intersil.com/content/dam/Intersil/documents/isl2/isl29030.pdf */ #include #include #include #include #include #include #include #include #include #include #define ISL29028_CONV_TIME_MS 100 #define ISL29028_REG_CONFIGURE 0x01 #define ISL29028_CONF_ALS_IR_MODE_ALS 0 #define ISL29028_CONF_ALS_IR_MODE_IR BIT(0) #define ISL29028_CONF_ALS_IR_MODE_MASK BIT(0) #define ISL29028_CONF_ALS_RANGE_LOW_LUX 0 #define ISL29028_CONF_ALS_RANGE_HIGH_LUX BIT(1) #define ISL29028_CONF_ALS_RANGE_MASK BIT(1) #define ISL29028_CONF_ALS_DIS 0 #define ISL29028_CONF_ALS_EN BIT(2) #define ISL29028_CONF_ALS_EN_MASK BIT(2) #define ISL29028_CONF_PROX_SLP_SH 4 #define ISL29028_CONF_PROX_SLP_MASK (7 << ISL29028_CONF_PROX_SLP_SH) #define ISL29028_CONF_PROX_EN BIT(7) #define ISL29028_CONF_PROX_EN_MASK BIT(7) #define ISL29028_REG_INTERRUPT 0x02 #define ISL29028_REG_PROX_DATA 0x08 #define ISL29028_REG_ALSIR_L 0x09 #define ISL29028_REG_ALSIR_U 0x0A #define ISL29028_REG_TEST1_MODE 0x0E #define ISL29028_REG_TEST2_MODE 0x0F #define ISL29028_NUM_REGS (ISL29028_REG_TEST2_MODE + 1) #define ISL29028_POWER_OFF_DELAY_MS 2000 struct isl29028_prox_data { int sampling_int; int sampling_fract; int sleep_time; }; static const struct isl29028_prox_data isl29028_prox_data[] = { { 1, 250000, 800 }, { 2, 500000, 400 }, { 5, 0, 200 }, { 10, 0, 100 }, { 13, 300000, 75 }, { 20, 0, 50 }, { 80, 0, 13 }, /* * Note: Data sheet lists 12.5 ms sleep time. * Round up a half millisecond for msleep(). */ { 100, 0, 0 } }; enum isl29028_als_ir_mode { ISL29028_MODE_NONE = 0, ISL29028_MODE_ALS, ISL29028_MODE_IR, }; struct isl29028_chip { struct mutex lock; struct regmap *regmap; int prox_sampling_int; int prox_sampling_frac; bool enable_prox; int lux_scale; enum isl29028_als_ir_mode als_ir_mode; }; static int isl29028_find_prox_sleep_index(int sampling_int, int sampling_fract) { int i; for (i = 0; i < ARRAY_SIZE(isl29028_prox_data); ++i) { if (isl29028_prox_data[i].sampling_int == sampling_int && isl29028_prox_data[i].sampling_fract == sampling_fract) return i; } return -EINVAL; } static int isl29028_set_proxim_sampling(struct isl29028_chip *chip, int sampling_int, int sampling_fract) { struct device *dev = regmap_get_device(chip->regmap); int sleep_index, ret; sleep_index = isl29028_find_prox_sleep_index(sampling_int, sampling_fract); if (sleep_index < 0) return sleep_index; ret = regmap_update_bits(chip->regmap, ISL29028_REG_CONFIGURE, ISL29028_CONF_PROX_SLP_MASK, sleep_index << ISL29028_CONF_PROX_SLP_SH); if (ret < 0) { dev_err(dev, "%s(): Error %d setting the proximity sampling\n", __func__, ret); return ret; } chip->prox_sampling_int = sampling_int; chip->prox_sampling_frac = sampling_fract; return ret; } static int isl29028_enable_proximity(struct isl29028_chip *chip) { int prox_index, ret; ret = isl29028_set_proxim_sampling(chip, chip->prox_sampling_int, chip->prox_sampling_frac); if (ret < 0) return ret; ret = regmap_update_bits(chip->regmap, ISL29028_REG_CONFIGURE, ISL29028_CONF_PROX_EN_MASK, ISL29028_CONF_PROX_EN); if (ret < 0) return ret; /* Wait for conversion to be complete for first sample */ prox_index = isl29028_find_prox_sleep_index(chip->prox_sampling_int, chip->prox_sampling_frac); if (prox_index < 0) return prox_index; msleep(isl29028_prox_data[prox_index].sleep_time); return 0; } static int isl29028_set_als_scale(struct isl29028_chip *chip, int lux_scale) { struct device *dev = regmap_get_device(chip->regmap); int val = (lux_scale == 2000) ? ISL29028_CONF_ALS_RANGE_HIGH_LUX : ISL29028_CONF_ALS_RANGE_LOW_LUX; int ret; ret = regmap_update_bits(chip->regmap, ISL29028_REG_CONFIGURE, ISL29028_CONF_ALS_RANGE_MASK, val); if (ret < 0) { dev_err(dev, "%s(): Error %d setting the ALS scale\n", __func__, ret); return ret; } chip->lux_scale = lux_scale; return