// SPDX-License-Identifier: GPL-2.0-only /* * Linux-DVB Driver for DiBcom's second generation DiB7000P (PC). * * Copyright (C) 2005-7 DiBcom (http://www.dibcom.fr/) */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include "dib7000p.h" static int debug; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "turn on debugging (default: 0)"); static int buggy_sfn_workaround; module_param(buggy_sfn_workaround, int, 0644); MODULE_PARM_DESC(buggy_sfn_workaround, "Enable work-around for buggy SFNs (default: 0)"); #define dprintk(fmt, arg...) do { \ if (debug) \ printk(KERN_DEBUG pr_fmt("%s: " fmt), \ __func__, ##arg); \ } while (0) struct i2c_device { struct i2c_adapter *i2c_adap; u8 i2c_addr; }; struct dib7000p_state { struct dvb_frontend demod; struct dib7000p_config cfg; u8 i2c_addr; struct i2c_adapter *i2c_adap; struct dibx000_i2c_master i2c_master; u16 wbd_ref; u8 current_band; u32 current_bandwidth; struct dibx000_agc_config *current_agc; u32 timf; u8 div_force_off:1; u8 div_state:1; u16 div_sync_wait; u8 agc_state; u16 gpio_dir; u16 gpio_val; u8 sfn_workaround_active:1; #define SOC7090 0x7090 u16 version; u16 tuner_enable; struct i2c_adapter dib7090_tuner_adap; /* for the I2C transfer */ struct i2c_msg msg[2]; u8 i2c_write_buffer[4]; u8 i2c_read_buffer[2]; struct mutex i2c_buffer_lock; u8 input_mode_mpeg; /* for DVBv5 stats */ s64 old_ucb; unsigned long per_jiffies_stats; unsigned long ber_jiffies_stats; unsigned long get_stats_time; }; enum dib7000p_power_mode { DIB7000P_POWER_ALL = 0, DIB7000P_POWER_ANALOG_ADC, DIB7000P_POWER_INTERFACE_ONLY, }; /* dib7090 specific functions */ static int dib7090_set_output_mode(struct dvb_frontend *fe, int mode); static int dib7090_set_diversity_in(struct dvb_frontend *fe, int onoff); static void dib7090_setDibTxMux(struct dib7000p_state *state, int mode); static void dib7090_setHostBusMux(struct dib7000p_state *state, int mode); static u16 dib7000p_read_word(struct dib7000p_state *state, u16 reg) { u16 ret; if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { dprintk("could not acquire lock\n"); return 0; } state->i2c_write_buffer[0] = reg >> 8; state->i2c_write_buffer[1] = reg & 0xff; memset(state->msg, 0, 2 * sizeof(struct i2c_msg)); state->msg[0].addr = state->i2c_addr >> 1; state->msg[0].flags = 0; state->msg[0].buf = state->i2c_write_buffer; state->msg[0].len = 2; state->msg[1].addr = state->i2c_addr >> 1; state->msg[1].flags = I2C_M_RD; state->msg[1].buf = state->i2c_read_buffer; state->msg[1].len = 2; if (i2c_transfer(state->i2c_adap, state->msg, 2) != 2) dprintk("i2c read error on %d\n", reg); ret = (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1]; mutex_unlock(&state->i2c_buffer_lock); return ret; } static int dib7000p_write_word(struct dib7000p_state *state, u16 reg, u16 val) { int ret; if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { dprintk("could not acquire lock\n"); return -EINVAL; } state->i2c_write_buffer[0] = (reg >> 8) & 0xff; state->i2c_write_buffer[1] = reg & 0xff; state->i2c_write_buffer[2] = (val >> 8) & 0xff; state->i2c_write_buffer[3] = val & 0xff; memset(&state->msg[0], 0, sizeof(struct i2c_msg)); state->msg[0].addr = state->i2c_addr >> 1; state->msg[0].flags = 0; state->msg[0].buf = state->i2c_write_buffer; state->msg[0].len = 4; ret = (i2c_transfer(state->i2c_adap, state->msg, 1) != 1 ? -EREMOTEIO : 0); mutex_unlock(&state->i2c_buffer_lock); return ret; } static void dib7000p_write_tab(struct dib7000p_state *state, u16 * buf) { u16 l = 0, r, *n; n = buf; l = *n++; while (l) { r = *n++; do { dib7000p_write_word(state, r, *n++); r++; } while (--l); l = *n++; } } static int dib7000p_set_output_mode(struct dib7000p_state *state, int mode) { int ret = 0; u16 outreg, fifo_threshold, smo_mode; outreg = 0; fifo_threshold = 1792; smo_mode = (dib7000p_read_word(state, 235) & 0x0050) | (1 << 1); dprintk("setting output mode for demod %p to %d\n", &state->demod, mode); switch (mode) { case OUTMODE_MPEG2_PAR_GATED_CLK: outreg = (1 << 10); /* 0x0400 */ break; case OUTMODE_MPEG2_PAR_CONT_CLK: outreg = (1 << 10) | (1 << 6); /* 0x0440 */ break; case OUTMODE_MPEG2_SERIAL: outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0480 */ break; case OUTMODE_DIVERSITY: if (state->cfg.hostbus_diversity) outreg = (1 << 10) | (4 << 6); /* 0x0500 */ else outreg = (1 << 11); break; case OUTMODE_MPEG2_FIFO: smo_mode |= (3 << 1); fifo_threshold = 512; outreg = (1 << 10) | (5 << 6); break; case OUTMODE_ANALOG_ADC: outreg = (1 << 10) | (3 << 6); break; case OUTMODE_HIGH_Z: outreg = 0; break; default: dprintk("Unhandled output_mode passed to be set for demod %p\n", &state->demod); break; } if (state->cfg.output_mpeg2_in_188_bytes) smo_mode |= (1 << 5); ret |= dib7000p_write_word(state, 235, smo_mode); ret |= dib7000p_write_word(state, 236, fifo_threshold); /* synchronous fread */ if (state->version != SOC7090) ret |= dib7000p_write_word(state, 1286, outreg); /* P_Div_active */ return ret; } static int dib7000p_set_diversity_in(struct dvb_frontend *demod, int onoff) { struct dib7000p_state *state = demod->demodulator_priv; if (state->div_force_off) { dprintk("diversity combination deactivated - forced by COFDM parameters\n"); onoff = 0; dib7000p_write_word(state, 207, 0); } else dib7000p_write_word(state, 207, (state->div_sync_wait << 4) | (1 << 2) | (2 << 0)); state->div_state = (u8) onoff; if (onoff) { dib7000p_write_word(state, 204, 6); dib7000p_write_word(state, 205, 16); /* P_dvsy_sync_mode = 0, P_dvsy_sync_enable=1, P_dvcb_comb_mode=2 */ } else { dib7000p_write_word(state, 204, 1); dib7000p_write_word(state, 205, 0); } return 0; } static int dib7000p_set_power_mode(struct dib7000p_state *state, enum dib7000p_power_mode mode) { /* by default everything is powered off */ u16 reg_774 = 0x3fff, reg_775 = 0xffff, reg_776 = 0x0007, reg_899 = 0x0003, reg_1280 = (0xfe00) | (dib7000p_read_word(state, 1280) & 0x01ff); /* now, depending on the requested mode, we power on */ switch (mode) { /* power up everything in the demod */ case DIB7000P_POWER_ALL: reg_774 = 0x0000; reg_775 = 0x0000; reg_776 = 0x0; reg_899 = 0x0; if (state->version == SOC7090) reg_1280 &= 0x001f; else