/* * Broadcom NetXtreme-E RoCE driver. * * Copyright (c) 2016 - 2017, Broadcom. All rights reserved. The term * Broadcom refers to Broadcom Limited and/or its subsidiaries. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * BSD license below: * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Description: Slow Path Operators */ #define dev_fmt(fmt) "QPLIB: " fmt #include #include #include #include #include "roce_hsi.h" #include "qplib_res.h" #include "qplib_rcfw.h" #include "qplib_sp.h" const struct bnxt_qplib_gid bnxt_qplib_gid_zero = {{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }; /* Device */ static bool bnxt_qplib_is_atomic_cap(struct bnxt_qplib_rcfw *rcfw) { u16 pcie_ctl2 = 0; if (!bnxt_qplib_is_chip_gen_p5(rcfw->res->cctx)) return false; pcie_capability_read_word(rcfw->pdev, PCI_EXP_DEVCTL2, &pcie_ctl2); return (pcie_ctl2 & PCI_EXP_DEVCTL2_ATOMIC_REQ); } static void bnxt_qplib_query_version(struct bnxt_qplib_rcfw *rcfw, char *fw_ver) { struct cmdq_query_version req; struct creq_query_version_resp resp; u16 cmd_flags = 0; int rc = 0; RCFW_CMD_PREP(req, QUERY_VERSION, cmd_flags); rc = bnxt_qplib_rcfw_send_message(rcfw, (void *)&req, (void *)&resp, NULL, 0); if (rc) return; fw_ver[0] = resp.fw_maj; fw_ver[1] = resp.fw_minor; fw_ver[2] = resp.fw_bld; fw_ver[3] = resp.fw_rsvd; } int bnxt_qplib_get_dev_attr(struct bnxt_qplib_rcfw *rcfw, struct bnxt_qplib_dev_attr *attr, bool vf) { struct cmdq_query_func req; struct creq_query_func_resp resp; struct bnxt_qplib_rcfw_sbuf *sbuf; struct creq_query_func_resp_sb *sb; u16 cmd_flags = 0; u32 temp; u8 *tqm_alloc; int i, rc = 0; RCFW_CMD_PREP(req, QUERY_FUNC, cmd_flags); sbuf = bnxt_qplib_rcfw_alloc_sbuf(rcfw, sizeof(*sb)); if (!sbuf) { dev_err(&rcfw->pdev->dev, "SP: QUERY_FUNC alloc side buffer failed\n"); return -ENOMEM; } sb = sbuf->sb; req.resp_size = sizeof(*sb) / BNXT_QPLIB_CMDQE_UNITS; rc = bnxt_qplib_rcfw_send_message(rcfw, (void *)&req, (void *)&resp, (void *)sbuf, 0); if (rc) goto bail; /* Extract the context from the side buffer */ attr->max_qp = le32_to_cpu(sb->max_qp); /* max_qp value reported by FW for PF doesn't include the QP1 for PF */ if (!vf) attr->max_qp += 1; attr->max_qp_rd_atom = sb->max_qp_rd_atom > BNXT_QPLIB_MAX_OUT_RD_ATOM ? BNXT_QPLIB_MAX_OUT_RD_ATOM : sb->max_qp_rd_atom; attr->max_qp_init_rd_atom = sb->max_qp_init_rd_atom > BNXT_QPLIB_MAX_OUT_RD_ATOM ? BNXT_QPLIB_MAX_OUT_RD_ATOM : sb->max_qp_init_rd_atom; attr->max_qp_wqes = le16_to_cpu(sb->max_qp_wr); /* * 128 WQEs needs to be reserved for the HW (8916). Prevent * reporting the max number */ attr->max_qp_wqes -= BNXT_QPLIB_RESERVED_QP_WRS + 1; attr->max_qp_sges = bnxt_qplib_is_chip_gen_p5(rcfw->res->cctx) ? 