ret; } static int isl29028_set_als_ir_mode(struct isl29028_chip *chip, enum isl29028_als_ir_mode mode) { int ret; if (chip->als_ir_mode == mode) return 0; ret = isl29028_set_als_scale(chip, chip->lux_scale); if (ret < 0) return ret; switch (mode) { case ISL29028_MODE_ALS: ret = regmap_update_bits(chip->regmap, ISL29028_REG_CONFIGURE, ISL29028_CONF_ALS_IR_MODE_MASK, ISL29028_CONF_ALS_IR_MODE_ALS); if (ret < 0) return ret; ret = regmap_update_bits(chip->regmap, ISL29028_REG_CONFIGURE, ISL29028_CONF_ALS_RANGE_MASK, ISL29028_CONF_ALS_RANGE_HIGH_LUX); break; case ISL29028_MODE_IR: ret = regmap_update_bits(chip->regmap, ISL29028_REG_CONFIGURE, ISL29028_CONF_ALS_IR_MODE_MASK, ISL29028_CONF_ALS_IR_MODE_IR); break; case ISL29028_MODE_NONE: return regmap_update_bits(chip->regmap, ISL29028_REG_CONFIGURE, ISL29028_CONF_ALS_EN_MASK, ISL29028_CONF_ALS_DIS); } if (ret < 0) return ret; /* Enable the ALS/IR */ ret = regmap_update_bits(chip->regmap, ISL29028_REG_CONFIGURE, ISL29028_CONF_ALS_EN_MASK, ISL29028_CONF_ALS_EN); if (ret < 0) return ret; /* Need to wait for conversion time if ALS/IR mode enabled */ msleep(ISL29028_CONV_TIME_MS); chip->als_ir_mode = mode; return 0; } static int isl29028_read_als_ir(struct isl29028_chip *chip, int *als_ir) { struct device *dev = regmap_get_device(chip->regmap); unsigned int lsb; unsigned int msb; int ret; ret = regmap_read(chip->regmap, ISL29028_REG_ALSIR_L, &lsb); if (ret < 0) { dev_err(dev, "%s(): Error %d reading register ALSIR_L\n", __func__, ret); return ret; } ret = regmap_read(chip->regmap, ISL29028_REG_ALSIR_U, &msb); if (ret < 0) { dev_err(dev, "%s(): Error %d reading register ALSIR_U\n", __func__, ret); return ret; } *als_ir = ((msb & 0xF) << 8) | (lsb & 0xFF); return 0; } static int isl29028_read_proxim(struct isl29028_chip *chip, int *prox) { struct device *dev = regmap_get_device(chip->regmap); unsigned int data; int ret; if (!chip->enable_prox) { ret = isl29028_enable_proximity(chip); if (ret < 0) return ret; chip->enable_prox = true; } ret = regmap_read(chip->regmap, ISL29028_REG_PROX_DATA, &data); if (ret < 0) { dev_err(dev, "%s(): Error %d reading register PROX_DATA\n", __func__, ret); return ret; } *prox = data; return 0; } static int isl29028_als_get(struct isl29028_chip *chip, int *als_data) { struct device *dev = regmap_get_device(chip->regmap); int ret; int als_ir_data; ret = isl29028_set_als_ir_mode(chip, ISL29028_MODE_ALS); if (ret < 0) { dev_err(dev, "%s(): Error %d enabling ALS mode\n", __func__, ret); return ret; } ret = isl29028_read_als_ir(chip, &als_ir_data); if (ret < 0) return ret; /* * convert als data count to lux. * if lux_scale = 125, lux = count * 0.031 * if lux_scale = 2000, lux = count * 0.49 */ if (chip->lux_scale == 125) als_ir_data = (als_ir_data * 31) / 1000; else als_ir_data = (als_ir_data * 49) / 100; *als_data = als_ir_data; return 0; } static int isl29028_ir_get(struct isl29028_chip *chip, int *ir_data) { struct device *dev = regmap_get_device(chip->regmap); int ret; ret = isl29028_set_als_ir_mode(chip, ISL29028_MODE_IR); if (ret < 0) { dev_err(dev, "%s(): Error %d enabling IR mode\n", __func__, ret); return ret; } return isl29028_read_als_ir(chip, ir_data); } static int isl29028_set_pm_runtime_busy(struct isl29028_chip *chip, bool on) { struct device *dev = regmap_get_device(chip->regmap); int ret; if (on) { ret = pm_runtime_resume_and_get(dev); } else { pm_runtime_mark_last_busy(dev); ret = pm_runtime_put_autosuspend(dev); } return ret; } /* Channel IO */ static int isl29028_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct isl29028_chip *chip = iio_priv(indio_dev); struct device *dev = regmap_get_device(chip->regmap); int ret; ret = isl29028_set_pm_runtime_busy(chip, true); if (ret < 0) return ret; mutex_lock(&chip->lock); ret = -EINVAL; switch (chan->type) { case IIO_PROXIMITY: if (mask != IIO_CHAN_INFO_SAMP_FREQ) { dev_err(dev, "%s(): proximity: Mask value 0x%08lx is not supported\n", __func__, mask); break; } if (val < 1 || val > 100) { dev_err(dev, "%s(): proximity: Sampling frequency %d is not in the range [1:100]\n", __func__, val); break; } ret = isl29028_set_proxim_sampling(chip, val, val2); break; case IIO_LIGHT: if (mask != IIO_CHAN_INFO_SCALE) { dev_err(dev, "%s(): light: Mask value 0x%08lx is not supported\n", __func__, mask); break; } if (val != 125 && val != 2000) { dev_err(dev, "%s(): light: Lux scale %d is not in the set {125, 2000}\n", __func__, val); break; } ret = isl29028_set_als_scale(chip, val); break; default: dev_err(dev, "%s(): Unsupported channel type %x\n", __func__, chan->type); break; } mutex_unlock(&chip->lock); if (ret < 0) return ret; ret = isl29028_set_pm_runtime_busy(chip, false); if (ret < 0) return ret; return ret; } static int isl29028_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct isl29028_chip *chip = iio_priv(indio_dev); struct device *dev = regmap_get_device(chip->regmap); int ret, pm_ret; ret = isl29028_set_pm_runtime_busy(chip, true); if (ret < 0) return ret; mutex_lock(&chip->lock); ret = -EINVAL; switch (mask) { case IIO_CHAN_INFO_RAW: case IIO_CHAN_INFO_PROCESSED: switch (chan->type) { case IIO_LIGHT: ret = isl29028_als_get(chip, val); break; case IIO_INTENSITY: ret = isl29028_ir_get(chip, val); break; case IIO_PROXIMITY: ret = isl29028_read_proxim(chip, val); break; default: break; } if (ret < 0) break; ret = IIO_VAL_INT; break; case IIO_CHAN_INFO_SAMP_FREQ: if (chan->type != IIO_PROXIMITY) break; *val = chip->prox_sampling_int; *val2 = chip->prox_sampling_frac; ret = IIO_VAL_INT; break; case IIO_CHAN_INFO_SCALE: if (chan->type != IIO_LIGHT) break; *val = chip->lux_scale; ret = IIO_VAL_INT; break; default: dev_err(dev, "%s(): mask value 0x%08lx is not supported\n", __func__, mask); break; } mutex_unlock(&chip->lock); if (ret < 0) return ret; /** * Preserve the ret variable if the call to * isl29028_set_pm_runtime_busy() is successful so the reading * (if applicable) is returned to user space. */ pm_ret = isl29028_set_pm_runtime_busy(chip, false); if (pm_ret < 0) return pm_ret; return ret; } static IIO_CONST_ATTR(in_proximity_sampling_frequency_available, "1.25 2.5 5 10 13.3 20 80 100"); static IIO_CONST_ATTR(in_illuminance_scale_available, "125 2000"); #define ISL29028_CONST_ATTR(name) (&iio_const_attr_##name.dev_attr.attr) static struct attribute *isl29028_attributes[] = { ISL29028_CONST_ATTR(in_proximity_sampling_frequency_available), ISL29028_CONST_ATTR(in_illuminance_scale_available), NULL, }; static const struct attribute_group isl29108_group = { .attrs = isl29028_attributes, }; static const struct iio_chan_spec isl29028_channels[] = { { .type = IIO_LIGHT, .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | BIT(IIO_CHAN_INFO_SCALE), }, { .type = IIO_INTENSITY, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), }, { .type = IIO_PROXIMITY, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SAMP_FREQ), } }; static const struct iio_info isl29028_info = { .attrs = &isl29108_group, .read_raw = isl29028_read_raw, .write_raw = isl29028_write_raw, }; static int isl29028_clear_configure_reg(struct isl29028_chip *chip) { struct device *dev = regmap_get_device(chip->regmap); int ret; ret = regmap_write(chip->regmap, ISL29028_REG_CONFIGURE, 0x0); if (ret < 0) dev_err(dev, "%s(): Error %d clearing the CONFIGURE register\n", __func__, ret); chip->als_ir_mode = ISL29028_MODE_NONE; chip->enable_prox = false; return ret; } static bool isl29028_is_volatile_reg(struct device *dev, unsigned int reg) { switch (reg) { case ISL29028_REG_INTERRUPT: case