reg_1280 &= 0x01ff; break; case DIB7000P_POWER_ANALOG_ADC: /* dem, cfg, iqc, sad, agc */ reg_774 &= ~((1 << 15) | (1 << 14) | (1 << 11) | (1 << 10) | (1 << 9)); /* nud */ reg_776 &= ~((1 << 0)); /* Dout */ if (state->version != SOC7090) reg_1280 &= ~((1 << 11)); reg_1280 &= ~(1 << 6); fallthrough; case DIB7000P_POWER_INTERFACE_ONLY: /* just leave power on the control-interfaces: GPIO and (I2C or SDIO) */ /* TODO power up either SDIO or I2C */ if (state->version == SOC7090) reg_1280 &= ~((1 << 7) | (1 << 5)); else reg_1280 &= ~((1 << 14) | (1 << 13) | (1 << 12) | (1 << 10)); break; /* TODO following stuff is just converted from the dib7000-driver - check when is used what */ } dib7000p_write_word(state, 774, reg_774); dib7000p_write_word(state, 775, reg_775); dib7000p_write_word(state, 776, reg_776); dib7000p_write_word(state, 1280, reg_1280); if (state->version != SOC7090) dib7000p_write_word(state, 899, reg_899); return 0; } static void dib7000p_set_adc_state(struct dib7000p_state *state, enum dibx000_adc_states no) { u16 reg_908 = 0, reg_909 = 0; u16 reg; if (state->version != SOC7090) { reg_908 = dib7000p_read_word(state, 908); reg_909 = dib7000p_read_word(state, 909); } switch (no) { case DIBX000_SLOW_ADC_ON: if (state->version == SOC7090) { reg = dib7000p_read_word(state, 1925); dib7000p_write_word(state, 1925, reg | (1 << 4) | (1 << 2)); /* en_slowAdc = 1 & reset_sladc = 1 */ reg = dib7000p_read_word(state, 1925); /* read access to make it works... strange ... */ msleep(200); dib7000p_write_word(state, 1925, reg & ~(1 << 4)); /* en_slowAdc = 1 & reset_sladc = 0 */ reg = dib7000p_read_word(state, 72) & ~((0x3 << 14) | (0x3 << 12)); dib7000p_write_word(state, 72, reg | (1 << 14) | (3 << 12) | 524); /* ref = Vin1 => Vbg ; sel = Vin0 or Vin3 ; (Vin2 = Vcm) */ } else { reg_909 |= (1 << 1) | (1 << 0); dib7000p_write_word(state, 909, reg_909); reg_909 &= ~(1 << 1); } break; case DIBX000_SLOW_ADC_OFF: if (state->version == SOC7090) { reg = dib7000p_read_word(state, 1925); dib7000p_write_word(state, 1925, (reg & ~(1 << 2)) | (1 << 4)); /* reset_sladc = 1 en_slowAdc = 0 */ } else reg_909 |= (1 << 1) | (1 << 0); break; case DIBX000_ADC_ON: reg_908 &= 0x0fff; reg_909 &= 0x0003; break; case DIBX000_ADC_OFF: reg_908 |= (1 << 14) | (1 << 13) | (1 << 12); reg_909 |= (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2); break; case DIBX000_VBG_ENABLE: reg_908 &= ~(1 << 15); break; case DIBX000_VBG_DISABLE: reg_908 |= (1 << 15); break; default: break; } // dprintk( "908: %x, 909: %x\n", reg_908, reg_909); reg_909 |= (state->cfg.disable_sample_and_hold & 1) << 4; reg_908 |= (state->cfg.enable_current_mirror & 1) << 7; if (state->version != SOC7090) { dib7000p_write_word(state, 908, reg_908); dib7000p_write_word(state, 909, reg_909); } } static int dib7000p_set_bandwidth(struct dib7000p_state *state, u32 bw) { u32 timf; // store the current bandwidth for later use state->current_bandwidth = bw; if (state->timf == 0) { dprintk("using default timf\n"); timf = state->cfg.bw->timf; } else { dprintk("using updated