/* * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved. * Copyright (C) 2016-2017 Milan Broz * Copyright (C) 2016-2017 Mikulas Patocka * * This file is released under the GPL. */ #include "dm-bio-record.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DM_MSG_PREFIX "integrity" #define DEFAULT_INTERLEAVE_SECTORS 32768 #define DEFAULT_JOURNAL_SIZE_FACTOR 7 #define DEFAULT_SECTORS_PER_BITMAP_BIT 32768 #define DEFAULT_BUFFER_SECTORS 128 #define DEFAULT_JOURNAL_WATERMARK 50 #define DEFAULT_SYNC_MSEC 10000 #define DEFAULT_MAX_JOURNAL_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192) #define MIN_LOG2_INTERLEAVE_SECTORS 3 #define MAX_LOG2_INTERLEAVE_SECTORS 31 #define METADATA_WORKQUEUE_MAX_ACTIVE 16 #define RECALC_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048) #define RECALC_WRITE_SUPER 16 #define BITMAP_BLOCK_SIZE 4096 /* don't change it */ #define BITMAP_FLUSH_INTERVAL (10 * HZ) #define DISCARD_FILLER 0xf6 #define SALT_SIZE 16 /* * Warning - DEBUG_PRINT prints security-sensitive data to the log, * so it should not be enabled in the official kernel */ //#define DEBUG_PRINT //#define INTERNAL_VERIFY /* * On disk structures */ #define SB_MAGIC "integrt" #define SB_VERSION_1 1 #define SB_VERSION_2 2 #define SB_VERSION_3 3 #define SB_VERSION_4 4 #define SB_VERSION_5 5 #define SB_SECTORS 8 #define MAX_SECTORS_PER_BLOCK 8 struct superblock { __u8 magic[8]; __u8 version; __u8 log2_interleave_sectors; __le16 integrity_tag_size; __le32 journal_sections; __le64 provided_data_sectors; /* userspace uses this value */ __le32 flags; __u8 log2_sectors_per_block; __u8 log2_blocks_per_bitmap_bit; __u8 pad[2]; __le64 recalc_sector; __u8 pad2[8]; __u8 salt[SALT_SIZE]; }; #define SB_FLAG_HAVE_JOURNAL_MAC 0x1 #define SB_FLAG_RECALCULATING 0x2 #define SB_FLAG_DIRTY_BITMAP 0x4 #define SB_FLAG_FIXED_PADDING 0x8 #define SB_FLAG_FIXED_HMAC 0x10 #define JOURNAL_ENTRY_ROUNDUP 8 typedef __le64 commit_id_t; #define JOURNAL_MAC_PER_SECTOR 8 struct journal_entry { union { struct { __le32 sector_lo; __le32 sector_hi; } s; __le64 sector; } u; commit_id_t last_bytes[]; /* __u8 tag[0]; */ }; #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block]) #if BITS_PER_LONG == 64 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0) #else #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0) #endif #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector) #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1)) #define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0) #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2)) #define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0) #define JOURNAL_BLOCK_SECTORS 8 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t)) #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS) struct journal_sector { __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR]; __u8 mac[JOURNAL_MAC_PER_SECTOR]; commit_id_t commit_id; }; #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK])) #define METADATA_PADDING_SECTORS 8 #define N_COMMIT_IDS 4 static unsigned char prev_commit_seq(unsigned char seq) { return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS; } static unsigned char next_commit_seq(unsigned char seq) { return (seq + 1) % N_COMMIT_IDS; } /* * In-memory structures */ struct journal_node { struct rb_node node; sector_t sector; }; struct alg_spec { char *alg_string; char *key_string; __u8 *key; unsigned key_size; }; struct dm_integrity_c { struct dm_dev *dev; struct dm_dev *meta_dev; unsigned tag_size; __s8 log2_tag_size; sector_t start; mempool_t journal_io_mempool; struct dm_io_client *io; struct dm_bufio_client *bufio; struct workqueue_struct *metadata_wq; struct superblock *sb; unsigned journal_pages; unsigned n_bitmap_blocks; struct page_list *journal; struct page_list *journal_io; struct page_list *journal_xor; struct page_list *recalc_bitmap; struct page_list *may_write_bitmap; struct bitmap_block_status *bbs; unsigned bitmap_flush_interval; int synchronous_mode; struct bio_list synchronous_bios; struct delayed_work bitmap_flush_work; struct crypto_skcipher *journal_crypt; struct scatterlist **journal_scatterlist; struct scatterlist **journal_io_scatterlist; struct skcipher_request **sk_requests; struct crypto_shash *journal_mac; struct journal_node *journal_tree; struct rb_root journal_tree_root; sector_t provided_data_sectors; unsigned short journal_entry_size; unsigned char journal_entries_per_sector; unsigned char journal_section_entries; unsigned short journal_section_sectors; unsigned journal_sections; unsigned journal_entries; sector_t data_device_sectors; sector_t meta_device_sectors; unsigned initial_sectors; unsigned metadata_run; __s8 log2_metadata_run; __u8 log2_buffer_sectors; __u8 sectors_per_block; __u8 log2_blocks_per_bitmap_bit; unsigned char mode; int failed; struct crypto_shash *internal_hash; struct dm_target *ti; /* these variables are locked with endio_wait.lock */ struct rb_root in_progress; struct list_head wait_list; wait_queue_head_t endio_wait; struct workqueue_struct *wait_wq; struct workqueue_struct *offload_wq; unsigned char commit_seq; commit_id_t commit_ids[N_COMMIT_IDS]; unsigned committed_section; unsigned n_committed_sections; unsigned uncommitted_section; unsigned n_uncommitted_sections; unsigned free_section; unsigned char free_section_entry; unsigned free_sectors; unsigned free_sectors_threshold; struct workqueue_struct *commit_wq; struct work_struct commit_work; struct workqueue_struct *writer_wq; struct work_struct writer_work; struct workqueue_struct *recalc_wq; struct work_struct recalc_work; u8 *recalc_buffer; u8 *recalc_tags; struct bio_list flush_bio_list; unsigned long autocommit_jiffies; struct timer_list autocommit_timer; unsigned autocommit_msec; wait_queue_head_t copy_to_journal_wait; struct completion crypto_backoff; bool wrote_to_journal; bool journal_uptodate; bool just_formatted; bool recalculate_flag; bool reset_recalculate_flag; bool discard; bool fix_padding; bool fix_hmac; bool legacy_recalculate; struct alg_spec internal_hash_alg; struct alg_spec journal_crypt_alg; struct alg_spec journal_mac_alg; atomic64_t number_of_mismatches; struct notifier_block reboot_notifier; }; struct dm_integrity_range { sector_t logical_sector; sector_t n_sectors; bool waiting; union { struct rb_node node; struct { struct task_struct *task; struct list_head wait_entry; }; }; }; struct dm_integrity_io { struct work_struct work; struct dm_integrity_c *ic; enum req_opf op; bool fua; struct dm_integrity_range range; sector_t metadata_block; unsigned metadata_offset; atomic_t in_flight; blk_status_t bi_status; struct completion *completion; struct dm_bio_details bio_details; }; struct journal_completion { struct dm_integrity_c *ic; atomic_t in_flight; struct completion comp; }; struct journal_io { struct dm_integrity_range range; struct journal_completion *comp; }; struct bitmap_block_status { struct work_struct work; struct dm_integrity_c *ic; unsigned idx; unsigned long *bitmap; struct bio_list bio_queue; spinlock_t bio_queue_lock; }; static struct kmem_cache *journal_io_cache; #define JOURNAL_IO_MEMPOOL 32 #ifdef DEBUG_PRINT #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__) static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...) { va_list args; va_start(args, msg); vprintk(msg, args); va_end(args); if (len) pr_cont(":"); while (len) { pr_cont(" %02x", *bytes); bytes++; len--; } pr_cont("\n"); } #define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__) #else #define DEBUG_print(x, ...) do { } while (0) #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0) #endif static void dm_integrity_prepare(struct request *rq) { } static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes) { } /* * DM Integrity profile, protection is performed layer above (dm-crypt) */ static const struct blk_integrity_profile dm_integrity_profile = { .name = "DM-DIF-EXT-TAG", .generate_fn = NULL, .verify_fn = NULL, .prepare_fn = dm_integrity_prepare, .complete_fn = dm_integrity_complete, }; static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map); static void integrity_bio_wait(struct work_struct *w); static void dm_integrity_dtr(struct dm_target *ti); static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err) { if (err == -EILSEQ) atomic64_inc(&ic->number_of_mismatches); if (!cmpxchg(&ic->failed, 0, err)) DMERR("Error on %s: %d", msg, err); } static int dm_integrity_failed(struct dm_integrity_c *ic) { return READ_ONCE(ic->failed); } static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic) { if (ic->legacy_recalculate) return false; if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ? ic->internal_hash_alg.key || ic->journal_mac_alg.key : ic->internal_hash_alg.key && !ic->journal_mac_alg.key) return true; return false; } static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i, unsigned j, unsigned char seq) { /* * Xor the number with section and sector, so that if a piece of * journal is written at wrong place, it is detected. */ return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j); } static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector, sector_t *area, sector_t *offset) { if (!ic->meta_dev) { __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors; *area = data_sector >> log2_interleave_sectors; *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1); } else { *area = 0; *offset = data_sector; } } #define sector_to_block(ic, n) \ do { \ BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \ (n) >>= (ic)->sb->log2_sectors_per_block; \ } while (0) static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area, sector_t offset, unsigned *metadata_offset) { __u64 ms; unsigned mo; ms = area << ic->sb->log2_interleave_sectors; if (likely(ic->log2_metadata_run >= 0)) ms += area << ic->log2_metadata_run; else ms += area * ic->metadata_run; ms >>= ic->log2_buffer_sectors; sector_to_block(ic, offset); if (likely(ic->log2_tag_size >= 0)) { ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size); mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); } else { ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors); mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1); } *metadata_offset = mo; return ms; } static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset) { sector_t result; if (ic->meta_dev) return offset; result = area << ic->sb->log2_interleave_sectors; if (likely(ic->log2_metadata_run >= 0)) result += (area + 1) << ic->log2_metadata_run; else result += (area + 1) * ic->metadata_run; result += (sector_t)ic->initial_sectors + offset; result += ic->start; return result; } static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr) { if (unlikely(*sec_ptr >= ic->journal_sections)) *sec_ptr -= ic->journal_sections; } static void sb_set_version(struct dm_integrity_c *ic) { if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ic->sb->version = SB_VERSION_5; else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) ic->sb->version = SB_VERSION_4; else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) ic->sb->version = SB_VERSION_3; else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ic->sb->version = SB_VERSION_2; else ic->sb->version = SB_VERSION_1; } static int sb_mac(struct dm_integrity_c *ic, bool wr) { SHASH_DESC_ON_STACK(desc, ic->journal_mac); int r; unsigned size = crypto_shash_digestsize(ic->journal_mac); if (sizeof(struct superblock) + size > 1 << SECTOR_SHIFT) { dm_integrity_io_error(ic, "digest is too long", -EINVAL); return -EINVAL; } desc->tfm = ic->journal_mac; r = crypto_shash_init(desc); if (unlikely(r < 0)) { dm_integrity_io_error(ic, "crypto_shash_init", r); return r; } r = crypto_shash_update(desc, (__u8 *)ic->sb, (1 << SECTOR_SHIFT) - size); if (unlikely(r < 0)) { dm_integrity_io_error(ic, "crypto_shash_update", r); return r; } if (likely(wr)) { r = crypto_shash_final(desc, (__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size); if (unlikely(r < 0)) { dm_integrity_io_error(ic, "crypto_shash_final", r); return r; } } else { __u8 result[HASH_MAX_DIGESTSIZE]; r = crypto_shash_final(desc, result); if (unlikely(r < 0)) { dm_integrity_io_error(ic, "crypto_shash_final", r); return r; } if (memcmp((__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size, result, size)) { dm_integrity_io_error(ic, "superblock mac", -EILSEQ); return -EILSEQ; } } return 0; } static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags) { struct dm_io_request io_req; struct dm_io_region io_loc; int r; io_req.bi_op = op; io_req.bi_op_flags = op_flags; io_req.mem.type = DM_IO_KMEM; io_req.mem.ptr.addr = ic->sb; io_req.notify.fn = NULL; io_req.client = ic->io; io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; io_loc.sector = ic->start; io_loc.count = SB_SECTORS; if (op == REQ_OP_WRITE) { sb_set_version(ic); if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { r = sb_mac(ic, true); if (unlikely(r)) return r; } } r = dm_io(&io_req, 1, &io_loc, NULL); if (unlikely(r)) return r; if (op == REQ_OP_READ) { if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { r = sb_mac(ic, false); if (unlikely(r)) return r; } } return 0; } #define BITMAP_OP_TEST_ALL_SET 0 #define BITMAP_OP_TEST_ALL_CLEAR 1 #define BITMAP_OP_SET 2 #define BITMAP_OP_CLEAR 3 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap, sector_t sector, sector_t n_sectors, int mode) { unsigned long bit, end_bit, this_end_bit, page, end_page; unsigned long *data; if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) { DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)", sector, n_sectors, ic->sb->log2_sectors_per_block, ic->log2_blocks_per_bitmap_bit, mode); BUG(); } if (unlikely(!n_sectors)) return true; bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); end_bit = (sector + n_sectors - 1) >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); page = bit / (PAGE_SIZE * 8); bit %= PAGE_SIZE * 8; end_page = end_bit / (PAGE_SIZE * 8); end_bit %= PAGE_SIZE * 8; repeat: if (page < end_page) { this_end_bit = PAGE_SIZE * 8 - 1; } else { this_end_bit = end_bit; } data = lowmem_page_address(bitmap[page].page); if (mode == BITMAP_OP_TEST_ALL_SET) { while (bit <= this_end_bit) { if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { do { if (data[bit / BITS_PER_LONG] != -1) return false; bit += BITS_PER_LONG; } while (this_end_bit >= bit + BITS_PER_LONG - 1); continue; } if (!test_bit(bit, data)) return false; bit++; } } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) { while (bit <= this_end_bit) { if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { do { if (data[bit / BITS_PER_LONG] != 0) return false; bit += BITS_PER_LONG; } while (this_end_bit >= bit + BITS_PER_LONG - 1); continue; } if (test_bit(bit, data)) return false; bit++; } } else