6 : sb->max_sge; attr->max_cq = le32_to_cpu(sb->max_cq); attr->max_cq_wqes = le32_to_cpu(sb->max_cqe); attr->max_cq_sges = attr->max_qp_sges; attr->max_mr = le32_to_cpu(sb->max_mr); attr->max_mw = le32_to_cpu(sb->max_mw); attr->max_mr_size = le64_to_cpu(sb->max_mr_size); attr->max_pd = 64 * 1024; attr->max_raw_ethy_qp = le32_to_cpu(sb->max_raw_eth_qp); attr->max_ah = le32_to_cpu(sb->max_ah); attr->max_srq = le16_to_cpu(sb->max_srq); attr->max_srq_wqes = le32_to_cpu(sb->max_srq_wr) - 1; attr->max_srq_sges = sb->max_srq_sge; attr->max_pkey = le32_to_cpu(sb->max_pkeys); /* * Some versions of FW reports more than 0xFFFF. * Restrict it for now to 0xFFFF to avoid * reporting trucated value */ if (attr->max_pkey > 0xFFFF) { /* ib_port_attr::pkey_tbl_len is u16 */ attr->max_pkey = 0xFFFF; } attr->max_inline_data = le32_to_cpu(sb->max_inline_data); attr->l2_db_size = (sb->l2_db_space_size + 1) * (0x01 << RCFW_DBR_BASE_PAGE_SHIFT); attr->max_sgid = BNXT_QPLIB_NUM_GIDS_SUPPORTED; bnxt_qplib_query_version(rcfw, attr->fw_ver); for (i = 0; i < MAX_TQM_ALLOC_REQ / 4; i++) { temp = le32_to_cpu(sb->tqm_alloc_reqs[i]); tqm_alloc = (u8 *)&temp; attr->tqm_alloc_reqs[i * 4] = *tqm_alloc; attr->tqm_alloc_reqs[i * 4 + 1] = *(++tqm_alloc); attr->tqm_alloc_reqs[i * 4 + 2] = *(++tqm_alloc); attr->tqm_alloc_reqs[i * 4 + 3] = *(++tqm_alloc); } attr->is_atomic = bnxt_qplib_is_atomic_cap(rcfw); bail: bnxt_qplib_rcfw_free_sbuf(rcfw, sbuf); return rc; } int bnxt_qplib_set_func_resources(struct bnxt_qplib_res *res, struct bnxt_qplib_rcfw *rcfw, struct bnxt_qplib_ctx *ctx) { struct cmdq_set_func_resources req; struct creq_set_func_resources_resp resp; u16 cmd_flags = 0; int rc = 0; RCFW_CMD_PREP(req, SET_FUNC_RESOURCES, cmd_flags); req.number_of_qp = cpu_to_le32(ctx->qpc_count); req.number_of_mrw = cpu_to_le32(ctx->mrw_count); req.number_of_srq = cpu_to_le32(ctx->srqc_count); req.number_of_cq = cpu_to_le32(ctx->cq_count); req.max_qp_per_vf = cpu_to_le32(ctx->vf_res.max_qp_per_vf); req.max_mrw_per_vf = cpu_to_le32(ctx->vf_res.max_mrw_per_vf); req.max_srq_per_vf = cpu_to_le32(ctx->vf_res.max_srq_per_vf); req.max_cq_per_vf = cpu_to_le32(ctx->vf_res.max_cq_per_vf); req.max_gid_per_vf = cpu_to_le32(ctx->vf_res.max_gid_per_vf); rc = bnxt_qplib_rcfw_send_message(rcfw, (void *)&req, (void *)&resp, NULL, 0); if (rc) { dev_err(&res->pdev->dev, "Failed to set function resources\n"); } return rc; } /* SGID */ int bnxt_qplib_get_sgid(struct bnxt_qplib_res *res, struct bnxt_qplib_sgid_tbl *sgid_tbl, int index, struct bnxt_qplib_gid *gid) { if (index >= sgid_tbl->max) { dev_err(&res->pdev->dev, "Index %d exceeded SGID table max (%d)\n", index, sgid_tbl->max); return -EINVAL; } memcpy(gid, &sgid_tbl->tbl[index].gid, sizeof(*gid)); return 0; } int bnxt_qplib_del_sgid(struct bnxt_qplib_sgid_tbl *sgid_tbl, struct bnxt_qplib_gid *gid, u16 vlan_id, bool update) { struct bnxt_qplib_res *res = to_bnxt_qplib(sgid_tbl, struct bnxt_qplib_res, sgid_tbl); struct bnxt_qplib_rcfw *rcfw = res->rcfw; int index; if (!sgid_tbl) { dev_err(&res->pdev->dev, "SGID table not allocated\n"); return -EINVAL; } /* Do we