timf\n"); timf = state->timf; } timf = timf * (bw / 50) / 160; dib7000p_write_word(state, 23, (u16) ((timf >> 16) & 0xffff)); dib7000p_write_word(state, 24, (u16) ((timf) & 0xffff)); return 0; } static int dib7000p_sad_calib(struct dib7000p_state *state) { /* internal */ dib7000p_write_word(state, 73, (0 << 1) | (0 << 0)); if (state->version == SOC7090) dib7000p_write_word(state, 74, 2048); else dib7000p_write_word(state, 74, 776); /* do the calibration */ dib7000p_write_word(state, 73, (1 << 0)); dib7000p_write_word(state, 73, (0 << 0)); msleep(1); return 0; } static int dib7000p_set_wbd_ref(struct dvb_frontend *demod, u16 value) { struct dib7000p_state *state = demod->demodulator_priv; if (value > 4095) value = 4095; state->wbd_ref = value; return dib7000p_write_word(state, 105, (dib7000p_read_word(state, 105) & 0xf000) | value); } static int dib7000p_get_agc_values(struct dvb_frontend *fe, u16 *agc_global, u16 *agc1, u16 *agc2, u16 *wbd) { struct dib7000p_state *state = fe->demodulator_priv; if (agc_global != NULL) *agc_global = dib7000p_read_word(state, 394); if (agc1 != NULL) *agc1 = dib7000p_read_word(state, 392); if (agc2 != NULL) *agc2 = dib7000p_read_word(state, 393); if (wbd != NULL) *wbd = dib7000p_read_word(state, 397); return 0; } static int dib7000p_set_agc1_min(struct dvb_frontend *fe, u16 v) { struct dib7000p_state *state = fe->demodulator_priv; return dib7000p_write_word(state, 108, v); } static void dib7000p_reset_pll(struct dib7000p_state *state) { struct dibx000_bandwidth_config *bw = &state->cfg.bw[0]; u16 clk_cfg0; if (state->version == SOC7090) { dib7000p_write_word(state, 1856, (!bw->pll_reset << 13) | (bw->pll_range << 12) | (bw->pll_ratio << 6) | (bw->pll_prediv)); while (((dib7000p_read_word(state, 1856) >> 15) & 0x1) != 1) ; dib7000p_write_word(state, 1857, dib7000p_read_word(state, 1857) | (!bw->pll_bypass << 15)); } else { /* force PLL bypass */ clk_cfg0 = (1 << 15) | ((bw->pll_ratio & 0x3f) << 9) | (bw->modulo << 7) | (bw->ADClkSrc << 6) | (bw->IO_CLK_en_core << 5) | (bw->bypclk_div << 2) | (bw->enable_refdiv << 1) | (0 << 0); dib7000p_write_word(state, 900, clk_cfg0); /* P_pll_cfg */ dib7000p_write_word(state, 903, (bw->pll_prediv << 5) | (((bw->pll_ratio >> 6) & 0x3) << 3) | (bw->pll_range << 1) | bw->pll_reset); clk_cfg0 = (bw->pll_bypass << 15) | (clk_cfg0 & 0x7fff); dib7000p_write_word(state, 900, clk_cfg0); } dib7000p_write_word(state, 18, (u16) (((bw->internal * 1000) >> 16) & 0xffff)); dib7000p_write_word(state, 19, (u16) ((bw->internal * 1000) & 0xffff)); dib7000p_write_word(state, 21, (u16) ((bw->ifreq >> 16) & 0xffff)); dib7000p_write_word(state, 22, (u16) ((bw->ifreq) & 0xffff)); dib7000p_write_word(state, 72, bw->sad_cfg); } static u32 dib7000p_get_internal_freq(struct dib7000p_state *state) { u32 internal = (u32) dib7000p_read_word(state, 18) << 16; internal |= (u32) dib7000p_read_word(state, 19); internal /= 1000; return internal; } static int dib7000p_update_pll(struct dvb_frontend *fe, struct dibx000_bandwidth_config *bw) { struct dib7000p_state *state = fe->demodulator_priv; u16 