if (mode == BITMAP_OP_SET) { while (bit <= this_end_bit) { if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { do { data[bit / BITS_PER_LONG] = -1; bit += BITS_PER_LONG; } while (this_end_bit >= bit + BITS_PER_LONG - 1); continue; } __set_bit(bit, data); bit++; } } else if (mode == BITMAP_OP_CLEAR) { if (!bit && this_end_bit == PAGE_SIZE * 8 - 1) clear_page(data); else while (bit <= this_end_bit) { if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) { do { data[bit / BITS_PER_LONG] = 0; bit += BITS_PER_LONG; } while (this_end_bit >= bit + BITS_PER_LONG - 1); continue; } __clear_bit(bit, data); bit++; } } else { BUG(); } if (unlikely(page < end_page)) { bit = 0; page++; goto repeat; } return true; } static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src) { unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); unsigned i; for (i = 0; i < n_bitmap_pages; i++) { unsigned long *dst_data = lowmem_page_address(dst[i].page); unsigned long *src_data = lowmem_page_address(src[i].page); copy_page(dst_data, src_data); } } static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector) { unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8); BUG_ON(bitmap_block >= ic->n_bitmap_blocks); return &ic->bbs[bitmap_block]; } static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset, bool e, const char *function) { #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY) unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors; if (unlikely(section >= ic->journal_sections) || unlikely(offset >= limit)) { DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)", function, section, offset, ic->journal_sections, limit); BUG(); } #endif } static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset, unsigned *pl_index, unsigned *pl_offset) { unsigned sector; access_journal_check(ic, section, offset, false, "page_list_location"); sector = section * ic->journal_section_sectors + offset; *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); } static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl, unsigned section, unsigned offset, unsigned *n_sectors) { unsigned pl_index, pl_offset; char *va; page_list_location(ic, section, offset, &pl_index, &pl_offset); if (n_sectors) *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT; va = lowmem_page_address(pl[pl_index].page); return (struct journal_sector *)(va + pl_offset); } static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset) { return access_page_list(ic, ic->journal, section, offset, NULL); } static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n) { unsigned rel_sector, offset; struct journal_sector *js; access_journal_check(ic, section, n, true, "access_journal_entry"); rel_sector = n % JOURNAL_BLOCK_SECTORS; offset = n / JOURNAL_BLOCK_SECTORS; js = access_journal(ic, section, rel_sector); return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size); } static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n) { n <<= ic->sb->log2_sectors_per_block; n += JOURNAL_BLOCK_SECTORS; access_journal_check(ic, section, n, false, "access_journal_data"); return access_journal(ic, section, n); } static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE]) { SHASH_DESC_ON_STACK(desc, ic->journal_mac); int r; unsigned j, size; desc->tfm = ic->journal_mac; r = crypto_shash_init(desc); if (unlikely(r < 0)) { dm_integrity_io_error(ic, "crypto_shash_init", r); goto err; } if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { __le64 section_le; r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE); if (unlikely(r < 0)) { dm_integrity_io_error(ic, "crypto_shash_update", r); goto err; } section_le = cpu_to_le64(section); r = crypto_shash_update(desc, (__u8 *)§ion_le, sizeof section_le); if (unlikely(r < 0)) { dm_integrity_io_error(ic, "crypto_shash_update", r); goto err; } } for (j = 0; j < ic->journal_section_entries; j++) { struct journal_entry *je = access_journal_entry(ic, section, j); r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector); if (unlikely(r < 0)) { dm_integrity_io_error(ic, "crypto_shash_update", r); goto err; } } size = crypto_shash_digestsize(ic->journal_mac); if (likely(size <= JOURNAL_MAC_SIZE)) { r = crypto_shash_final(desc, result); if (unlikely(r < 0)) { dm_integrity_io_error(ic, "crypto_shash_final", r); goto err; } memset(result + size, 0, JOURNAL_MAC_SIZE - size); } else { __u8 digest[HASH_MAX_DIGESTSIZE]; if (WARN_ON(size > sizeof(digest))) { dm_integrity_io_error(ic, "digest_size", -EINVAL); goto err; } r = crypto_shash_final(desc, digest); if (unlikely(r < 0)) { dm_integrity_io_error(ic, "crypto_shash_final", r); goto err; } memcpy(result, digest, JOURNAL_MAC_SIZE); } return; err: memset(result, 0, JOURNAL_MAC_SIZE); } static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr) { __u8 result[JOURNAL_MAC_SIZE]; unsigned j; if (!ic->journal_mac) return; section_mac(ic, section, result); for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) { struct journal_sector *js = access_journal(ic, section, j); if (likely(wr)) memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR); else { if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) dm_integrity_io_error(ic, "journal mac", -EILSEQ); } } } static void complete_journal_op(void *context) { struct journal_completion *comp = context; BUG_ON(!atomic_read(&comp->in_flight)); if (likely(atomic_dec_and_test(&comp->in_flight))) complete(&comp->comp); } static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, unsigned n_sections, struct journal_completion *comp) { struct async_submit_ctl submit; size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT; unsigned pl_index, pl_offset, section_index; struct page_list *source_pl, *target_pl; if (likely(encrypt)) { source_pl = ic->journal; target_pl = ic->journal_io; } else { source_pl = ic->journal_io; target_pl = ic->journal; } page_list_location(ic, section, 0, &pl_index, &pl_offset); atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight); init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL); section_index = pl_index; do { size_t this_step; struct page *src_pages[2]; struct page *dst_page; while (unlikely(pl_index == section_index)) { unsigned dummy; if (likely(encrypt)) rw_section_mac(ic, section, true); section++; n_sections--; if (!n_sections) break; page_list_location(ic, section, 0, §ion_index, &dummy); } this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset); dst_page = target_pl[pl_index].page; src_pages[0] = source_pl[pl_index].page; src_pages[1] = ic->journal_xor[pl_index].page; async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit); pl_index++; pl_offset = 0; n_bytes -= this_step; } while (n_bytes); BUG_ON(n_sections); async_tx_issue_pending_all(); } static void complete_journal_encrypt(struct crypto_async_request *req, int err) { struct journal_completion *comp = req->data; if (unlikely(err)) { if (likely(err == -EINPROGRESS)) { complete(&comp->ic->crypto_backoff); return; } dm_integrity_io_error(comp->ic, "asynchronous encrypt", err); } complete_journal_op(comp); } static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp) { int r; skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, complete_journal_encrypt, comp); if (likely(encrypt)) r = crypto_skcipher_encrypt(req); else r = crypto_skcipher_decrypt(req); if (likely(!r)) return false; if (likely(r == -EINPROGRESS)) return true; if (likely(r == -EBUSY)) { wait_for_completion(&comp->ic->crypto_backoff); reinit_completion(&comp->ic->crypto_backoff); return true; } dm_integrity_io_error(comp->ic, "encrypt", r); return false; } static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, unsigned n_sections, struct journal_completion *comp) { struct scatterlist **source_sg; struct scatterlist **target_sg; atomic_add(2, &comp->in_flight); if (likely(encrypt)) { source_sg = ic->journal_scatterlist; target_sg = ic->journal_io_scatterlist; } else { source_sg = ic->journal_io_scatterlist; target_sg = ic->journal_scatterlist; } do { struct skcipher_request *req; unsigned ivsize; char *iv; if (likely(encrypt)) rw_section_mac(ic, section, true); req = ic->sk_requests[section]; ivsize = crypto_skcipher_ivsize(ic->journal_crypt); iv = req->iv; memcpy(iv, iv + ivsize, ivsize); req->src = source_sg[section]; req->dst = target_sg[section]; if (unlikely(do_crypt(encrypt, req, comp))) atomic_inc(&comp->in_flight); section++; n_sections--; } while (n_sections); atomic_dec(&comp->in_flight); complete_journal_op(comp); } static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section, unsigned n_sections, struct journal_completion *comp) { if (ic->journal_xor) return xor_journal(ic, encrypt, section, n_sections, comp); else return crypt_journal(ic, encrypt, section, n_sections, comp); } static void complete_journal_io(unsigned long error, void *context) { struct journal_completion *comp = context; if (unlikely(error != 0)) dm_integrity_io_error(comp->ic, "writing journal", -EIO); complete_journal_op(comp); } static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags, unsigned sector, unsigned n_sectors, struct journal_completion *comp) { struct dm_io_request io_req; struct dm_io_region io_loc; unsigned pl_index, pl_offset; int r; if (unlikely(dm_integrity_failed(ic))) { if (comp) complete_journal_io(-1UL, comp); return; } pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); io_req.bi_op = op; io_req.bi_op_flags = op_flags; io_req.mem.type = DM_IO_PAGE_LIST; if (ic->journal_io) io_req.mem.ptr.pl = &ic->journal_io[pl_index]; else io_req.mem.ptr.pl = &ic->journal[pl_index]; io_req.mem.offset = pl_offset; if (likely(comp != NULL)) { io_req.notify.fn = complete_journal_io; io_req.notify.context = comp; } else { io_req.notify.fn = NULL; } io_req.client = ic->io; io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev; io_loc.sector = ic->start + SB_SECTORS + sector; io_loc.count = n_sectors; r = dm_io(&io_req, 1, &io_loc, NULL); if (unlikely(r)) { dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r); if (comp) { WARN_ONCE(1, "asynchronous dm_io failed: %d", r); complete_journal_io(-1UL, comp); } } } static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section, unsigned n_sections, struct journal_completion *comp) { unsigned sector, n_sectors; sector = section * ic->journal_section_sectors; n_sectors = n_sections * ic->journal_section_sectors; rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp); } static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections) { struct journal_completion io_comp; struct journal_completion crypt_comp_1; struct journal_completion crypt_comp_2; unsigned i; io_comp.ic = ic; init_completion(&io_comp.comp); if (commit_start + commit_sections <= ic->journal_sections) { io_comp.in_flight = (atomic_t)ATOMIC_INIT(1); if (ic->journal_io) { crypt_comp_1.ic = ic; init_completion(&crypt_comp_1.comp); crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1); wait_for_completion_io(&crypt_comp_1.comp); } else { for (i = 0; i < commit_sections; i++) rw_section_mac(ic, commit_start + i, true); } rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start, commit_sections, &io_comp); } else { unsigned to_end; io_comp.in_flight = (atomic_t)ATOMIC_INIT(2); to_end = ic->journal_sections - commit_start; if (ic->journal_io) { crypt_comp_1.ic = ic; init_completion(&crypt_comp_1.comp); crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1); if (try_wait_for_completion(&crypt_comp_1.comp)) { rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); reinit_completion(&crypt_comp_1.comp); crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0); encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1); wait_for_completion_io(&crypt_comp_1.comp); } else { crypt_comp_2.ic = ic; init_completion(&crypt_comp_2.comp); crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0); encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2); wait_for_completion_io(&crypt_comp_1.comp); rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); wait_for_completion_io(&crypt_comp_2.comp); } } else { for (i = 0; i < to_end; i++) rw_section_mac(ic, commit_start + i, true); rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp); for (i = 0; i < commit_sections - to_end; i++) rw_section_mac(ic, i, true); } rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp); } wait_for_completion_io(&io_comp.comp); } static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset, unsigned n_sectors, sector_t target, io_notify_fn fn, void *data) { struct dm_io_request io_req; struct dm_io_region io_loc; int r; unsigned sector, pl_index, pl_offset; BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1)); if (unlikely(dm_integrity_failed(ic))) { fn(-1UL, data); return; } sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset; pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); io_req.bi_op = REQ_OP_WRITE; io_req.bi_op_flags = 0; io_req.mem.type = DM_IO_PAGE_LIST; io_req.mem.ptr.pl = &ic->journal[pl_index]; io_req.mem.offset = pl_offset; io_req.notify.fn = fn; io_req.notify.context = data; io_req.client = ic->io; io_loc.bdev = ic->dev->bdev; io_loc.sector = target; io_loc.count = n_sectors; r = dm_io(&io_req, 1, &io_loc, NULL); if (unlikely(r)) { WARN_ONCE(1, "asynchronous dm_io failed: %d", r); fn(-1UL, data); } } static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2) { return range1->logical_sector < range2->logical_sector + range2->n_sectors && range1->logical_sector + range1->n_sectors > range2->logical_sector; } static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting) { struct rb_node **n = &ic->in_progress.rb_node; struct rb_node *parent; BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1)); if (likely(check_waiting)) { struct dm_integrity_range *range; list_for_each_entry(range, &ic->wait_list, wait_entry) { if (unlikely(ranges_overlap(range, new_range))) return false; } } parent = NULL; while (*n) { struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node); parent = *n; if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) { n = &range->node.rb_left; } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) { n = &range->node.rb_right; } else { return false; } } rb_link_node(&new_range->node, parent, n); rb_insert_color(&new_range->node, &ic->in_progress); return true; } static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range) { rb_erase(&range->node, &ic->in_progress); while (unlikely(!list_empty(&ic->wait_list))) { struct dm_integrity_range *last_range = list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry); struct task_struct *last_range_task; last_range_task = last_range->task; list_del(&last_range->wait_entry); if (!add_new_range(ic, last_range, false)) { last_range->task = last_range_task; list_add(&last_range->wait_entry, &ic->wait_list); break; } last_range->waiting = false; wake_up_process(last_range_task); } } static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range) { unsigned long flags; spin_lock_irqsave(&ic->endio_wait.lock, flags); remove_range_unlocked(ic, range); spin_unlock_irqrestore(&ic->endio_wait.lock, flags); } static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) { new_range->waiting = true; list_add_tail(&new_range->wait_entry, &ic->wait_list); new_range->task = current; do { __set_current_state(TASK_UNINTERRUPTIBLE); spin_unlock_irq(&ic->endio_wait.lock); io_schedule(); spin_lock_irq(&ic->endio_wait.lock); } while (unlikely(new_range->waiting)); } static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range) { if (unlikely(!add_new_range(ic, new_range, true))) wait_and_add_new_range(ic, new_range); } static void init_journal_node(struct journal_node *node) { RB_CLEAR_NODE(&node->node); node->sector = (sector_t)-1; } static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector) { struct rb_node **link; struct rb_node *parent; node->sector = sector; BUG_ON(!RB_EMPTY_NODE(&node->node)); link = &ic->journal_tree_root.rb_node; parent = NULL; while (*link) { struct journal_node *j; parent = *link; j = container_of(parent, struct journal_node, node); if (sector < j->sector) link = &j->node.rb_left; else link = &j->node.rb_right; } rb_link_node(&node->node, parent, link); rb_insert_color(&node->node, &ic->journal_tree_root); } static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node) { BUG_ON(RB_EMPTY_NODE(&node->node)); rb_erase(&node->node, &ic->journal_tree_root); init_journal_node(node); } #define NOT_FOUND (-1U) static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector) { struct rb_node *n = ic->journal_tree_root.rb_node; unsigned found = NOT_FOUND; *next_sector = (sector_t)-1; while (n) { struct journal_node *j = container_of(n, struct journal_node, node); if (sector == j->sector) { found = j - ic->journal_tree; } if (sector < j->sector) { *next_sector = j->sector; n = j->node.rb_left; } else { n = j->node.rb_right; } } return found; } static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector) { struct journal_node *node, *next_node; struct rb_node *next; if (unlikely(pos >= ic->journal_entries)) return false; node = &ic->journal_tree[pos]; if (unlikely(RB_EMPTY_NODE(&node->node))) return false; if (unlikely(node->sector != sector)) return false; next = rb_next(&node->node); if (unlikely(!next)) return true; next_node = container_of(next, struct journal_node, node); return next_node->sector != sector; } static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node) { struct rb_node *next; struct journal_node *next_node; unsigned next_section; BUG_ON(RB_EMPTY_NODE(&node->node)); next = rb_next(&node->node); if (unlikely(!next)) return false; next_node = container_of(next, struct journal_node, node); if (next_node->sector != node->sector) return false; next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries; if (next_section >= ic->committed_section && next_section < ic->committed_section + ic->n_committed_sections) return true; if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections) return true; return false; } #define TAG_READ 0 #define TAG_WRITE 1 #define TAG_CMP 2 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block, unsigned *metadata_offset, unsigned total_size, int op) { #define MAY_BE_FILLER 1 #define MAY_BE_HASH 2 unsigned hash_offset = 0; unsigned may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0); do { unsigned char *data, *dp; struct dm_buffer *b; unsigned to_copy; int r; r = dm_integrity_failed(ic); if (unlikely(r)) return r; data = dm_bufio_read(ic->bufio, *metadata_block, &b); if (IS_ERR(data)) return PTR_ERR(data); to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size); dp = data + *metadata_offset; if (op == TAG_READ) { memcpy(tag, dp, to_copy); } else if (op == TAG_WRITE) { if (memcmp(dp, tag, to_copy)) { memcpy(dp, tag, to_copy); dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy); } } else { /* e.g.: op == TAG_CMP */ if (likely(is_power_of_2(ic->tag_size))) { if (unlikely(memcmp(dp, tag, to_copy))) if (unlikely(!ic->discard) || unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) { goto thorough_test; } } else { unsigned i, ts; thorough_test: ts = total_size; for (i = 0; i < to_copy; i++, ts--) { if (unlikely(dp[i] != tag[i])) may_be &= ~MAY_BE_HASH; if (likely(dp[i] != DISCARD_FILLER)) may_be &= ~MAY_BE_FILLER; hash_offset++; if (unlikely(hash_offset == ic->tag_size)) { if (unlikely(!may_be)) { dm_bufio_release(b); return ts; } hash_offset = 0; may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0); } } } } dm_bufio_release(b); tag += to_copy; *metadata_offset += to_copy; if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) { (*metadata_block)++; *metadata_offset = 0; } if (unlikely(!is_power_of_2(ic->tag_size))) { hash_offset = (hash_offset + to_copy) % ic->tag_size; } total_size -= to_copy; } while (unlikely(total_size)); return 0; #undef MAY_BE_FILLER #undef MAY_BE_HASH } struct flush_request { struct dm_io_request io_req; struct dm_io_region io_reg; struct dm_integrity_c *ic; struct completion comp; }; static void flush_notify(unsigned long error, void *fr_) { struct flush_request *fr = fr_; if (unlikely(error != 0)) dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO); complete(&fr->comp); } static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data) { int r; struct flush_request fr; if (!ic->meta_dev) flush_data = false; if (flush_data) { fr.io_req.bi_op = REQ_OP_WRITE, fr.io_req.bi_op_flags = REQ_PREFLUSH | REQ_SYNC, fr.io_req.mem.type = DM_IO_KMEM, fr.io_req.mem.ptr.addr = NULL, fr.io_req.notify.fn = flush_notify, fr.io_req.notify.context = &fr; fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio), fr.io_reg.bdev = ic->dev->bdev, fr.io_reg.sector = 0, fr.io_reg.count = 0, fr.ic = ic; init_completion(&fr.comp); r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL); BUG_ON(r); } r = dm_bufio_write_dirty_buffers(ic->bufio); if (unlikely(r)) dm_integrity_io_error(ic, "writing tags", r); if (flush_data) wait_for_completion(&fr.comp); } static void sleep_on_endio_wait(struct dm_integrity_c *ic) { DECLARE_WAITQUEUE(wait, current); __add_wait_queue(&ic->endio_wait, &wait); __set_current_state(TASK_UNINTERRUPTIBLE); spin_unlock_irq(&ic->endio_wait.lock); io_schedule(); spin_lock_irq(&ic->endio_wait.lock); __remove_wait_queue(&ic->endio_wait, &wait); } static void autocommit_fn(struct timer_list *t) { struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer); if (likely(!dm_integrity_failed(ic))) queue_work(ic->commit_wq, &ic->commit_work); } static void schedule_autocommit(struct dm_integrity_c *ic) { if (!timer_pending(&ic->autocommit_timer)) mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies); } static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio) { struct bio *bio; unsigned long flags; spin_lock_irqsave(&ic->endio_wait.lock, flags); bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); bio_list_add(&ic->flush_bio_list, bio); spin_unlock_irqrestore(&ic->endio_wait.lock, flags); queue_work(ic->commit_wq, &ic->commit_work); } static void do_endio(struct dm_integrity_c *ic, struct bio *bio) { int r = dm_integrity_failed(ic); if (unlikely(r) && !bio->bi_status) bio->bi_status = errno_to_blk_status(r); if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) { unsigned long flags; spin_lock_irqsave(&ic->endio_wait.lock, flags); bio_list_add(&ic->synchronous_bios, bio); queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); spin_unlock_irqrestore(&ic->endio_wait.lock, flags); return; } bio_endio(bio); } static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio) { struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic))) submit_flush_bio(ic, dio); else do_endio(ic, bio); } static void dec_in_flight(struct dm_integrity_io *dio) { if (atomic_dec_and_test(&dio->in_flight)) { struct dm_integrity_c *ic = dio->ic; struct bio *bio; remove_range(ic, &dio->range); if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD)) schedule_autocommit(ic); bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); if (unlikely(dio->bi_status) && !bio->bi_status) bio->bi_status = dio->bi_status; if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) { dio->range.logical_sector += dio->range.n_sectors; bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT); INIT_WORK(&dio->work, integrity_bio_wait); queue_work(ic->offload_wq, &dio->work); return; } do_endio_flush(ic, dio); } } static void integrity_end_io(struct bio *bio) { struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); dm_bio_restore(&dio->bio_details, bio); if (bio->bi_integrity) bio->bi_opf |= REQ_INTEGRITY; if (dio->completion) complete(dio->completion); dec_in_flight(dio); } static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector, const char *data, char *result) { __le64 sector_le = cpu_to_le64(sector); SHASH_DESC_ON_STACK(req, ic->internal_hash); int r; unsigned digest_size; req->tfm = ic->internal_hash; r = crypto_shash_init(req); if (unlikely(r < 0)) { dm_integrity_io_error(ic, "crypto_shash_init", r); goto failed; } if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) { r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE); if (unlikely(r < 0)) { dm_integrity_io_error(ic, "crypto_shash_update", r); goto failed; } } r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof sector_le); if (unlikely(r < 0)) { dm_integrity_io_error(ic, "crypto_shash_update", r); goto failed; } r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT); if (unlikely(r < 0)) { dm_integrity_io_error(ic, "crypto_shash_update", r); goto failed; } r = crypto_shash_final(req, result); if (unlikely(r < 0)) { dm_integrity_io_error(ic, "crypto_shash_final", r); goto failed; } digest_size = crypto_shash_digestsize(ic->internal_hash); if (unlikely(digest_size < ic->tag_size)) memset(result + digest_size, 0, ic->tag_size - digest_size); return; failed: /* this shouldn't happen anyway, the hash functions have no reason to fail */ get_random_bytes(result, ic->tag_size); } static void integrity_metadata(struct work_struct *w) { struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); struct dm_integrity_c *ic = dio->ic; int r; if (ic->internal_hash) { struct bvec_iter iter; struct bio_vec bv; unsigned digest_size = crypto_shash_digestsize(ic->internal_hash); struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); char *checksums; unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0; char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; sector_t sector; unsigned sectors_to_process; if (unlikely(ic->mode == 'R')) goto skip_io; if (likely(dio->op != REQ_OP_DISCARD)) checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); else checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN); if (!checksums) { checksums = checksums_onstack; if (WARN_ON(extra_space && digest_size > sizeof(checksums_onstack))) { r = -EINVAL; goto error; } } if (unlikely(dio->op == REQ_OP_DISCARD)) { sector_t bi_sector = dio->bio_details.bi_iter.bi_sector; unsigned bi_size = dio->bio_details.bi_iter.bi_size; unsigned max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE; unsigned max_blocks = max_size / ic->tag_size; memset(checksums, DISCARD_FILLER, max_size); while (bi_size) { unsigned this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block); this_step_blocks = min(this_step_blocks, max_blocks); r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, this_step_blocks * ic->tag_size, TAG_WRITE); if (unlikely(r)) { if (likely(checksums != checksums_onstack)) kfree(checksums); goto error; } /*if (bi_size < this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block)) { printk("BUGG: bi_sector: %llx, bi_size: %u\n", bi_sector, bi_size); printk("BUGG: this_step_blocks: %u\n", this_step_blocks); BUG(); }*/ bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block); bi_sector += this_step_blocks << ic->sb->log2_sectors_per_block; } if (likely(checksums != checksums_onstack)) kfree(checksums); goto skip_io; } sector = dio->range.logical_sector; sectors_to_process = dio->range.n_sectors; __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) { struct bio_vec bv_copy = bv; unsigned pos; char *mem, *checksums_ptr; again: mem = (char *)kmap_atomic(bv_copy.bv_page) + bv_copy.bv_offset; pos = 0; checksums_ptr = checksums; do { integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr); checksums_ptr += ic->tag_size; sectors_to_process -= ic->sectors_per_block; pos += ic->sectors_per_block << SECTOR_SHIFT; sector += ic->sectors_per_block; } while (pos < bv_copy.bv_len && sectors_to_process && checksums != checksums_onstack); kunmap_atomic(mem); r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset, checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE); if (unlikely(r)) { if (r > 0) { char b[BDEVNAME_SIZE]; DMERR_LIMIT("%s: Checksum failed at sector 0x%llx", bio_devname(bio, b), (sector - ((r + ic->tag_size - 1) / ic->tag_size))); r = -EILSEQ; atomic64_inc(&ic->number_of_mismatches); } if (likely(checksums != checksums_onstack)) kfree(checksums); goto error; } if (!sectors_to_process) break; if (unlikely(pos < bv_copy.bv_len)) { bv_copy.bv_offset += pos; bv_copy.bv_len -= pos; goto again; } } if (likely(checksums != checksums_onstack)) kfree(checksums); } else { struct bio_integrity_payload *bip = dio->bio_details.bi_integrity; if (bip) { struct bio_vec biv; struct bvec_iter iter; unsigned data_to_process = dio->range.n_sectors; sector_to_block(ic, data_to_process); data_to_process *= ic->tag_size; bip_for_each_vec(biv, bip, iter) { unsigned char *tag; unsigned this_len; BUG_ON(PageHighMem(biv.bv_page)); tag = bvec_virt(&biv); this_len = min(biv.bv_len, data_to_process); r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset, this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE); if (unlikely(r)) goto error; data_to_process -= this_len; if (!data_to_process) break; } } } skip_io: dec_in_flight(dio); return; error: dio->bi_status = errno_to_blk_status(r); dec_in_flight(dio); } static int dm_integrity_map(struct dm_target *ti, struct bio *bio) { struct dm_integrity_c *ic = ti->private; struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); struct bio_integrity_payload *bip; sector_t area, offset; dio->ic = ic; dio->bi_status = 0; dio->op = bio_op(bio); if (unlikely(dio->op == REQ_OP_DISCARD)) { if (ti->max_io_len) { sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector); unsigned log2_max_io_len = __fls(ti->max_io_len); sector_t start_boundary = sec >> log2_max_io_len; sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len; if (start_boundary < end_boundary) { sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1)); dm_accept_partial_bio(bio, len); } } } if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { submit_flush_bio(ic, dio); return DM_MAPIO_SUBMITTED; } dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA; if (unlikely(dio->fua)) { /* * Don't pass down the FUA flag because we have to flush * disk cache anyway. */ bio->bi_opf &= ~REQ_FUA; } if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) { DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx", dio->range.logical_sector, bio_sectors(bio), ic->provided_data_sectors); return DM_MAPIO_KILL; } if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) { DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x", ic->sectors_per_block, dio->range.logical_sector, bio_sectors(bio)); return DM_MAPIO_KILL; } if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) { struct bvec_iter iter; struct bio_vec bv; bio_for_each_segment(bv, bio, iter) { if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) { DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary", bv.bv_offset, bv.bv_len, ic->sectors_per_block); return DM_MAPIO_KILL; } } } bip = bio_integrity(bio); if (!ic->internal_hash) { if (bip) { unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block; if (ic->log2_tag_size >= 0) wanted_tag_size <<= ic->log2_tag_size; else wanted_tag_size *= ic->tag_size; if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) { DMERR("Invalid integrity data size %u, expected %u", bip->bip_iter.bi_size, wanted_tag_size); return DM_MAPIO_KILL; } } } else { if (unlikely(bip != NULL)) { DMERR("Unexpected integrity data when using internal hash"); return DM_MAPIO_KILL; } } if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ)) return DM_MAPIO_KILL; get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); bio->bi_iter.bi_sector = get_data_sector(ic, area, offset); dm_integrity_map_continue(dio, true); return DM_MAPIO_SUBMITTED; } static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio, unsigned journal_section, unsigned journal_entry) { struct dm_integrity_c *ic = dio->ic; sector_t logical_sector; unsigned n_sectors; logical_sector = dio->range.logical_sector; n_sectors = dio->range.n_sectors; do { struct bio_vec bv = bio_iovec(bio); char *mem; if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors)) bv.bv_len = n_sectors << SECTOR_SHIFT; n_sectors -= bv.bv_len >> SECTOR_SHIFT; bio_advance_iter(bio, &bio->bi_iter, bv.bv_len); retry_kmap: mem = kmap_atomic(bv.bv_page); if (likely(dio->op == REQ_OP_WRITE)) flush_dcache_page(bv.bv_page); do { struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry); if (unlikely(dio->op == REQ_OP_READ)) { struct journal_sector *js; char *mem_ptr; unsigned s; if (unlikely(journal_entry_is_inprogress(je))) { flush_dcache_page(bv.bv_page); kunmap_atomic(mem); __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); goto retry_kmap; } smp_rmb(); BUG_ON(journal_entry_get_sector(je) != logical_sector); js = access_journal_data(ic, journal_section, journal_entry); mem_ptr = mem + bv.bv_offset; s = 0; do { memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA); *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s]; js++; mem_ptr += 1 << SECTOR_SHIFT; } while (++s < ic->sectors_per_block); #ifdef INTERNAL_VERIFY if (ic->internal_hash) { char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack); if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) { DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx", logical_sector); } } #endif } if (!ic->internal_hash) { struct bio_integrity_payload *bip = bio_integrity(bio); unsigned tag_todo = ic->tag_size; char *tag_ptr = journal_entry_tag(ic, je); if (bip) do { struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter); unsigned tag_now = min(biv.bv_len, tag_todo); char *tag_addr; BUG_ON(PageHighMem(biv.bv_page)); tag_addr = bvec_virt(&biv); if (likely(dio->op == REQ_OP_WRITE)) memcpy(tag_ptr, tag_addr, tag_now); else memcpy(tag_addr, tag_ptr, tag_now); bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now); tag_ptr += tag_now; tag_todo -= tag_now; } while (unlikely(tag_todo)); else { if (likely(dio->op == REQ_OP_WRITE)) memset(tag_ptr, 0, tag_todo); } } if (likely(dio->op == REQ_OP_WRITE)) { struct journal_sector *js; unsigned s; js = access_journal_data(ic, journal_section, journal_entry); memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT); s = 0; do { je->last_bytes[s] = js[s].commit_id; } while (++s < ic->sectors_per_block); if (ic->internal_hash) { unsigned digest_size = crypto_shash_digestsize(ic->internal_hash); if (unlikely(digest_size > ic->tag_size)) { char checksums_onstack[HASH_MAX_DIGESTSIZE]; integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack); memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size); } else integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je)); } journal_entry_set_sector(je, logical_sector); } logical_sector += ic->sectors_per_block; journal_entry++; if (unlikely(journal_entry == ic->journal_section_entries)) { journal_entry = 0; journal_section++; wraparound_section(ic, &journal_section); } bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT; } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT); if (unlikely(dio->op == REQ_OP_READ)) flush_dcache_page(bv.bv_page); kunmap_atomic(mem); } while (n_sectors); if (likely(dio->op == REQ_OP_WRITE)) { smp_mb(); if (unlikely(waitqueue_active(&ic->copy_to_journal_wait))) wake_up(&ic->copy_to_journal_wait); if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) { queue_work(ic->commit_wq, &ic->commit_work); } else { schedule_autocommit(ic); } } else { remove_range(ic, &dio->range); } if (unlikely(bio->bi_iter.bi_size)) { sector_t area, offset; dio->range.logical_sector = logical_sector; get_area_and_offset(ic, dio->range.logical_sector, &area, &offset); dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset); return true; } return false; } static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map) { struct dm_integrity_c *ic = dio->ic; struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io)); unsigned journal_section, journal_entry; unsigned journal_read_pos; struct completion read_comp; bool discard_retried = false; bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ; if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D') need_sync_io = true; if (need_sync_io && from_map) { INIT_WORK(&dio->work, integrity_bio_wait); queue_work(ic->offload_wq, &dio->work); return; } lock_retry: spin_lock_irq(&ic->endio_wait.lock); retry: if (unlikely(dm_integrity_failed(ic))) { spin_unlock_irq(&ic->endio_wait.lock); do_endio(ic, bio); return; } dio->range.n_sectors = bio_sectors(bio); journal_read_pos = NOT_FOUND; if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) { if (dio->op == REQ_OP_WRITE) { unsigned next_entry, i, pos; unsigned ws, we, range_sectors; dio->range.n_sectors = min(dio->range.n_sectors, (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block); if (unlikely(!dio->range.n_sectors)) { if (from_map) goto offload_to_thread; sleep_on_endio_wait(ic); goto retry; } range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block; ic->free_sectors -= range_sectors; journal_section = ic->free_section; journal_entry = ic->free_section_entry; next_entry = ic->free_section_entry + range_sectors; ic->free_section_entry = next_entry % ic->journal_section_entries; ic->free_section += next_entry / ic->journal_section_entries; ic->n_uncommitted_sections += next_entry / ic->journal_section_entries; wraparound_section(ic, &ic->free_section); pos = journal_section * ic->journal_section_entries + journal_entry; ws = journal_section; we = journal_entry; i = 0; do { struct journal_entry *je; add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i); pos++; if (unlikely(pos >= ic->journal_entries)) pos = 0; je = access_journal_entry(ic, ws, we); BUG_ON(!journal_entry_is_unused(je)); journal_entry_set_inprogress(je); we++; if (unlikely(we == ic->journal_section_entries)) { we = 0; ws++; wraparound_section(ic, &ws); } } while ((i += ic->sectors_per_block) < dio->range.n_sectors); spin_unlock_irq(&ic->endio_wait.lock); goto journal_read_write; } else { sector_t next_sector; journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); if (likely(journal_read_pos == NOT_FOUND)) { if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector)) dio->range.n_sectors = next_sector - dio->range.logical_sector; } else { unsigned i; unsigned jp = journal_read_pos + 1; for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) { if (!test_journal_node(ic, jp, dio->range.logical_sector + i)) break; } dio->range.n_sectors = i; } } } if (unlikely(!add_new_range(ic, &dio->range, true))) { /* * We must not sleep in the request routine because it could * stall bios on current->bio_list. * So, we offload the bio to a workqueue if we have to sleep. */ if (from_map) { offload_to_thread: spin_unlock_irq(&ic->endio_wait.lock); INIT_WORK(&dio->work, integrity_bio_wait); queue_work(ic->wait_wq, &dio->work); return; } if (journal_read_pos != NOT_FOUND) dio->range.n_sectors = ic->sectors_per_block; wait_and_add_new_range(ic, &dio->range); /* * wait_and_add_new_range drops the spinlock, so the journal * may have been changed arbitrarily. We need to recheck. * To simplify the code, we restrict I/O size to just one block. */ if (journal_read_pos != NOT_FOUND) { sector_t next_sector; unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); if (unlikely(new_pos != journal_read_pos)) { remove_range_unlocked(ic, &dio->range); goto retry; } } } if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) { sector_t next_sector; unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector); if (unlikely(new_pos != NOT_FOUND) || unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) { remove_range_unlocked(ic, &dio->range); spin_unlock_irq(&ic->endio_wait.lock); queue_work(ic->commit_wq, &ic->commit_work); flush_workqueue(ic->commit_wq); queue_work(ic->writer_wq, &ic->writer_work); flush_workqueue(ic->writer_wq); discard_retried = true; goto lock_retry; } } spin_unlock_irq(&ic->endio_wait.lock); if (unlikely(journal_read_pos != NOT_FOUND)) { journal_section = journal_read_pos / ic->journal_section_entries; journal_entry = journal_read_pos % ic->journal_section_entries; goto journal_read_write; } if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) { if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { struct bitmap_block_status *bbs; bbs = sector_to_bitmap_block(ic, dio->range.logical_sector); spin_lock(&bbs->bio_queue_lock); bio_list_add(&bbs->bio_queue, bio); spin_unlock(&bbs->bio_queue_lock); queue_work(ic->writer_wq, &bbs->work); return; } } dio->in_flight = (atomic_t)ATOMIC_INIT(2); if (need_sync_io) { init_completion(&read_comp); dio->completion = &read_comp; } else dio->completion = NULL; dm_bio_record(&dio->bio_details, bio); bio_set_dev(bio, ic->dev->bdev); bio->bi_integrity = NULL; bio->bi_opf &= ~REQ_INTEGRITY; bio->bi_end_io = integrity_end_io; bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT; if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) { integrity_metadata(&dio->work); dm_integrity_flush_buffers(ic, false); dio->in_flight = (atomic_t)ATOMIC_INIT(1); dio->completion = NULL; submit_bio_noacct(bio); return; } submit_bio_noacct(bio); if (need_sync_io) { wait_for_completion_io(&read_comp); if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector)) goto skip_check; if (ic->mode == 'B') { if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector, dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) goto skip_check; } if (likely(!bio->bi_status)) integrity_metadata(&dio->work); else skip_check: dec_in_flight(dio); } else { INIT_WORK(&dio->work, integrity_metadata); queue_work(ic->metadata_wq, &dio->work); } return; journal_read_write: if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry))) goto lock_retry; do_endio_flush(ic, dio); } static void integrity_bio_wait(struct work_struct *w) { struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work); dm_integrity_map_continue(dio, false); } static void pad_uncommitted(struct dm_integrity_c *ic) { if (ic->free_section_entry) { ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry; ic->free_section_entry = 0; ic->free_section++; wraparound_section(ic, &ic->free_section); ic->n_uncommitted_sections++; } if (WARN_ON(ic->journal_sections * ic->journal_section_entries != (ic->n_uncommitted_sections + ic->n_committed_sections) * ic->journal_section_entries + ic->free_sectors)) { DMCRIT("journal_sections %u, journal_section_entries %u, " "n_uncommitted_sections %u, n_committed_sections %u, " "journal_section_entries %u, free_sectors %u", ic->journal_sections, ic->journal_section_entries, ic->n_uncommitted_sections, ic->n_committed_sections, ic->journal_section_entries, ic->free_sectors); } } static void integrity_commit(struct work_struct *w) { struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work); unsigned commit_start, commit_sections; unsigned i, j, n; struct bio *flushes; del_timer(&ic->autocommit_timer); spin_lock_irq(&ic->endio_wait.lock); flushes = bio_list_get(&ic->flush_bio_list); if (unlikely(ic->mode != 'J')) { spin_unlock_irq(&ic->endio_wait.lock); dm_integrity_flush_buffers(ic, true); goto release_flush_bios; } pad_uncommitted(ic); commit_start = ic->uncommitted_section; commit_sections = ic->n_uncommitted_sections; spin_unlock_irq(&ic->endio_wait.lock); if (!commit_sections) goto release_flush_bios; ic->wrote_to_journal = true; i = commit_start; for (n = 0; n < commit_sections; n++) { for (j = 0; j < ic->journal_section_entries; j++) { struct journal_entry *je; je = access_journal_entry(ic, i, j); io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je)); } for (j = 0; j < ic->journal_section_sectors; j++) { struct journal_sector *js; js = access_journal(ic, i, j); js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq); } i++; if (unlikely(i >= ic->journal_sections)) ic->commit_seq = next_commit_seq(ic->commit_seq); wraparound_section(ic, &i); } smp_rmb(); write_journal(ic, commit_start, commit_sections); spin_lock_irq(&ic->endio_wait.lock); ic->uncommitted_section += commit_sections; wraparound_section(ic, &ic->uncommitted_section); ic->n_uncommitted_sections -= commit_sections; ic->n_committed_sections += commit_sections; spin_unlock_irq(&ic->endio_wait.lock); if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) queue_work(ic->writer_wq, &ic->writer_work); release_flush_bios: while (flushes) { struct bio *next = flushes->bi_next; flushes->bi_next = NULL; do_endio(ic, flushes); flushes = next; } } static void complete_copy_from_journal(unsigned long error, void *context) { struct journal_io *io = context; struct journal_completion *comp = io->comp; struct dm_integrity_c *ic = comp->ic; remove_range(ic, &io->range); mempool_free(io, &ic->journal_io_mempool); if (unlikely(error != 0)) dm_integrity_io_error(ic, "copying from journal", -EIO); complete_journal_op(comp); } static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js, struct journal_entry *je) { unsigned s = 0; do { js->commit_id = je->last_bytes[s]; js++; } while (++s < ic->sectors_per_block); } static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start, unsigned write_sections, bool from_replay) { unsigned i, j, n; struct journal_completion comp; struct blk_plug plug; blk_start_plug(&plug); comp.ic = ic; comp.in_flight = (atomic_t)ATOMIC_INIT(1); init_completion(&comp.comp); i = write_start; for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) { #ifndef INTERNAL_VERIFY if (unlikely(from_replay)) #endif rw_section_mac(ic, i, false); for (j = 0; j < ic->journal_section_entries; j++) { struct journal_entry *je = access_journal_entry(ic, i, j); sector_t sec, area, offset; unsigned k, l, next_loop; sector_t metadata_block; unsigned metadata_offset; struct journal_io *io; if (journal_entry_is_unused(je)) continue; BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay); sec = journal_entry_get_sector(je); if (unlikely(from_replay)) { if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) { dm_integrity_io_error(ic, "invalid sector in journal", -EIO); sec &= ~(sector_t)(ic->sectors_per_block - 1); } if (unlikely(sec >= ic->provided_data_sectors)) { journal_entry_set_unused(je); continue; } } get_area_and_offset(ic, sec, &area, &offset); restore_last_bytes(ic, access_journal_data(ic, i, j), je); for (k = j + 1; k < ic->journal_section_entries; k++) { struct journal_entry *je2 = access_journal_entry(ic, i, k); sector_t sec2, area2, offset2; if (journal_entry_is_unused(je2)) break; BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay); sec2 = journal_entry_get_sector(je2); if (unlikely(sec2 >= ic->provided_data_sectors)) break; get_area_and_offset(ic, sec2, &area2, &offset2); if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block)) break; restore_last_bytes(ic, access_journal_data(ic, i, k), je2); } next_loop = k - 1; io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO); io->comp = ∁ io->range.logical_sector = sec; io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block; spin_lock_irq(&ic->endio_wait.lock); add_new_range_and_wait(ic, &io->range); if (likely(!from_replay)) { struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries]; /* don't write if there is newer committed sector */ while (j < k && find_newer_committed_node(ic, §ion_node[j])) { struct journal_entry *je2 = access_journal_entry(ic, i, j); journal_entry_set_unused(je2); remove_journal_node(ic, §ion_node[j]); j++; sec += ic->sectors_per_block; offset += ic->sectors_per_block; } while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) { struct journal_entry *je2 = access_journal_entry(ic, i, k - 1); journal_entry_set_unused(je2); remove_journal_node(ic, §ion_node[k - 1]); k--; } if (j == k) { remove_range_unlocked(ic, &io->range); spin_unlock_irq(&ic->endio_wait.lock); mempool_free(io, &ic->journal_io_mempool); goto skip_io; } for (l = j; l < k; l++) { remove_journal_node(ic, §ion_node[l]); } } spin_unlock_irq(&ic->endio_wait.lock); metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); for (l = j; l < k; l++) { int r; struct journal_entry *je2 = access_journal_entry(ic, i, l); if ( #ifndef INTERNAL_VERIFY unlikely(from_replay) && #endif ic->internal_hash) { char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)]; integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block), (char *)access_journal_data(ic, i, l), test_tag); if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ); } journal_entry_set_unused(je2); r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset, ic->tag_size, TAG_WRITE); if (unlikely(r)) { dm_integrity_io_error(ic, "reading tags", r); } } atomic_inc(&comp.in_flight); copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block, (k - j) << ic->sb->log2_sectors_per_block, get_data_sector(ic, area, offset), complete_copy_from_journal, io); skip_io: j = next_loop; } } dm_bufio_write_dirty_buffers_async(ic->bufio); blk_finish_plug(&plug); complete_journal_op(&comp); wait_for_completion_io(&comp.comp); dm_integrity_flush_buffers(ic, true); } static void integrity_writer(struct work_struct *w) { struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work); unsigned write_start, write_sections; unsigned prev_free_sectors; spin_lock_irq(&ic->endio_wait.lock); write_start = ic->committed_section; write_sections = ic->n_committed_sections; spin_unlock_irq(&ic->endio_wait.lock); if (!write_sections) return; do_journal_write(ic, write_start, write_sections, false); spin_lock_irq(&ic->endio_wait.lock); ic->committed_section += write_sections; wraparound_section(ic, &ic->committed_section); ic->n_committed_sections -= write_sections; prev_free_sectors = ic->free_sectors; ic->free_sectors += write_sections * ic->journal_section_entries; if (unlikely(!prev_free_sectors)) wake_up_locked(&ic->endio_wait); spin_unlock_irq(&ic->endio_wait.lock); } static void recalc_write_super(struct dm_integrity_c *ic) { int r; dm_integrity_flush_buffers(ic, false); if (dm_integrity_failed(ic)) return; r = sync_rw_sb(ic, REQ_OP_WRITE, 0); if (unlikely(r)) dm_integrity_io_error(ic, "writing superblock", r); } static void integrity_recalc(struct work_struct *w) { struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work); struct dm_integrity_range range; struct dm_io_request io_req; struct dm_io_region io_loc; sector_t area, offset; sector_t metadata_block; unsigned metadata_offset; sector_t logical_sector, n_sectors; __u8 *t; unsigned i; int r; unsigned super_counter = 0; DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector)); spin_lock_irq(&ic->endio_wait.lock); next_chunk: if (unlikely(dm_post_suspending(ic->ti))) goto unlock_ret; range.logical_sector = le64_to_cpu(ic->sb->recalc_sector); if (unlikely(range.logical_sector >= ic->provided_data_sectors)) { if (ic->mode == 'B') { block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); DEBUG_print("queue_delayed_work: bitmap_flush_work\n"); queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); } goto unlock_ret; } get_area_and_offset(ic, range.logical_sector, &area, &offset); range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector); if (!ic->meta_dev) range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset); add_new_range_and_wait(ic, &range); spin_unlock_irq(&ic->endio_wait.lock); logical_sector = range.logical_sector; n_sectors = range.n_sectors; if (ic->mode == 'B') { if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) { goto advance_and_next; } while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { logical_sector += ic->sectors_per_block; n_sectors -= ic->sectors_per_block; cond_resched(); } while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block, ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) { n_sectors -= ic->sectors_per_block; cond_resched(); } get_area_and_offset(ic, logical_sector, &area, &offset); } DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors); if (unlikely(++super_counter == RECALC_WRITE_SUPER)) { recalc_write_super(ic); if (ic->mode == 'B') { queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); } super_counter = 0; } if (unlikely(dm_integrity_failed(ic))) goto err; io_req.bi_op = REQ_OP_READ; io_req.bi_op_flags = 0; io_req.mem.type = DM_IO_VMA; io_req.mem.ptr.addr = ic->recalc_buffer; io_req.notify.fn = NULL; io_req.client = ic->io; io_loc.bdev = ic->dev->bdev; io_loc.sector = get_data_sector(ic, area, offset); io_loc.count = n_sectors; r = dm_io(&io_req, 1, &io_loc, NULL); if (unlikely(r)) { dm_integrity_io_error(ic, "reading data", r); goto err; } t = ic->recalc_tags; for (i = 0; i < n_sectors; i += ic->sectors_per_block) { integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t); t += ic->tag_size; } metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset); r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE); if (unlikely(r)) { dm_integrity_io_error(ic, "writing tags", r); goto err; } if (ic->mode == 'B') { sector_t start, end; start = (range.logical_sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); end = ((range.logical_sector + range.n_sectors) >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR); } advance_and_next: cond_resched(); spin_lock_irq(&ic->endio_wait.lock); remove_range_unlocked(ic, &range); ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors); goto next_chunk; err: remove_range(ic, &range); return; unlock_ret: spin_unlock_irq(&ic->endio_wait.lock); recalc_write_super(ic); } static void bitmap_block_work(struct work_struct *w) { struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work); struct dm_integrity_c *ic = bbs->ic; struct bio *bio; struct bio_list bio_queue; struct bio_list waiting; bio_list_init(&waiting); spin_lock(&bbs->bio_queue_lock); bio_queue = bbs->bio_queue; bio_list_init(&bbs->bio_queue); spin_unlock(&bbs->bio_queue_lock); while ((bio = bio_list_pop(&bio_queue))) { struct dm_integrity_io *dio; dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) { remove_range(ic, &dio->range); INIT_WORK(&dio->work, integrity_bio_wait); queue_work(ic->offload_wq, &dio->work); } else { block_bitmap_op(ic, ic->journal, dio->range.logical_sector, dio->range.n_sectors, BITMAP_OP_SET); bio_list_add(&waiting, bio); } } if (bio_list_empty(&waiting)) return; rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL); while ((bio = bio_list_pop(&waiting))) { struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io)); block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector, dio->range.n_sectors, BITMAP_OP_SET); remove_range(ic, &dio->range); INIT_WORK(&dio->work, integrity_bio_wait); queue_work(ic->offload_wq, &dio->work); } queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval); } static void bitmap_flush_work(struct work_struct *work) { struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work); struct dm_integrity_range range; unsigned long limit; struct bio *bio; dm_integrity_flush_buffers(ic, false); range.logical_sector = 0; range.n_sectors = ic->provided_data_sectors; spin_lock_irq(&ic->endio_wait.lock); add_new_range_and_wait(ic, &range); spin_unlock_irq(&ic->endio_wait.lock); dm_integrity_flush_buffers(ic, true); limit = ic->provided_data_sectors; if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { limit = le64_to_cpu(ic->sb->recalc_sector) >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit) << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit); } /*DEBUG_print("zeroing journal\n");*/ block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR); block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR); rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); spin_lock_irq(&ic->endio_wait.lock); remove_range_unlocked(ic, &range); while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) { bio_endio(bio); spin_unlock_irq(&ic->endio_wait.lock); spin_lock_irq(&ic->endio_wait.lock); } spin_unlock_irq(&ic->endio_wait.lock); } static void init_journal(struct dm_integrity_c *ic, unsigned start_section, unsigned n_sections, unsigned char commit_seq) { unsigned i, j, n; if (!n_sections) return; for (n = 0; n < n_sections; n++) { i = start_section + n; wraparound_section(ic, &i); for (j = 0; j < ic->journal_section_sectors; j++) { struct journal_sector *js = access_journal(ic, i, j); memset(&js->entries, 0, JOURNAL_SECTOR_DATA); js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq); } for (j = 0; j < ic->journal_section_entries; j++) { struct journal_entry *je = access_journal_entry(ic, i, j); journal_entry_set_unused(je); } } write_journal(ic, start_section, n_sections); } static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id) { unsigned char k; for (k = 0; k < N_COMMIT_IDS; k++) { if (dm_integrity_commit_id(ic, i, j, k) == id) return k; } dm_integrity_io_error(ic, "journal commit id", -EIO); return -EIO; } static void replay_journal(struct dm_integrity_c *ic) { unsigned i, j; bool used_commit_ids[N_COMMIT_IDS]; unsigned max_commit_id_sections[N_COMMIT_IDS]; unsigned write_start, write_sections; unsigned continue_section; bool journal_empty; unsigned char unused, last_used, want_commit_seq; if (ic->mode == 'R') return; if (ic->journal_uptodate) return; last_used = 0; write_start = 0; if (!ic->just_formatted) { DEBUG_print("reading journal\n"); rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL); if (ic->journal_io) DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal"); if (ic->journal_io) { struct journal_completion crypt_comp; crypt_comp.ic = ic; init_completion(&crypt_comp.comp); crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0); encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp); wait_for_completion(&crypt_comp.comp); } DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal"); } if (dm_integrity_failed(ic)) goto clear_journal; journal_empty = true; memset(used_commit_ids, 0, sizeof used_commit_ids); memset(max_commit_id_sections, 0, sizeof max_commit_id_sections); for (i = 0; i < ic->journal_sections; i++) { for (j = 0; j < ic->journal_section_sectors; j++) { int k; struct journal_sector *js = access_journal(ic, i, j); k = find_commit_seq(ic, i, j, js->commit_id); if (k < 0) goto clear_journal; used_commit_ids[k] = true; max_commit_id_sections[k] = i; } if (journal_empty) { for (j = 0; j < ic->journal_section_entries; j++) { struct journal_entry *je = access_journal_entry(ic, i, j); if (!journal_entry_is_unused(je)) { journal_empty = false; break; } } } } if (!used_commit_ids[N_COMMIT_IDS - 1]) { unused = N_COMMIT_IDS - 1; while (unused && !used_commit_ids[unused - 1]) unused--; } else { for (unused = 0; unused < N_COMMIT_IDS; unused++) if (!used_commit_ids[unused]) break; if (unused == N_COMMIT_IDS) { dm_integrity_io_error(ic, "journal commit ids", -EIO); goto clear_journal; } } DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n", unused, used_commit_ids[0], used_commit_ids[1], used_commit_ids[2], used_commit_ids[3]); last_used = prev_commit_seq(unused); want_commit_seq = prev_commit_seq(last_used); if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)]) journal_empty = true; write_start = max_commit_id_sections[last_used] + 1; if (unlikely(write_start >= ic->journal_sections)) want_commit_seq = next_commit_seq(want_commit_seq); wraparound_section(ic, &write_start); i = write_start; for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) { for (j = 0; j < ic->journal_section_sectors; j++) { struct journal_sector *js = access_journal(ic, i, j); if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) { /* * This