ISL29028_REG_PROX_DATA: case ISL29028_REG_ALSIR_L: case ISL29028_REG_ALSIR_U: return true; default: return false; } } static const struct regmap_config isl29028_regmap_config = { .reg_bits = 8, .val_bits = 8, .volatile_reg = isl29028_is_volatile_reg, .max_register = ISL29028_NUM_REGS - 1, .num_reg_defaults_raw = ISL29028_NUM_REGS, .cache_type = REGCACHE_RBTREE, }; static int isl29028_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct isl29028_chip *chip; struct iio_dev *indio_dev; int ret; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*chip)); if (!indio_dev) return -ENOMEM; chip = iio_priv(indio_dev); i2c_set_clientdata(client, indio_dev); mutex_init(&chip->lock); chip->regmap = devm_regmap_init_i2c(client, &isl29028_regmap_config); if (IS_ERR(chip->regmap)) { ret = PTR_ERR(chip->regmap); dev_err(&client->dev, "%s: Error %d initializing regmap\n", __func__, ret); return ret; } chip->enable_prox = false; chip->prox_sampling_int = 20; chip->prox_sampling_frac = 0; chip->lux_scale = 2000; ret = regmap_write(chip->regmap, ISL29028_REG_TEST1_MODE, 0x0); if (ret < 0) { dev_err(&client->dev, "%s(): Error %d writing to TEST1_MODE register\n", __func__, ret); return ret; } ret = regmap_write(chip->regmap, ISL29028_REG_TEST2_MODE, 0x0); if (ret < 0) { dev_err(&client->dev, "%s(): Error %d writing to TEST2_MODE register\n", __func__, ret); return ret; } ret = isl29028_clear_configure_reg(chip); if (ret < 0) return ret; indio_dev->info = &isl29028_info; indio_dev->channels = isl29028_channels; indio_dev->num_channels = ARRAY_SIZE(isl29028_channels); indio_dev->name = id->name; indio_dev->modes = INDIO_DIRECT_MODE; pm_runtime_enable(&client->dev); pm_runtime_set_autosuspend_delay(&client->dev, ISL29028_POWER_OFF_DELAY_MS); pm_runtime_use_autosuspend(&client->dev); ret = iio_device_register(indio_dev); if (ret < 0) { dev_err(&client->dev, "%s(): iio registration failed with error %d\n", __func__, ret); return ret; } return 0; } static int isl29028_remove(struct i2c_client *client) { struct iio_dev *indio_dev = i2c_get_clientdata(client); struct isl29028_chip *chip = iio_priv(indio_dev); iio_device_unregister(indio_dev); pm_runtime_disable(&client->dev); pm_runtime_set_suspended(&client->dev); return isl29028_clear_configure_reg(chip); } static int __maybe_unused isl29028_suspend(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct isl29028_chip *chip = iio_priv(indio_dev); int ret; mutex_lock(&chip->lock); ret = isl29028_clear_configure_reg(chip); mutex_unlock(&chip->lock); return ret; } static int __maybe_unused isl29028_resume(struct device *dev) { /** * The specific component (ALS/IR or proximity) will enable itself as * needed the next time that the user requests a reading. This is done * above in isl29028_set_als_ir_mode() and isl29028_enable_proximity(). */ return 0; } static const struct dev_pm_ops isl29028_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) SET_RUNTIME_PM_OPS(isl29028_suspend, isl29028_resume, NULL) }; static const struct i2c_device_id isl29028_id[] = { {"isl29028", 0}, {"isl29030", 0}, {} }; MODULE_DEVICE_TABLE(i2c, isl29028_id); static const struct of_device_id isl29028_of_match[] = { { .compatible = "isl,isl29028", }, /* for backward compat., don't use */ { .compatible = "isil,isl29028", }, { .compatible = "isil,isl29030", }, { }, }; MODULE_DEVICE_TABLE(of, isl29028_of_match); static struct i2c_driver isl29028_driver = { .driver = { .name = "isl29028", .pm = &isl29028_pm_ops, .of_match_table = isl29028_of_match, }, .probe = isl29028_probe, .remove = isl29028_remove, .id_table = isl29028_id, }; module_i2c_driver(isl29028_driver); MODULE_DESCRIPTION("ISL29028 Ambient Light and Proximity Sensor driver"); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Laxman Dewangan ");