reg_1857, reg_1856 = dib7000p_read_word(state, 1856); u8 loopdiv, prediv; u32 internal, xtal; /* get back old values */ prediv = reg_1856 & 0x3f; loopdiv = (reg_1856 >> 6) & 0x3f; if (loopdiv && bw && (bw->pll_prediv != prediv || bw->pll_ratio != loopdiv)) { dprintk("Updating pll (prediv: old = %d new = %d ; loopdiv : old = %d new = %d)\n", prediv, bw->pll_prediv, loopdiv, bw->pll_ratio); reg_1856 &= 0xf000; reg_1857 = dib7000p_read_word(state, 1857); dib7000p_write_word(state, 1857, reg_1857 & ~(1 << 15)); dib7000p_write_word(state, 1856, reg_1856 | ((bw->pll_ratio & 0x3f) << 6) | (bw->pll_prediv & 0x3f)); /* write new system clk into P_sec_len */ internal = dib7000p_get_internal_freq(state); xtal = (internal / loopdiv) * prediv; internal = 1000 * (xtal / bw->pll_prediv) * bw->pll_ratio; /* new internal */ dib7000p_write_word(state, 18, (u16) ((internal >> 16) & 0xffff)); dib7000p_write_word(state, 19, (u16) (internal & 0xffff)); dib7000p_write_word(state, 1857, reg_1857 | (1 << 15)); while (((dib7000p_read_word(state, 1856) >> 15) & 0x1) != 1) dprintk("Waiting for PLL to lock\n"); return 0; } return -EIO; } static int dib7000p_reset_gpio(struct dib7000p_state *st) { /* reset the GPIOs */ dprintk("gpio dir: %x: val: %x, pwm_pos: %x\n", st->gpio_dir, st->gpio_val, st->cfg.gpio_pwm_pos); dib7000p_write_word(st, 1029, st->gpio_dir); dib7000p_write_word(st, 1030, st->gpio_val); /* TODO 1031 is P_gpio_od */ dib7000p_write_word(st, 1032, st->cfg.gpio_pwm_pos); dib7000p_write_word(st, 1037, st->cfg.pwm_freq_div); return 0; } static int dib7000p_cfg_gpio(struct dib7000p_state *st, u8 num, u8 dir, u8 val) { st->gpio_dir = dib7000p_read_word(st, 1029); st->gpio_dir &= ~(1 << num); /* reset the direction bit */ st->gpio_dir |= (dir & 0x1) << num; /* set the new direction */ dib7000p_write_word(st, 1029, st->gpio_dir); st->gpio_val = dib7000p_read_word(st, 1030); st->gpio_val &= ~(1 << num); /* reset the direction bit */ st->gpio_val |= (val & 0x01) << num; /* set the new value */ dib7000p_write_word(st, 1030, st->gpio_val); return 0; } static int dib7000p_set_gpio(struct dvb_frontend *demod, u8 num, u8 dir, u8 val) { struct dib7000p_state *state = demod->demodulator_priv; return dib7000p_cfg_gpio(state, num, dir, val); } static u16 dib7000p_defaults[] = { // auto search configuration 3, 2, 0x0004, (1<<3)|(1<<11)|(1<<12)|(1<<13), 0x0814, /* Equal Lock */ 12, 6, 0x001b, 0x7740, 0x005b, 0x8d80, 0x01c9, 0xc380, 0x0000, 0x0080, 0x0000, 0x0090, 0x0001, 0xd4c0, 1, 26, 0x6680, /* set ADC level to -16 */ 11, 79, (1 << 13) - 825 - 117, (1 << 13) - 837 - 117, (1 << 13) - 811 - 117, (1 << 13) - 766 - 117, (1 << 13) - 737 - 117, (1 << 13) - 693 - 117, (1 << 13) - 648 - 117, (1 << 13) - 619 - 117, (1 << 13) - 575 - 117, (1 << 13) - 531 - 117, (1 << 13) - 501 - 117, 1, 142, 0x0410, /* disable power smoothing */ 8, 145, 0, 0, 0, 0, 0, 0, 0, 0, 1, 154, 1 << 13, 1, 168, 0x0ccd, 1, 183, 0x200f, 1, 212, 0x169, 5, 187, 0x023d, 0x00a4, 0x00a4, 0x7ff0, 0x3ccc, 1, 198, 0x800, 1, 222, 0x0010, 1, 235, 0x0062, 0, }; static void