could be caused by crash during writing. * We won't replay the inconsistent part of the * journal. */ DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n", i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq); goto brk; } } i++; if (unlikely(i >= ic->journal_sections)) want_commit_seq = next_commit_seq(want_commit_seq); wraparound_section(ic, &i); } brk: if (!journal_empty) { DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n", write_sections, write_start, want_commit_seq); do_journal_write(ic, write_start, write_sections, true); } if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) { continue_section = write_start; ic->commit_seq = want_commit_seq; DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq); } else { unsigned s; unsigned char erase_seq; clear_journal: DEBUG_print("clearing journal\n"); erase_seq = prev_commit_seq(prev_commit_seq(last_used)); s = write_start; init_journal(ic, s, 1, erase_seq); s++; wraparound_section(ic, &s); if (ic->journal_sections >= 2) { init_journal(ic, s, ic->journal_sections - 2, erase_seq); s += ic->journal_sections - 2; wraparound_section(ic, &s); init_journal(ic, s, 1, erase_seq); } continue_section = 0; ic->commit_seq = next_commit_seq(erase_seq); } ic->committed_section = continue_section; ic->n_committed_sections = 0; ic->uncommitted_section = continue_section; ic->n_uncommitted_sections = 0; ic->free_section = continue_section; ic->free_section_entry = 0; ic->free_sectors = ic->journal_entries; ic->journal_tree_root = RB_ROOT; for (i = 0; i < ic->journal_entries; i++) init_journal_node(&ic->journal_tree[i]); } static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic) { DEBUG_print("dm_integrity_enter_synchronous_mode\n"); if (ic->mode == 'B') { ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1; ic->synchronous_mode = 1; cancel_delayed_work_sync(&ic->bitmap_flush_work); queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0); flush_workqueue(ic->commit_wq); } } static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x) { struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier); DEBUG_print("dm_integrity_reboot\n"); dm_integrity_enter_synchronous_mode(ic); return NOTIFY_DONE; } static void dm_integrity_postsuspend(struct dm_target *ti) { struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; int r; WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier)); del_timer_sync(&ic->autocommit_timer); if (ic->recalc_wq) drain_workqueue(ic->recalc_wq); if (ic->mode == 'B') cancel_delayed_work_sync(&ic->bitmap_flush_work); queue_work(ic->commit_wq, &ic->commit_work); drain_workqueue(ic->commit_wq); if (ic->mode == 'J') { queue_work(ic->writer_wq, &ic->writer_work); drain_workqueue(ic->writer_wq); dm_integrity_flush_buffers(ic, true); if (ic->wrote_to_journal) { init_journal(ic, ic->free_section, ic->journal_sections - ic->free_section, ic->commit_seq); if (ic->free_section) { init_journal(ic, 0, ic->free_section, next_commit_seq(ic->commit_seq)); } } } if (ic->mode == 'B') { dm_integrity_flush_buffers(ic, true); #if 1 /* set to 0 to test bitmap replay code */ init_journal(ic, 0, ic->journal_sections, 0); ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); if (unlikely(r)) dm_integrity_io_error(ic, "writing superblock", r); #endif } BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); ic->journal_uptodate = true; } static void dm_integrity_resume(struct dm_target *ti) { struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors); int r; DEBUG_print("resume\n"); ic->wrote_to_journal = false; if (ic->provided_data_sectors != old_provided_data_sectors) { if (ic->provided_data_sectors > old_provided_data_sectors && ic->mode == 'B' && ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) { rw_journal_sectors(ic, REQ_OP_READ, 0, 0, ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); block_bitmap_op(ic, ic->journal, old_provided_data_sectors, ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET); rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); } ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); if (unlikely(r)) dm_integrity_io_error(ic, "writing superblock", r); } if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) { DEBUG_print("resume dirty_bitmap\n"); rw_journal_sectors(ic, REQ_OP_READ, 0, 0, ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); if (ic->mode == 'B') { if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit && !ic->reset_recalculate_flag) { block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal); block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal); if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) { ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); ic->sb->recalc_sector = cpu_to_le64(0); } } else { DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n", ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit); ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET); block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET); rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); ic->sb->recalc_sector = cpu_to_le64(0); } } else { if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit && block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) || ic->reset_recalculate_flag) { ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); ic->sb->recalc_sector = cpu_to_le64(0); } init_journal(ic, 0, ic->journal_sections, 0); replay_journal(ic); ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP); } r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); if (unlikely(r)) dm_integrity_io_error(ic, "writing superblock", r); } else { replay_journal(ic); if (ic->reset_recalculate_flag) { ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); ic->sb->recalc_sector = cpu_to_le64(0); } if (ic->mode == 'B') { ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP); ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit; r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); if (unlikely(r)) dm_integrity_io_error(ic, "writing superblock", r); block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR); if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) { block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector), ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector), ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector), ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET); } rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0, ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL); } } DEBUG_print("testing recalc: %x\n", ic->sb->flags); if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector); DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors); if (recalc_pos < ic->provided_data_sectors) { queue_work(ic->recalc_wq, &ic->recalc_work); } else if (recalc_pos > ic->provided_data_sectors) { ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors); recalc_write_super(ic); } } ic->reboot_notifier.notifier_call = dm_integrity_reboot; ic->reboot_notifier.next = NULL; ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */ WARN_ON(register_reboot_notifier(&ic->reboot_notifier)); #if 0 /* set to 1 to stress test synchronous mode */ dm_integrity_enter_synchronous_mode(ic); #endif } static void dm_integrity_status(struct dm_target *ti, status_type_t type, unsigned status_flags, char *result, unsigned maxlen) { struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private; unsigned arg_count; size_t sz = 0; switch (type) { case STATUSTYPE_INFO: DMEMIT("%llu %llu", (unsigned long long)atomic64_read(&ic->number_of_mismatches), ic->provided_data_sectors); if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector)); else DMEMIT(" -"); break; case STATUSTYPE_TABLE: { __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100; watermark_percentage += ic->journal_entries / 2; do_div(watermark_percentage, ic->journal_entries); arg_count = 3; arg_count += !!ic->meta_dev; arg_count += ic->sectors_per_block != 1; arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)); arg_count += ic->reset_recalculate_flag; arg_count += ic->discard; arg_count += ic->mode == 'J'; arg_count += ic->mode == 'J'; arg_count += ic->mode == 'B'; arg_count += ic->mode == 'B'; arg_count += !!ic->internal_hash_alg.alg_string; arg_count += !!ic->journal_crypt_alg.alg_string; arg_count += !!ic->journal_mac_alg.alg_string; arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0; arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0; arg_count += ic->legacy_recalculate; DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start, ic->tag_size, ic->mode, arg_count); if (ic->meta_dev) DMEMIT(" meta_device:%s", ic->meta_dev->name); if (ic->sectors_per_block != 1) DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT); if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) DMEMIT(" recalculate"); if (ic->reset_recalculate_flag) DMEMIT(" reset_recalculate"); if (ic->discard) DMEMIT(" allow_discards"); DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS); DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors); DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors); if (ic->mode == 'J') { DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage); DMEMIT(" commit_time:%u", ic->autocommit_msec); } if (ic->mode == 'B') { DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit); DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval)); } if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) DMEMIT(" fix_padding"); if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) DMEMIT(" fix_hmac"); if (ic->legacy_recalculate) DMEMIT(" legacy_recalculate"); #define EMIT_ALG(a, n) \ do { \ if (ic->a.alg_string) { \ DMEMIT(" %s:%s", n, ic->a.alg_string); \ if (ic->a.key_string) \ DMEMIT(":%s", ic->a.key_string);\ } \ } while (0) EMIT_ALG(internal_hash_alg, "internal_hash"); EMIT_ALG(journal_crypt_alg, "journal_crypt"); EMIT_ALG(journal_mac_alg, "journal_mac"); break; } case STATUSTYPE_IMA: DMEMIT_TARGET_NAME_VERSION(ti->type); DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c", ic->dev->name, ic->start, ic->tag_size, ic->mode); if (ic->meta_dev) DMEMIT(",meta_device=%s", ic->meta_dev->name); if (ic->sectors_per_block != 1) DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT); DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ? 'y' : 'n'); DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n'); DMEMIT(",fix_padding=%c", ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n'); DMEMIT(",fix_hmac=%c", ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n'); DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n'); DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS); DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors); DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors); DMEMIT(";"); break; } } static int dm_integrity_iterate_devices(struct dm_target *ti, iterate_devices_callout_fn fn, void *data) { struct dm_integrity_c *ic = ti->private; if (!ic->meta_dev) return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data); else return fn(ti, ic->dev, 0, ti->len, data); } static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits) { struct dm_integrity_c *ic = ti->private; if (ic->sectors_per_block > 1) { limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT; limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT; blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT); } } static void calculate_journal_section_size(struct dm_integrity_c *ic) { unsigned sector_space = JOURNAL_SECTOR_DATA; ic->journal_sections = le32_to_cpu(ic->sb->journal_sections); ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size, JOURNAL_ENTRY_ROUNDUP); if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) sector_space -= JOURNAL_MAC_PER_SECTOR; ic->journal_entries_per_sector = sector_space / ic->journal_entry_size; ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS; ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS; ic->journal_entries = ic->journal_section_entries * ic->journal_sections; } static int calculate_device_limits(struct dm_integrity_c *ic) { __u64 initial_sectors; calculate_journal_section_size(ic); initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections; if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX) return -EINVAL; ic->initial_sectors = initial_sectors; if (!ic->meta_dev) { sector_t last_sector, last_area, last_offset; /* we have to maintain excessive padding for compatibility with existing volumes */ __u64 metadata_run_padding = ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ? (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) : (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS); ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block), metadata_run_padding) >> SECTOR_SHIFT; if (!