need a sgid_lock here? */ if (!sgid_tbl->active) { dev_err(&res->pdev->dev, "SGID table has no active entries\n"); return -ENOMEM; } for (index = 0; index < sgid_tbl->max; index++) { if (!memcmp(&sgid_tbl->tbl[index].gid, gid, sizeof(*gid)) && vlan_id == sgid_tbl->tbl[index].vlan_id) break; } if (index == sgid_tbl->max) { dev_warn(&res->pdev->dev, "GID not found in the SGID table\n"); return 0; } /* Remove GID from the SGID table */ if (update) { struct cmdq_delete_gid req; struct creq_delete_gid_resp resp; u16 cmd_flags = 0; int rc; RCFW_CMD_PREP(req, DELETE_GID, cmd_flags); if (sgid_tbl->hw_id[index] == 0xFFFF) { dev_err(&res->pdev->dev, "GID entry contains an invalid HW id\n"); return -EINVAL; } req.gid_index = cpu_to_le16(sgid_tbl->hw_id[index]); rc = bnxt_qplib_rcfw_send_message(rcfw, (void *)&req, (void *)&resp, NULL, 0); if (rc) return rc; } memcpy(&sgid_tbl->tbl[index].gid, &bnxt_qplib_gid_zero, sizeof(bnxt_qplib_gid_zero)); sgid_tbl->tbl[index].vlan_id = 0xFFFF; sgid_tbl->vlan[index] = 0; sgid_tbl->active--; dev_dbg(&res->pdev->dev, "SGID deleted hw_id[0x%x] = 0x%x active = 0x%x\n", index, sgid_tbl->hw_id[index], sgid_tbl->active); sgid_tbl->hw_id[index] = (u16)-1; /* unlock */ return 0; } int bnxt_qplib_add_sgid(struct bnxt_qplib_sgid_tbl *sgid_tbl, struct bnxt_qplib_gid *gid, u8 *smac, u16 vlan_id, bool update, u32 *index) { struct bnxt_qplib_res *res = to_bnxt_qplib(sgid_tbl, struct bnxt_qplib_res, sgid_tbl); struct bnxt_qplib_rcfw *rcfw = res->rcfw; int i, free_idx; if (!sgid_tbl) { dev_err(&res->pdev->dev, "SGID table not allocated\n"); return -EINVAL; } /* Do we need a sgid_lock here? */ if (sgid_tbl->active == sgid_tbl->max) { dev_err(&res->pdev->dev, "SGID table is full\n"); return -ENOMEM; } free_idx = sgid_tbl->max; for (i = 0; i < sgid_tbl->max; i++) { if (!memcmp(&sgid_tbl->tbl[i], gid, sizeof(*gid)) && sgid_tbl->tbl[i].vlan_id == vlan_id) { dev_dbg(&res->pdev->dev, "SGID entry already exist in entry %d!\n", i); *index = i; return -EALREADY; } else if (!memcmp(&sgid_tbl->tbl[i], &bnxt_qplib_gid_zero, sizeof(bnxt_qplib_gid_zero)) && free_idx == sgid_tbl->max) { free_idx = i; } } if (free_idx == sgid_tbl->max) { dev_err(&res->pdev->dev, "SGID table is FULL but count is not MAX??\n"); return -ENOMEM; } if (update) { struct cmdq_add_gid req; struct creq_add_gid_resp resp; u16 cmd_flags = 0; int rc; RCFW_CMD_PREP(req, ADD_GID, cmd_flags); req.gid[0] = cpu_to_be32(((u32 *)gid->data)[3]); req.gid[1] = cpu_to_be32(((u32 *)gid->data)[2]); req.gid[2] = cpu_to_be32(((u32 *)gid->data)[1]); req.gid[3] = cpu_to_be32(((u32 *)gid->data)[0]); /* * driver should ensure that all RoCE traffic is always VLAN * tagged if RoCE traffic is running on non-zero VLAN ID or * RoCE traffic is running on non-zero Priority. */ if ((vlan_id != 0xFFFF) || res->prio) { if (vlan_id != 0xFFFF) req.vlan = cpu_to_le16 (vlan_id & CMDQ_ADD_GID_VLAN_VLAN_ID_MASK); req.vlan |= cpu_to_le16 (CMDQ_ADD_GID_VLAN_TPID_TPID_8100 | CMDQ_ADD_GID_VLAN_VLAN_EN); } /* MAC in network format */ req.src_mac[0] = cpu_to_be16(((u16 *)smac)[0]); req.src_mac[1] = cpu_to_be16(((u16 *)smac)[1]); req.src_mac[2] = cpu_to_be16(((u16 *)smac)[2]); rc = bnxt_qplib_rcfw_send_message(rcfw, (void *)&req, (void *)&resp, NULL, 0); if (rc) return rc; sgid_tbl->hw_id[free_idx] = le32_to_cpu(resp.xid); } /* Add GID to the sgid_tbl */ memcpy(&sgid_tbl->tbl[free_idx], gid, sizeof(*gid)); sgid_tbl->tbl[free_idx].vlan_id = vlan_id; sgid_tbl->active++; if (vlan_id != 0xFFFF) sgid_tbl->vlan[free_idx] = 1; dev_dbg(&res->pdev->dev, "SGID added hw_id[0x%x] = 0x%x active = 0x%x\n", free_idx, sgid_tbl->hw_id[free_idx], sgid_tbl->active); *index = free_idx; /* unlock */ return 0; } int bnxt_qplib_update_sgid(struct bnxt_qplib_sgid_tbl *sgid_tbl, struct bnxt_qplib_gid *gid, u16 gid_idx, u8 *smac) { struct bnxt_qplib_res *res = to_bnxt_qplib(sgid_tbl, struct bnxt_qplib_res, sgid_tbl); struct bnxt_qplib_rcfw *rcfw = res->rcfw; struct creq_modify_gid_resp resp; struct cmdq_modify_gid req; int rc; u16 cmd_flags = 0; RCFW_CMD_PREP(req, MODIFY_GID, cmd_flags); req.gid[0] = cpu_to_be32(((u32 *)gid->data)[3]); req.gid[1] = cpu_to_be32(((u32 *)gid->data)[2]); req.gid[2] = cpu_to_be32(((u32 *)gid->data)[1]); req.gid[3] = cpu_to_be32(((u32 *)gid->data)[0]); if (res->prio) { req.vlan |= cpu_to_le16 (CMDQ_ADD_GID_VLAN_TPID_TPID_8100 | CMDQ_ADD_GID_VLAN_VLAN_EN); } /* MAC in network format */ req.src_mac[0] = cpu_to_be16(((u16 *)smac)[0]); req.src_mac[1] = cpu_to_be16(((u16 *)smac)[1]); req.src_mac[2] = cpu_to_be16(((u16 *)smac)[2]); req.gid_index = cpu_to_le16(gid_idx); rc = bnxt_qplib_rcfw_send_message(rcfw, (void *)&req, (void *)&resp, NULL, 0); return rc; } /* pkeys */ int bnxt_qplib_get_pkey(struct bnxt_qplib_res *res, struct bnxt_qplib_pkey_tbl *pkey_tbl, u16 index, u16 *pkey) { if (index == 0xFFFF) { *pkey = 0xFFFF; return 0; } if (index >= pkey_tbl->max) { dev_err(&res->pdev->dev, "Index %d exceeded PKEY table max (%d)\n", index, pkey_tbl->max); return -EINVAL; } memcpy(pkey, &pkey_tbl->tbl[index], sizeof(*pkey)); return 0; } int bnxt_qplib_del_pkey(struct bnxt_qplib_res *res, struct bnxt_qplib_pkey_tbl *pkey_tbl, u16 *pkey, bool update) { int i, rc = 0; if (!pkey_tbl) { dev_err(&res->pdev->dev, "PKEY table not allocated\n"); return -EINVAL; } /* Do we need a pkey_lock here? */ if (!pkey_tbl->active) { dev_err(&res->pdev->dev, "PKEY table has no active entries\n"); return -ENOMEM; } for (i = 0; i < pkey_tbl->max; i++) { if (!memcmp(&pkey_tbl->tbl[i], pkey, sizeof(*pkey))) break; } if (i == pkey_tbl->max) { dev_err(&res->pdev->dev, "PKEY 0x%04x not found in the pkey table\n", *pkey); return -ENOMEM; } memset(&pkey_tbl->tbl[i], 0, sizeof(*pkey)); pkey_tbl->active--; /* unlock */ return rc; } int bnxt_qplib_add_pkey(struct bnxt_qplib_res *res, struct bnxt_qplib_pkey_tbl *pkey_tbl, u16 *pkey, bool update) { int i, free_idx, rc = 0; if (!pkey_tbl) { dev_err(&res->pdev->dev, "PKEY table not allocated\n"); return -EINVAL; } /* Do we need a pkey_lock here? */ if (pkey_tbl->active == pkey_tbl->max) { dev_err(&res->pdev->dev, "PKEY table is full\n"); return -ENOMEM; } free_idx = pkey_tbl->max; for (i = 0; i < pkey_tbl->max; i++) { if (!memcmp(&pkey_tbl->tbl[i], pkey, sizeof(*pkey))) return -EALREADY; else if (!pkey_tbl->tbl[i] && free_idx == pkey_tbl->max) free_idx = i; } if (free_idx == pkey_tbl->max) { dev_err(&res->pdev->dev, "PKEY table is FULL but count is not MAX??\n"); return -ENOMEM; } /* Add PKEY to the pkey_tbl */ memcpy(&pkey_tbl->tbl[free_idx], pkey, sizeof(*pkey)); pkey_tbl->active++; /* unlock */ return rc; } /* AH */ int bnxt_qplib_create_ah(struct bnxt_qplib_res *res, struct bnxt_qplib_ah *ah, bool block) { struct bnxt_qplib_rcfw *rcfw = res->rcfw; struct cmdq_create_ah req; struct creq_create_ah_resp resp; u16 cmd_flags = 0; u32 temp32[4]; u16 temp16[3]; int rc; RCFW_CMD_PREP(req, CREATE_AH, cmd_flags); memcpy(temp32, ah->dgid.data, sizeof(struct bnxt_qplib_gid)); req.dgid[0] = cpu_to_le32(temp32[0]); req.dgid[1] = cpu_to_le32(temp32[1]); req.dgid[2] = cpu_to_le32(temp32[2]); req.dgid[3] = cpu_to_le32(temp32[3]); req.type = ah->nw_type; req.hop_limit = ah->hop_limit; req.sgid_index = cpu_to_le16(res->sgid_tbl.hw_id[ah->sgid_index]); req.dest_vlan_id_flow_label = cpu_to_le32((ah->flow_label & CMDQ_CREATE_AH_FLOW_LABEL_MASK) | CMDQ_CREATE_AH_DEST_VLAN_ID_MASK); req.pd_id = cpu_to_le32(ah->pd->id); req.traffic_class = ah->traffic_class; /* MAC in network format */ memcpy(temp16, ah->dmac, 6); req.dest_mac[0] = cpu_to_le16(temp16[0]); req.dest_mac[1] = cpu_to_le16(temp16[1]); req.dest_mac[2] = cpu_to_le16(temp16[2]); rc = bnxt_qplib_rcfw_send_message(rcfw, (void *)&req, (void *)&resp, NULL, block); if (rc) return rc; ah->id = le32_to_cpu(resp.xid); return 0; } void bnxt_qplib_destroy_ah(struct bnxt_qplib_res *res, struct bnxt_qplib_ah *ah, bool block) { struct bnxt_qplib_rcfw *rcfw = res->rcfw; struct cmdq_destroy_ah req; struct creq_destroy_ah_resp resp; u16 cmd_flags = 0; /* Clean up the AH table in the device */ RCFW_CMD_PREP(req, DESTROY_AH, cmd_flags); req.ah_cid = cpu_to_le32(ah->id); bnxt_qplib_rcfw_send_message(rcfw, (void *)&req, (void *)&resp, NULL, block); } /* MRW */ int bnxt_qplib_free_mrw(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mrw) { struct bnxt_qplib_rcfw *rcfw = res->rcfw; struct cmdq_deallocate_key req; struct creq_deallocate_key_resp resp; u16 cmd_flags = 0; int rc; if (mrw->lkey == 0xFFFFFFFF) { dev_info(&res->pdev->dev, "SP: Free a reserved lkey MRW\n"); return 0; } RCFW_CMD_PREP(req, DEALLOCATE_KEY, cmd_flags); req.mrw_flags = mrw->type; if ((mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE1) || (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2A) || (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2B)) req.key = cpu_to_le32(mrw->rkey); else req.key = cpu_to_le32(mrw->lkey); rc = bnxt_qplib_rcfw_send_message(rcfw, (void *)&req, (void *)&resp, NULL, 0); if (rc) return rc; /* Free the qplib's MRW memory */ if (mrw->hwq.max_elements) bnxt_qplib_free_hwq(res, &mrw->hwq); return 0; } int bnxt_qplib_alloc_mrw(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mrw) { struct bnxt_qplib_rcfw *rcfw = res->rcfw; struct cmdq_allocate_mrw req; struct creq_allocate_mrw_resp resp; u16 cmd_flags = 0; unsigned long tmp; int rc; RCFW_CMD_PREP(req, ALLOCATE_MRW, cmd_flags); req.pd_id = cpu_to_le32(mrw->pd->id); req.mrw_flags = mrw->type; if ((mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_PMR && mrw->flags & BNXT_QPLIB_FR_PMR) || mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2A || mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2B) req.access = CMDQ_ALLOCATE_MRW_ACCESS_CONSUMER_OWNED_KEY; tmp = (unsigned long)mrw; req.mrw_handle = cpu_to_le64(tmp); rc = bnxt_qplib_rcfw_send_message(rcfw, (void *)&req, (void *)&resp, NULL, 0); if (rc) return rc; if ((mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE1) || (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2A) || (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2B)) mrw->rkey = le32_to_cpu(resp.xid); else mrw->lkey = le32_to_cpu(resp.xid); return 0; } int bnxt_qplib_dereg_mrw(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mrw, bool block) { struct bnxt_qplib_rcfw *rcfw = res->rcfw; struct cmdq_deregister_mr req; struct creq_deregister_mr_resp resp; u16 cmd_flags = 0; int rc; RCFW_CMD_PREP(req, DEREGISTER_MR, cmd_flags); req.lkey = cpu_to_le32(mrw->lkey); rc = bnxt_qplib_rcfw_send_message(rcfw, (void *)&req, (void *)&resp, NULL, block); if (rc) return rc; /* Free the qplib's MR memory */ if (mrw->hwq.max_elements) { mrw->va = 0; mrw->total_size = 0; bnxt_qplib_free_hwq(res, &mrw->hwq); } return 0; } int bnxt_qplib_reg_mr(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mr, struct ib_umem *umem, int num_pbls, u32 buf_pg_size) { struct bnxt_qplib_rcfw *rcfw = res->rcfw; struct bnxt_qplib_hwq_attr hwq_attr = {}; struct bnxt_qplib_sg_info sginfo = {}; struct creq_register_mr_resp resp; struct cmdq_register_mr req; u16 cmd_flags = 0, level; int pages, rc; u32 pg_size; if (num_pbls) { pages = roundup_pow_of_two(num_pbls); /* Allocate memory for the non-leaf pages to store buf ptrs. * Non-leaf pages always uses system PAGE_SIZE */ /* Free the hwq if it already exist, must be a rereg */ if (mr->hwq.max_elements) bnxt_qplib_free_hwq(res, &mr->hwq); hwq_attr.res = res; hwq_attr.depth = pages; hwq_attr.stride = sizeof(dma_addr_t); hwq_attr.type = HWQ_TYPE_MR; hwq_attr.sginfo = &sginfo; hwq_attr.sginfo->umem = umem; hwq_attr.sginfo->npages = pages; hwq_attr.sginfo->pgsize = buf_pg_size; hwq_attr.sginfo->pgshft = ilog2(buf_pg_size); rc = bnxt_qplib_alloc_init_hwq(&mr->hwq, &hwq_attr); if (rc) { dev_err(&res->pdev->dev, "SP: Reg MR memory allocation failed\n"); return -ENOMEM; } } RCFW_CMD_PREP(req, REGISTER_MR, cmd_flags); /* Configure the request */ if (mr->hwq.level == PBL_LVL_MAX) { /* No PBL provided, just use system PAGE_SIZE */ level = 0; req.pbl = 0; pg_size = PAGE_SIZE; } else { level = mr->hwq.level; req.pbl = cpu_to_le64(mr->hwq.pbl[PBL_LVL_0].pg_map_arr[0]); } pg_size = buf_pg_size ? buf_pg_size : PAGE_SIZE; req.log2_pg_size_lvl = (level << CMDQ_REGISTER_MR_LVL_SFT) | ((ilog2(pg_size) << CMDQ_REGISTER_MR_LOG2_PG_SIZE_SFT) & CMDQ_REGISTER_MR_LOG2_PG_SIZE_MASK); req.log2_pbl_pg_size = cpu_to_le16(((ilog2(PAGE_SIZE) << CMDQ_REGISTER_MR_LOG2_PBL_PG_SIZE_SFT) & CMDQ_REGISTER_MR_LOG2_PBL_PG_SIZE_MASK)); req.access = (mr->flags & 0xFFFF); req.va = cpu_to_le64(mr->va); req.key = cpu_to_le32(mr->lkey); req.mr_size = cpu_to_le64(mr->total_size); rc = bnxt_qplib_rcfw_send_message(rcfw, (void *)&req, (void *)&resp, NULL, false); if (rc) goto fail; return 0; fail: if (mr->hwq.max_elements) bnxt_qplib_free_hwq(res, &mr->hwq); return rc; } int bnxt_qplib_alloc_fast_reg_page_list(struct bnxt_qplib_res *res, struct bnxt_qplib_frpl *frpl, int max_pg_ptrs) { struct bnxt_qplib_hwq_attr hwq_attr = {}; struct bnxt_qplib_sg_info sginfo = {}; int pg_ptrs, pages, rc; /* Re-calculate the max to fit the HWQ allocation model */ pg_ptrs = roundup_pow_of_two(max_pg_ptrs); pages = pg_ptrs >> MAX_PBL_LVL_1_PGS_SHIFT; if (!pages) pages++; if (pages > MAX_PBL_LVL_1_PGS) return -ENOMEM; sginfo.pgsize = PAGE_SIZE; sginfo.nopte = true; hwq_attr.res = res; hwq_attr.depth = pg_ptrs; hwq_attr.stride = PAGE_SIZE; hwq_attr.sginfo = &sginfo; hwq_attr.type = HWQ_TYPE_CTX; rc = bnxt_qplib_alloc_init_hwq(&frpl->hwq, &hwq_attr); if (!rc) frpl->max_pg_ptrs = pg_ptrs; return rc; } int bnxt_qplib_free_fast_reg_page_list(struct bnxt_qplib_res *res, struct bnxt_qplib_frpl *frpl) { bnxt_qplib_free_hwq(res, &frpl->hwq); return 0; } int bnxt_qplib_map_tc2cos(struct bnxt_qplib_res *res, u16 *cids) { struct bnxt_qplib_rcfw *rcfw = res->rcfw; struct cmdq_map_tc_to_cos req; struct creq_map_tc_to_cos_resp resp; u16 cmd_flags = 0; RCFW_CMD_PREP(req, MAP_TC_TO_COS, cmd_flags); req.cos0 = cpu_to_le16(cids[0]); req.cos1 = cpu_to_le16(cids[1]); return bnxt_qplib_rcfw_send_message(rcfw, (void *)&req, (void *)&resp, NULL, 0); } int bnxt_qplib_get_roce_stats(struct bnxt_qplib_rcfw *rcfw, struct bnxt_qplib_roce_stats *stats) { struct cmdq_query_roce_stats req; struct creq_query_roce_stats_resp resp; struct bnxt_qplib_rcfw_sbuf *sbuf; struct creq_query_roce_stats_resp_sb *sb; u16 cmd_flags = 0; int rc = 0; RCFW_CMD_PREP(req, QUERY_ROCE_STATS, cmd_flags); sbuf = bnxt_qplib_rcfw_alloc_sbuf(rcfw, sizeof(*sb)); if (!sbuf) { dev_err(&rcfw->pdev->dev, "SP: QUERY_ROCE_STATS alloc side buffer failed\n"); return -ENOMEM; } sb = sbuf->sb; req.resp_size = sizeof(*sb) / BNXT_QPLIB_CMDQE_UNITS; rc = bnxt_qplib_rcfw_send_message(rcfw, (void *)&req, (void *)&resp, (void *)sbuf, 0); if (rc) goto bail; /* Extract the context from the side buffer */ stats->to_retransmits = le64_to_cpu(sb->to_retransmits); stats->seq_err_naks_rcvd = le64_to_cpu(sb->seq_err_naks_rcvd); stats->max_retry_exceeded = le64_to_cpu(sb->max_retry_exceeded); stats->rnr_naks_rcvd = le64_to_cpu(sb->rnr_naks_rcvd); stats->missing_resp = le64_to_cpu(sb->missing_resp); stats->unrecoverable_err = le64_to_cpu(sb->unrecoverable_err); stats->bad_resp_err = le64_to_cpu(sb->bad_resp_err); stats->local_qp_op_err = le64_to_cpu(sb->local_qp_op_err); stats->local_protection_err = le64_to_cpu(sb->local_protection_err); stats->mem_mgmt_op_err = le64_to_cpu(sb->mem_mgmt_op_err); stats->remote_invalid_req_err = le64_to_cpu(sb->remote_invalid_req_err); stats->remote_access_err = le64_to_cpu(sb->remote_access_err); stats->remote_op_err = le64_to_cpu(sb->remote_op_err); stats->dup_req = le64_to_cpu(sb->dup_req); stats->res_exceed_max = le64_to_cpu(sb->res_exceed_max); stats->res_length_mismatch = le64_to_cpu(sb->res_length_mismatch); stats->res_exceeds_wqe = le64_to_cpu(sb->res_exceeds_wqe); stats->res_opcode_err = le64_to_cpu(sb->res_opcode_err); stats->res_rx_invalid_rkey = le64_to_cpu(sb->res_rx_invalid_rkey); stats->res_rx_domain_err = le64_to_cpu(sb->res_rx_domain_err); stats->res_rx_no_perm = le64_to_cpu(sb->res_rx_no_perm); stats->res_rx_range_err = le64_to_cpu(sb->res_rx_range_err); stats->res_tx_invalid_rkey = le64_to_cpu(sb->res_tx_invalid_rkey); stats->res_tx_domain_err = le64_to_cpu(sb->res_tx_domain_err); stats->res_tx_no_perm = le64_to_cpu(sb->res_tx_no_perm); stats->res_tx_range_err = le64_to_cpu(sb->res_tx_range_err); stats->res_irrq_oflow = le64_to_cpu(sb->res_irrq_oflow); stats->res_unsup_opcode = le64_to_cpu(sb->res_unsup_opcode); stats->res_unaligned_atomic = le64_to_cpu(sb->res_unaligned_atomic); stats->res_rem_inv_err = le64_to_cpu(sb->res_rem_inv_err); stats->res_mem_error = le64_to_cpu(sb->res_mem_error); stats->res_srq_err = le64_to_cpu(sb->res_srq_err); stats->res_cmp_err = le64_to_cpu(sb->res_cmp_err); stats->res_invalid_dup_rkey = le64_to_cpu(sb->res_invalid_dup_rkey); stats->res_wqe_format_err = le64_to_cpu(sb->res_wqe_format_err); stats->res_cq_load_err = le64_to_cpu(sb->res_cq_load_err); stats->res_srq_load_err = le64_to_cpu(sb->res_srq_load_err); stats->res_tx_pci_err = le64_to_cpu(sb->res_tx_pci_err); stats->res_rx_pci_err = le64_to_cpu(sb->res_rx_pci_err); if (!rcfw->init_oos_stats) { rcfw->oos_prev = le64_to_cpu(sb->res_oos_drop_count); rcfw->init_oos_stats = 1; } else { stats->res_oos_drop_count += (le64_to_cpu(sb->res_oos_drop_count) - rcfw->oos_prev) & BNXT_QPLIB_OOS_COUNT_MASK; rcfw->oos_prev = le64_to_cpu(sb->res_oos_drop_count); } bail: bnxt_qplib_rcfw_free_sbuf(rcfw, sbuf); return rc; }