dib7000p_reset_stats(struct dvb_frontend *fe); static int dib7000p_demod_reset(struct dib7000p_state *state) { dib7000p_set_power_mode(state, DIB7000P_POWER_ALL); if (state->version == SOC7090) dibx000_reset_i2c_master(&state->i2c_master); dib7000p_set_adc_state(state, DIBX000_VBG_ENABLE); /* restart all parts */ dib7000p_write_word(state, 770, 0xffff); dib7000p_write_word(state, 771, 0xffff); dib7000p_write_word(state, 772, 0x001f); dib7000p_write_word(state, 1280, 0x001f - ((1 << 4) | (1 << 3))); dib7000p_write_word(state, 770, 0); dib7000p_write_word(state, 771, 0); dib7000p_write_word(state, 772, 0); dib7000p_write_word(state, 1280, 0); if (state->version != SOC7090) { dib7000p_write_word(state, 898, 0x0003); dib7000p_write_word(state, 898, 0); } /* default */ dib7000p_reset_pll(state); if (dib7000p_reset_gpio(state) != 0) dprintk("GPIO reset was not successful.\n"); if (state->version == SOC7090) { dib7000p_write_word(state, 899, 0); /* impulse noise */ dib7000p_write_word(state, 42, (1<<5) | 3); /* P_iqc_thsat_ipc = 1 ; P_iqc_win2 = 3 */ dib7000p_write_word(state, 43, 0x2d4); /*-300 fag P_iqc_dect_min = -280 */ dib7000p_write_word(state, 44, 300); /* 300 fag P_iqc_dect_min = +280 */ dib7000p_write_word(state, 273, (0<<6) | 30); } if (dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) != 0) dprintk("OUTPUT_MODE could not be reset.\n"); dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON); dib7000p_sad_calib(state); dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_OFF); /* unforce divstr regardless whether i2c enumeration was done or not */ dib7000p_write_word(state, 1285, dib7000p_read_word(state, 1285) & ~(1 << 1)); dib7000p_set_bandwidth(state, 8000); if (state->version == SOC7090) { dib7000p_write_word(state, 36, 0x0755);/* P_iqc_impnc_on =1 & P_iqc_corr_inh = 1 for impulsive noise */ } else { if (state->cfg.tuner_is_baseband) dib7000p_write_word(state, 36, 0x0755); else dib7000p_write_word(state, 36, 0x1f55); } dib7000p_write_tab(state, dib7000p_defaults); if (state->version != SOC7090) { dib7000p_write_word(state, 901, 0x0006); dib7000p_write_word(state, 902, (3 << 10) | (1 << 6)); dib7000p_write_word(state, 905, 0x2c8e); } dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY); return 0; } static void dib7000p_pll_clk_cfg(struct dib7000p_state *state) { u16 tmp = 0; tmp = dib7000p_read_word(state, 903); dib7000p_write_word(state, 903, (tmp | 0x1)); tmp = dib7000p_read_word(state, 900); dib7000p_write_word(state, 900, (tmp & 0x7fff) | (1 << 6)); } static void dib7000p_restart_agc(struct dib7000p_state *state) { // P_restart_iqc & P_restart_agc dib7000p_write_word(state, 770, (1 << 11) | (1 << 9)); dib7000p_write_word(state, 770, 0x0000); } static int dib7000p_update_lna(struct dib7000p_state *state) { u16 dyn_gain; if (state->cfg.update_lna) { dyn_gain = dib7000p_read_word(state, 394); if (state->cfg.update_lna(&state->demod, dyn_gain)) { dib7000p_restart_agc(state); return 1; } } return 0; } static int dib7000p_set_agc_config(struct dib7000p_state *state, u8 band) { struct dibx000_agc_config *agc = NULL; int i; if (state->current_band == band && state->current_agc != NULL) return 0; state->current_band = band; for (i = 0; i < state->cfg.agc_config_count; i++) if (state->cfg.agc[i].band_caps & band) { agc = &state->cfg.agc[i]; break; } if (agc == NULL) { dprintk("no valid AGC configuration found for band 0x%02x\n", band); return -EINVAL; } state->current_agc = agc; /* AGC */ dib7000p_write_word(state, 75, agc->setup); dib7000p_write_word(state, 76, agc->inv_gain); dib7000p_write_word(state, 77, agc->time_stabiliz); dib7000p_write_word(state, 100, (agc->alpha_level << 12) | agc->thlock); // Demod AGC loop configuration dib7000p_write_word(state, 101, (agc->alpha_mant << 5) | agc->alpha_exp); dib7000p_write_word(state, 102, (agc->beta_mant << 6) | agc->beta_exp); /* AGC continued */ dprintk("WBD: ref: %d, sel: %d, active: %d, alpha: %d\n", state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel); if (state->wbd_ref != 0) dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | state->wbd_ref); else dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | agc->wbd_ref); dib7000p_write_word(state, 106, (agc->wbd_sel << 13) | (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8)); dib7000p_write_word(state, 107, agc->agc1_max); dib7000p_write_word(state, 108, agc->agc1_min); dib7000p_write_word(state, 109, agc->agc2_max); dib7000p_write_word(state, 110, agc->agc2_min); dib7000p_write_word(state, 111, (agc->agc1_pt1 << 8) | agc->agc1_pt2); dib7000p_write_word(state, 112, agc->agc1_pt3); dib7000p_write_word(state, 113, (agc->agc1_slope1 << 8) | agc->agc1_slope2); dib7000p_write_word(state, 114, (agc->agc2_pt1 << 8) | agc->agc2_pt2); dib7000p_write_word(state, 115, (agc->agc2_slope1 << 8) | agc->agc2_slope2); return 0; } static int dib7000p_set_dds(struct dib7000p_state *state, s32 offset_khz) { u32 internal = dib7000p_get_internal_freq(state); s32 unit_khz_dds_val; u32 abs_offset_khz = abs(offset_khz); u32 dds = state->cfg.bw->ifreq & 0x1ffffff; u8 invert = !!(state->cfg.bw->ifreq & (1 << 25)); if (internal == 0) { pr_warn("DIB7000P: dib7000p_get_internal_freq returned 0\n"); return -1; } /* 2**26 / Fsampling is the unit 1KHz offset */ unit_khz_dds_val = 67108864 / (internal); dprintk("setting a frequency offset of %dkHz internal freq = %d invert = %d\n", offset_khz, internal, invert); if (offset_khz < 0) unit_khz_dds_val *= -1; /* IF tuner */ if (invert) dds -= (abs_offset_khz * unit_khz_dds_val); /* /100 because of /100 on the unit_khz_dds_val line calc for better accuracy */ else dds += (abs_offset_khz * unit_khz_dds_val); if (abs_offset_khz <= (internal / 2)) { /* Max dds offset is the half of the demod freq */ dib7000p_write_word(state, 21, (u16) (((dds >> 16) & 0x1ff) | (0 << 10) | (invert << 9))); dib7000p_write_word(state, 22, (u16) (dds & 0xffff)); } return 0; } static int dib7000p_agc_startup(struct dvb_frontend *demod) { struct dtv_frontend_properties *ch = &demod->dtv_property_cache; struct dib7000p_state *state = demod->demodulator_priv; int ret = -1; u8 *agc_state = &state->agc_state; u8 