(ic->metadata_run & (ic->metadata_run - 1))) ic->log2_metadata_run = __ffs(ic->metadata_run); else ic->log2_metadata_run = -1; get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset); last_sector = get_data_sector(ic, last_area, last_offset); if (last_sector < ic->start || last_sector >= ic->meta_device_sectors) return -EINVAL; } else { __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size; meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1)) >> (ic->log2_buffer_sectors + SECTOR_SHIFT); meta_size <<= ic->log2_buffer_sectors; if (ic->initial_sectors + meta_size < ic->initial_sectors || ic->initial_sectors + meta_size > ic->meta_device_sectors) return -EINVAL; ic->metadata_run = 1; ic->log2_metadata_run = 0; } return 0; } static void get_provided_data_sectors(struct dm_integrity_c *ic) { if (!ic->meta_dev) { int test_bit; ic->provided_data_sectors = 0; for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) { __u64 prev_data_sectors = ic->provided_data_sectors; ic->provided_data_sectors |= (sector_t)1 << test_bit; if (calculate_device_limits(ic)) ic->provided_data_sectors = prev_data_sectors; } } else { ic->provided_data_sectors = ic->data_device_sectors; ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1); } } static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors) { unsigned journal_sections; int test_bit; memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT); memcpy(ic->sb->magic, SB_MAGIC, 8); ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size); ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block); if (ic->journal_mac_alg.alg_string) ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC); calculate_journal_section_size(ic); journal_sections = journal_sectors / ic->journal_section_sectors; if (!journal_sections) journal_sections = 1; if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) { ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC); get_random_bytes(ic->sb->salt, SALT_SIZE); } if (!ic->meta_dev) { if (ic->fix_padding) ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING); ic->sb->journal_sections = cpu_to_le32(journal_sections); if (!interleave_sectors) interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; ic->sb->log2_interleave_sectors = __fls(interleave_sectors); ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors); get_provided_data_sectors(ic); if (!ic->provided_data_sectors) return -EINVAL; } else { ic->sb->log2_interleave_sectors = 0; get_provided_data_sectors(ic); if (!ic->provided_data_sectors) return -EINVAL; try_smaller_buffer: ic->sb->journal_sections = cpu_to_le32(0); for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) { __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections); __u32 test_journal_sections = prev_journal_sections | (1U << test_bit); if (test_journal_sections > journal_sections) continue; ic->sb->journal_sections = cpu_to_le32(test_journal_sections); if (calculate_device_limits(ic)) ic->sb->journal_sections = cpu_to_le32(prev_journal_sections); } if (!le32_to_cpu(ic->sb->journal_sections)) { if (ic->log2_buffer_sectors > 3) { ic->log2_buffer_sectors--; goto try_smaller_buffer; } return -EINVAL; } } ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors); sb_set_version(ic); return 0; } static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic) { struct gendisk *disk = dm_disk(dm_table_get_md(ti->table)); struct blk_integrity bi; memset(&bi, 0, sizeof(bi)); bi.profile = &dm_integrity_profile; bi.tuple_size = ic->tag_size; bi.tag_size = bi.tuple_size; bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT; blk_integrity_register(disk, &bi); blk_queue_max_integrity_segments(disk->queue, UINT_MAX); } static void dm_integrity_free_page_list(struct page_list *pl) { unsigned i; if (!pl) return; for (i = 0; pl[i].page; i++) __free_page(pl[i].page); kvfree(pl); } static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages) { struct page_list *pl; unsigned i; pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO); if (!pl) return NULL; for (i = 0; i < n_pages; i++) { pl[i].page = alloc_page(GFP_KERNEL); if (!pl[i].page) { dm_integrity_free_page_list(pl); return NULL; } if (i) pl[i - 1].next = &pl[i]; } pl[i].page = NULL; pl[i].next = NULL; return pl; } static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl) { unsigned i; for (i = 0; i < ic->journal_sections; i++) kvfree(sl[i]); kvfree(sl); } static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, struct page_list *pl) { struct scatterlist **sl; unsigned i; sl = kvmalloc_array(ic->journal_sections, sizeof(struct scatterlist *), GFP_KERNEL | __GFP_ZERO); if (!sl) return NULL; for (i = 0; i < ic->journal_sections; i++) { struct scatterlist *s; unsigned start_index, start_offset; unsigned end_index, end_offset; unsigned n_pages; unsigned idx; page_list_location(ic, i, 0, &start_index, &start_offset); page_list_location(ic, i, ic->journal_section_sectors - 1, &end_index, &end_offset); n_pages = (end_index - start_index + 1); s = kvmalloc_array(n_pages, sizeof(struct scatterlist), GFP_KERNEL); if (!s) { dm_integrity_free_journal_scatterlist(ic, sl); return NULL; } sg_init_table(s, n_pages); for (idx = start_index; idx <= end_index; idx++) { char *va = lowmem_page_address(pl[idx].page); unsigned start = 0, end = PAGE_SIZE; if (idx == start_index) start = start_offset; if (idx == end_index) end = end_offset + (1 << SECTOR_SHIFT); sg_set_buf(&s[idx - start_index], va + start, end - start); } sl[i] = s; } return sl; } static void free_alg(struct alg_spec *a) { kfree_sensitive(a->alg_string); kfree_sensitive(a->key); memset(a, 0, sizeof *a); } static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval) { char *k; free_alg(a); a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL); if (!a->alg_string) goto nomem; k = strchr(a->alg_string, ':'); if (k) { *k = 0; a->key_string = k + 1; if (strlen(a->key_string) & 1) goto inval; a->key_size = strlen(a->key_string) / 2; a->key = kmalloc(a->key_size, GFP_KERNEL); if (!a->key) goto nomem; if (hex2bin(a->key, a->key_string, a->key_size)) goto inval; } return 0; inval: *error = error_inval; return -EINVAL; nomem: *error = "Out of memory for an argument"; return -ENOMEM; } static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error, char *error_alg, char *error_key) { int r; if (a->alg_string) { *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY); if (IS_ERR(*hash)) { *error = error_alg; r = PTR_ERR(*hash); *hash = NULL; return r; } if (a->key) { r = crypto_shash_setkey(*hash, a->key, a->key_size); if (r) { *error = error_key; return r; } } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) { *error = error_key; return -ENOKEY; } } return 0; } static int create_journal(struct dm_integrity_c *ic, char **error) { int r = 0; unsigned i; __u64 journal_pages, journal_desc_size, journal_tree_size; unsigned char *crypt_data = NULL, *crypt_iv = NULL; struct skcipher_request *req = NULL; ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL); ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL); ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL); ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL); journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors, PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT); journal_desc_size = journal_pages * sizeof(struct page_list); if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) { *error = "Journal doesn't fit into memory"; r = -ENOMEM; goto bad; } ic->journal_pages = journal_pages; ic->journal = dm_integrity_alloc_page_list(ic->journal_pages); if (!ic->journal) { *error = "Could not allocate memory for journal"; r = -ENOMEM; goto bad; } if (ic->journal_crypt_alg.alg_string) { unsigned ivsize, blocksize; struct journal_completion comp; comp.ic = ic; ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY); if (IS_ERR(ic->journal_crypt)) { *error = "Invalid journal cipher"; r = PTR_ERR(ic->journal_crypt); ic->journal_crypt = NULL; goto bad; } ivsize = crypto_skcipher_ivsize(ic->journal_crypt); blocksize = crypto_skcipher_blocksize(ic->journal_crypt); if (ic->journal_crypt_alg.key) { r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key, ic->journal_crypt_alg.key_size); if (r) { *error = "Error setting encryption key"; goto bad; } } DEBUG_print("cipher %s, block size %u iv size %u\n", ic->journal_crypt_alg.alg_string, blocksize, ivsize); ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages); if (!ic->journal_io) { *error = "Could not allocate memory for journal io"; r = -ENOMEM; goto bad; } if (blocksize == 1) { struct scatterlist *sg; req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); if (!req) { *error = "Could not allocate crypt request"; r = -ENOMEM; goto bad; } crypt_iv = kzalloc(ivsize, GFP_KERNEL); if (!crypt_iv) { *error = "Could not allocate iv"; r = -ENOMEM; goto bad; } ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages); if (!ic->journal_xor) { *error = "Could not allocate memory for journal xor"; r = -ENOMEM; goto bad; } sg = kvmalloc_array(ic->journal_pages + 1, sizeof(struct scatterlist), GFP_KERNEL); if (!sg) { *error = "Unable to allocate sg list"; r = -ENOMEM; goto bad; } sg_init_table(sg, ic->journal_pages + 1); for (i = 0; i < ic->journal_pages; i++) { char *va = lowmem_page_address(ic->journal_xor[i].page); clear_page(va); sg_set_buf(&sg[i], va, PAGE_SIZE); } sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids); skcipher_request_set_crypt(req, sg, sg, PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv); init_completion(&comp.comp); comp.in_flight = (atomic_t)ATOMIC_INIT(1); if (do_crypt(true, req, &comp)) wait_for_completion(&comp.comp); kvfree(sg); r = dm_integrity_failed(ic); if (r) { *error = "Unable to encrypt journal"; goto bad; } DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data"); crypto_free_skcipher(ic->journal_crypt); ic->journal_crypt = NULL; } else { unsigned crypt_len = roundup(ivsize, blocksize); req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); if (!req) { *error = "Could not allocate crypt request"; r = -ENOMEM; goto bad; } crypt_iv = kmalloc(ivsize, GFP_KERNEL); if (!crypt_iv) { *error = "Could not allocate iv"; r = -ENOMEM; goto bad; } crypt_data = kmalloc(crypt_len, GFP_KERNEL); if (!crypt_data) { *error = "Unable to allocate crypt data"; r = -ENOMEM; goto bad; } ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal); if (!ic->journal_scatterlist) { *error = "Unable to allocate sg list"; r = -ENOMEM; goto bad; } ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io); if (!ic->journal_io_scatterlist) { *error = "Unable to allocate sg list"; r = -ENOMEM; goto bad; } ic->sk_requests = kvmalloc_array(ic->journal_sections, sizeof(struct skcipher_request *), GFP_KERNEL | __GFP_ZERO); if (!ic->sk_requests) { *error = "Unable to allocate sk requests"; r = -ENOMEM; goto bad; } for (i = 0; i < ic->journal_sections; i++) { struct scatterlist sg; struct skcipher_request *section_req; __le32 section_le = cpu_to_le32(i); memset(crypt_iv, 0x00, ivsize); memset(crypt_data, 0x00, crypt_len); memcpy(crypt_data, §ion_le, min((size_t)crypt_len, sizeof(section_le))); sg_init_one(&sg, crypt_data, crypt_len); skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv); init_completion(&comp.comp); comp.in_flight = (atomic_t)ATOMIC_INIT(1); if (do_crypt(true, req, &comp)) wait_for_completion(&comp.comp); r = dm_integrity_failed(ic); if (r) { *error = "Unable to generate iv"; goto bad; } section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL); if (!section_req) { *error = "Unable to allocate crypt request"; r = -ENOMEM; goto bad; } section_req->iv = kmalloc_array(ivsize, 2, GFP_KERNEL); if (!section_req->iv) { skcipher_request_free(section_req); *error = "Unable to allocate iv"; r = -ENOMEM; goto bad; } memcpy(section_req->iv + ivsize, crypt_data, ivsize); section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT; ic->sk_requests[i] = section_req; DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i); } } } for (i = 0; i < N_COMMIT_IDS; i++) { unsigned j; retest_commit_id: for (j = 0; j < i; j++) { if (ic->commit_ids[j] == ic->commit_ids[i]) { ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1); goto retest_commit_id; } } DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]); } journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node); if (journal_tree_size > ULONG_MAX) { *error = "Journal doesn't fit into memory"; r = -ENOMEM; goto bad; } ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL); if (!ic->journal_tree) { *error = "Could not allocate memory for journal tree"; r = -ENOMEM; } bad: kfree(crypt_data); kfree(crypt_iv); skcipher_request_free(req); return r; } /* * Construct a integrity mapping * * Arguments: * device * offset from the start of the device * tag size * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode * number of optional arguments * optional arguments: * journal_sectors * interleave_sectors * buffer_sectors * journal_watermark * commit_time * meta_device * block_size * sectors_per_bit * bitmap_flush_interval * internal_hash * journal_crypt * journal_mac * recalculate */ static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv) { struct dm_integrity_c *ic; char dummy; int r; unsigned extra_args; struct dm_arg_set as; static const struct dm_arg _args[] = { {0, 18, "Invalid number of feature args"}, }; unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec; bool should_write_sb; __u64 threshold; unsigned long long start; __s8 log2_sectors_per_bitmap_bit = -1; __s8 log2_blocks_per_bitmap_bit; __u64 bits_in_journal; __u64 n_bitmap_bits; #define DIRECT_ARGUMENTS 4 if (argc <= DIRECT_ARGUMENTS) { ti->error = "Invalid argument count"; return -EINVAL; } ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL); if (!ic) { ti->error = "Cannot allocate integrity context"; return -ENOMEM; } ti->private = ic; ti->per_io_data_size = sizeof(struct dm_integrity_io); ic->ti = ti; ic->in_progress = RB_ROOT; INIT_LIST_HEAD(&ic->wait_list); init_waitqueue_head(&ic->endio_wait); bio_list_init(&ic->flush_bio_list); init_waitqueue_head(&ic->copy_to_journal_wait); init_completion(&ic->crypto_backoff); atomic64_set(&ic->number_of_mismatches, 0); ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL; r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev); if (r) { ti->error = "Device lookup failed"; goto bad; } if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) { ti->error = "Invalid starting offset"; r = -EINVAL; goto bad; } ic->start = start; if (strcmp(argv[2], "-")) { if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) { ti->error = "Invalid tag size"; r = -EINVAL; goto bad; } } if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") || !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) { ic->mode = argv[3][0]; } else { ti->error = "Invalid mode (expecting J, B, D, R)"; r = -EINVAL; goto bad; } journal_sectors = 0; interleave_sectors = DEFAULT_INTERLEAVE_SECTORS; buffer_sectors = DEFAULT_BUFFER_SECTORS; journal_watermark = DEFAULT_JOURNAL_WATERMARK; sync_msec = DEFAULT_SYNC_MSEC; ic->sectors_per_block = 1; as.argc = argc - DIRECT_ARGUMENTS; as.argv = argv + DIRECT_ARGUMENTS; r = dm_read_arg_group(_args, &as, &extra_args, &ti->error); if (r) goto bad; while (extra_args--) { const char *opt_string; unsigned val; unsigned long long llval; opt_string = dm_shift_arg(&as); if (!opt_string) { r = -EINVAL; ti->error = "Not enough feature arguments"; goto bad; } if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1) journal_sectors = val ? val : 1; else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1) interleave_sectors = val; else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1) buffer_sectors = val; else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100) journal_watermark = val; else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1) sync_msec = val; else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) { if (ic->meta_dev) { dm_put_device(ti, ic->meta_dev); ic->meta_dev = NULL; } r = dm_get_device(ti, strchr(opt_string, ':') + 1, dm_table_get_mode(ti->table), &ic->meta_dev); if (r) { ti->error = "Device lookup failed"; goto bad; } } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) { if (val < 1 << SECTOR_SHIFT || val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT || (val & (val -1))) { r = -EINVAL; ti->error = "Invalid block_size argument"; goto bad; } ic->sectors_per_block = val >> SECTOR_SHIFT; } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) { log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval); } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) { if (val >= (uint64_t)UINT_MAX * 1000 / HZ) { r = -EINVAL; ti->error = "Invalid bitmap_flush_interval argument"; goto bad; } ic->bitmap_flush_interval = msecs_to_jiffies(val); } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) { r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error, "Invalid internal_hash argument"); if (r) goto bad; } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) { r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error, "Invalid journal_crypt argument"); if (r) goto bad; } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) { r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error, "Invalid journal_mac argument"); if (r) goto bad; } else if (!strcmp(opt_string, "recalculate")) { ic->recalculate_flag = true; } else if (!strcmp(opt_string, "reset_recalculate")) { ic->recalculate_flag = true; ic->reset_recalculate_flag = true; } else if (!strcmp(opt_string, "allow_discards")) { ic->discard = true; } else if (!strcmp(opt_string, "fix_padding")) { ic->fix_padding = true; } else if (!strcmp(opt_string, "fix_hmac")) { ic->fix_hmac = true; } else if (!strcmp(opt_string, "legacy_recalculate")) { ic->legacy_recalculate = true; } else { r = -EINVAL; ti->error = "Invalid argument"; goto bad; } } ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT; if (!ic->meta_dev) ic->meta_device_sectors = ic->data_device_sectors; else ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT; if (!journal_sectors) { journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS, ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR); } if (!buffer_sectors) buffer_sectors = 1; ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT); r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error, "Invalid internal hash", "Error setting internal hash key"); if (r) goto bad; r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error, "Invalid journal mac", "Error setting journal mac key"); if (r) goto bad; if (!ic->tag_size) { if (!ic->internal_hash) { ti->error = "Unknown tag size"; r = -EINVAL; goto bad; } ic->tag_size = crypto_shash_digestsize(ic->internal_hash); } if (ic->tag_size > MAX_TAG_SIZE) { ti->error = "Too big tag size"; r = -EINVAL; goto bad; } if (!(ic->tag_size & (ic->tag_size - 1))) ic->log2_tag_size = __ffs(ic->tag_size); else ic->log2_tag_size = -1; if (ic->mode == 'B' && !ic->internal_hash) { r = -EINVAL; ti->error = "Bitmap mode can be only used with internal hash"; goto bad; } if (ic->discard && !ic->internal_hash) { r = -EINVAL; ti->error = "Discard can be only used with internal hash"; goto bad; } ic->autocommit_jiffies = msecs_to_jiffies(sync_msec); ic->autocommit_msec = sync_msec; timer_setup(&ic->autocommit_timer, autocommit_fn, 0); ic->io = dm_io_client_create(); if (IS_ERR(ic->io)) { r = PTR_ERR(ic->io); ic->io = NULL; ti->error = "Cannot allocate dm io"; goto bad; } r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache); if (r) { ti->error = "Cannot allocate mempool"; goto bad; } ic->metadata_wq = alloc_workqueue("dm-integrity-metadata", WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE); if (!ic->metadata_wq) { ti->error = "Cannot allocate workqueue"; r = -ENOMEM; goto bad; } /* * If this workqueue were percpu, it would cause bio reordering * and reduced performance. */ ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); if (!ic->wait_wq) { ti->error = "Cannot allocate workqueue"; r = -ENOMEM; goto bad; } ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE); if (!ic->offload_wq) { ti->error = "Cannot allocate workqueue"; r = -ENOMEM; goto bad; } ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1); if (!ic->commit_wq) { ti->error = "Cannot allocate workqueue"; r = -ENOMEM; goto bad; } INIT_WORK(&ic->commit_work, integrity_commit); if (ic->mode == 'J' || ic->mode == 'B') { ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1); if (!ic->writer_wq) { ti->error = "Cannot allocate workqueue"; r = -ENOMEM; goto bad; } INIT_WORK(&ic->writer_work, integrity_writer); } ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL); if (!ic->sb) { r = -ENOMEM; ti->error = "Cannot allocate superblock area"; goto bad; } r = sync_rw_sb(ic, REQ_OP_READ, 0); if (r) { ti->error = "Error reading superblock"; goto bad; } should_write_sb = false; if (memcmp(ic->sb->magic, SB_MAGIC, 8)) { if (ic->mode != 'R') { if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) { r = -EINVAL; ti->error = "The device is not initialized"; goto bad; } } r = initialize_superblock(ic, journal_sectors, interleave_sectors); if (r) { ti->error = "Could not initialize superblock"; goto bad; } if (ic->mode != 'R') should_write_sb = true; } if (!ic->sb->version || ic->sb->version > SB_VERSION_5) { r = -EINVAL; ti->error = "Unknown version"; goto bad; } if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) { r = -EINVAL; ti->error = "Tag size doesn't match the information in superblock"; goto bad; } if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) { r = -EINVAL; ti->error = "Block size doesn't match the information in superblock"; goto bad; } if (!le32_to_cpu(ic->sb->journal_sections)) { r = -EINVAL; ti->error = "Corrupted superblock, journal_sections is 0"; goto bad; } /* make sure that ti->max_io_len doesn't overflow */ if (!ic->meta_dev) { if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS || ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) { r = -EINVAL; ti->error = "Invalid interleave_sectors in the superblock"; goto bad; } } else { if (ic->sb->log2_interleave_sectors) { r = -EINVAL; ti->error = "Invalid interleave_sectors in the superblock"; goto bad; } } if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) { r = -EINVAL; ti->error = "Journal mac mismatch"; goto bad; } get_provided_data_sectors(ic); if (!ic->provided_data_sectors) { r = -EINVAL; ti->error = "The device is too small"; goto bad; } try_smaller_buffer: r = calculate_device_limits(ic); if (r) { if (ic->meta_dev) { if (ic->log2_buffer_sectors > 3) { ic->log2_buffer_sectors--; goto try_smaller_buffer; } } ti->error = "The device is too small"; goto bad; } if (log2_sectors_per_bitmap_bit < 0) log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT); if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block) log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block; bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3); if (bits_in_journal > UINT_MAX) bits_in_journal = UINT_MAX; while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit) log2_sectors_per_bitmap_bit++; log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block; ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; if (should_write_sb) { ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit; } n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit; ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8); if (!ic->meta_dev) ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run)); if (ti->len > ic->provided_data_sectors) { r = -EINVAL; ti->error = "Not enough provided sectors for requested mapping size"; goto bad; } threshold = (__u64)ic->journal_entries * (100 - journal_watermark); threshold += 50; do_div(threshold, 100); ic->free_sectors_threshold = threshold; DEBUG_print("initialized:\n"); DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size)); DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size); DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector); DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries); DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors); DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections)); DEBUG_print(" journal_entries %u\n", ic->journal_entries); DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors); DEBUG_print(" data_device_sectors 0x%llx\n", i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT); DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors); DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run); DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run); DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors); DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors); DEBUG_print(" bits_in_journal %llu\n", bits_in_journal); if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) { ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING); ic->sb->recalc_sector = cpu_to_le64(0); } if (ic->internal_hash) { size_t recalc_tags_size; ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1); if (!ic->recalc_wq ) { ti->error = "Cannot allocate workqueue"; r = -ENOMEM; goto bad; } INIT_WORK(&ic->recalc_work, integrity_recalc); ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT); if (!ic->recalc_buffer) { ti->error = "Cannot allocate buffer for recalculating"; r = -ENOMEM; goto bad; } recalc_tags_size = (RECALC_SECTORS >> ic->sb->log2_sectors_per_block) * ic->tag_size; if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size) recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size; ic->recalc_tags = kvmalloc(recalc_tags_size, GFP_KERNEL); if (!ic->recalc_tags) { ti->error = "Cannot allocate tags for recalculating"; r = -ENOMEM; goto bad; } } else { if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) { ti->error = "Recalculate can only be specified with internal_hash"; r = -EINVAL; goto bad; } } if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) && le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors && dm_integrity_disable_recalculate(ic)) { ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\""; r = -EOPNOTSUPP; goto bad; } ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev, 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL); if (IS_ERR(ic->bufio)) { r = PTR_ERR(ic->bufio); ti->error = "Cannot initialize dm-bufio"; ic->bufio = NULL; goto bad; } dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors); if (ic->mode != 'R') { r = create_journal(ic, &ti->error); if (r) goto bad; } if (ic->mode == 'B') { unsigned i; unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE); ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); if (!ic->recalc_bitmap) { r = -ENOMEM; goto bad; } ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages); if (!ic->may_write_bitmap) { r = -ENOMEM; goto bad; } ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL); if (!ic->bbs) { r = -ENOMEM; goto bad; } INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work); for (i = 0; i < ic->n_bitmap_blocks; i++) { struct bitmap_block_status *bbs = &ic->bbs[i]; unsigned sector, pl_index, pl_offset; INIT_WORK(&bbs->work, bitmap_block_work); bbs->ic = ic; bbs->idx = i; bio_list_init(&bbs->bio_queue); spin_lock_init(&bbs->bio_queue_lock); sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT); pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT); pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1); bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset; } } if (should_write_sb) { init_journal(ic, 0, ic->journal_sections, 0); r = dm_integrity_failed(ic); if (unlikely(r)) { ti->error = "Error initializing journal"; goto bad; } r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA); if (r) { ti->error = "Error initializing superblock"; goto bad; } ic->just_formatted = true; } if (!ic->meta_dev) { r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors); if (r) goto bad; } if (ic->mode == 'B') { unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8); if (!max_io_len) max_io_len = 1U << 31; DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len); if (!ti->max_io_len || ti->max_io_len > max_io_len) { r = dm_set_target_max_io_len(ti, max_io_len); if (r) goto bad; } } if (!ic->internal_hash) dm_integrity_set(ti, ic); ti->num_flush_bios = 1; ti->flush_supported = true; if (ic->discard) ti->num_discard_bios = 1; return 0; bad: dm_integrity_dtr(ti); return r; } static void dm_integrity_dtr(struct dm_target *ti) { struct dm_integrity_c *ic = ti->private; BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress)); BUG_ON(!list_empty(&ic->wait_list)); if (ic->mode == 'B') cancel_delayed_work_sync(&ic->bitmap_flush_work); if (ic->metadata_wq) destroy_workqueue(ic->metadata_wq); if (ic->wait_wq) destroy_workqueue(ic->wait_wq); if (ic->offload_wq) destroy_workqueue(ic->offload_wq); if (ic->commit_wq) destroy_workqueue(ic->commit_wq); if (ic->writer_wq) destroy_workqueue(ic->writer_wq); if (ic->recalc_wq) destroy_workqueue(ic->recalc_wq); vfree(ic->recalc_buffer); kvfree(ic->recalc_tags); kvfree(ic->bbs); if (ic->bufio) dm_bufio_client_destroy(ic->bufio); mempool_exit(&ic->journal_io_mempool); if (ic->io) dm_io_client_destroy(ic->io); if (ic->dev) dm_put_device(ti, ic->dev); if (ic->meta_dev) dm_put_device(ti, ic->meta_dev); dm_integrity_free_page_list(ic->journal); dm_integrity_free_page_list(ic->journal_io); dm_integrity_free_page_list(ic->journal_xor); dm_integrity_free_page_list(ic->recalc_bitmap); dm_integrity_free_page_list(ic->may_write_bitmap); if (ic->journal_scatterlist) dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist); if (ic->journal_io_scatterlist) dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist); if (ic->sk_requests) { unsigned i; for (i = 0; i < ic->journal_sections; i++) { struct skcipher_request *req = ic->sk_requests[i]; if (req) { kfree_sensitive(req->iv); skcipher_request_free(req); } } kvfree(ic->sk_requests); } kvfree(ic->journal_tree); if (ic->sb) free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT); if (ic->internal_hash) crypto_free_shash(ic->internal_hash); free_alg(&ic->internal_hash_alg); if (ic->journal_crypt) crypto_free_skcipher(ic->journal_crypt); free_alg(&ic->journal_crypt_alg); if (ic->journal_mac) crypto_free_shash(ic->journal_mac); free_alg(&ic->journal_mac_alg); kfree(ic); } static struct target_type integrity_target = { .name = "integrity", .version = {1, 10, 0}, .module = THIS_MODULE, .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY, .ctr = dm_integrity_ctr, .dtr = dm_integrity_dtr, .map = dm_integrity_map, .postsuspend = dm_integrity_postsuspend, .resume = dm_integrity_resume, .status = dm_integrity_status, .iterate_devices = dm_integrity_iterate_devices, .io_hints = dm_integrity_io_hints, }; static int __init dm_integrity_init(void) { int r; journal_io_cache = kmem_cache_create("integrity_journal_io", sizeof(struct journal_io), 0, 0, NULL); if (!journal_io_cache) { DMERR("can't allocate journal io cache"); return -ENOMEM; } r = dm_register_target(&integrity_target); if (r < 0) { DMERR("register failed %d", r); kmem_cache_destroy(journal_io_cache); return r; } return 0; } static void __exit dm_integrity_exit(void) { dm_unregister_target(&integrity_target); kmem_cache_destroy(journal_io_cache); } module_init(dm_integrity_init); module_exit(dm_integrity_exit); MODULE_AUTHOR("Milan Broz"); MODULE_AUTHOR("Mikulas Patocka"); MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension"); MODULE_LICENSE("GPL");