agc_split; u16 reg; u32 upd_demod_gain_period = 0x1000; s32 frequency_offset = 0; switch (state->agc_state) { case 0: dib7000p_set_power_mode(state, DIB7000P_POWER_ALL); if (state->version == SOC7090) { reg = dib7000p_read_word(state, 0x79b) & 0xff00; dib7000p_write_word(state, 0x79a, upd_demod_gain_period & 0xFFFF); /* lsb */ dib7000p_write_word(state, 0x79b, reg | (1 << 14) | ((upd_demod_gain_period >> 16) & 0xFF)); /* enable adc i & q */ reg = dib7000p_read_word(state, 0x780); dib7000p_write_word(state, 0x780, (reg | (0x3)) & (~(1 << 7))); } else { dib7000p_set_adc_state(state, DIBX000_ADC_ON); dib7000p_pll_clk_cfg(state); } if (dib7000p_set_agc_config(state, BAND_OF_FREQUENCY(ch->frequency / 1000)) != 0) return -1; if (demod->ops.tuner_ops.get_frequency) { u32 frequency_tuner; demod->ops.tuner_ops.get_frequency(demod, &frequency_tuner); frequency_offset = (s32)frequency_tuner / 1000 - ch->frequency / 1000; } if (dib7000p_set_dds(state, frequency_offset) < 0) return -1; ret = 7; (*agc_state)++; break; case 1: if (state->cfg.agc_control) state->cfg.agc_control(&state->demod, 1); dib7000p_write_word(state, 78, 32768); if (!state->current_agc->perform_agc_softsplit) { /* we are using the wbd - so slow AGC startup */ /* force 0 split on WBD and restart AGC */ dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (state->current_agc->wbd_alpha << 9) | (1 << 8)); (*agc_state)++; ret = 5; } else { /* default AGC startup */ (*agc_state) = 4; /* wait AGC rough lock time */ ret = 7; } dib7000p_restart_agc(state); break; case 2: /* fast split search path after 5sec */ dib7000p_write_word(state, 75, state->current_agc->setup | (1 << 4)); /* freeze AGC loop */ dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (2 << 9) | (0 << 8)); /* fast split search 0.25kHz */ (*agc_state)++; ret = 14; break; case 3: /* split search ended */ agc_split = (u8) dib7000p_read_word(state, 396); /* store the split value for the next time */ dib7000p_write_word(state, 78, dib7000p_read_word(state, 394)); /* set AGC gain start value */ dib7000p_write_word(state, 75, state->current_agc->setup); /* std AGC loop */ dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (state->current_agc->wbd_alpha << 9) | agc_split); /* standard split search */ dib7000p_restart_agc(state); dprintk("SPLIT %p: %u\n", demod, agc_split); (*agc_state)++; ret = 5; break; case 4: /* LNA startup */ ret = 7; if (dib7000p_update_lna(state)) ret = 5; else (*agc_state)++; break; case 5: if (state->cfg.agc_control) state->cfg.agc_control(&state->demod, 0); (*agc_state)++; break; default: break; } return ret; } static void dib7000p_update_timf(struct dib7000p_state *state) { u32 timf = (dib7000p_read_word(state, 427) << 16) | dib7000p_read_word(state, 428); state->timf = timf * 160 / (state->current_bandwidth / 50); dib7000p_write_word(state, 23, (u16) (timf >> 16)); dib7000p_write_word(state, 24, (u16) (timf & 0xffff)); dprintk("updated timf_frequency: %d (default: %d)\n", state->timf, state->cfg.bw->timf); } static u32 dib7000p_ctrl_timf(struct dvb_frontend *fe, u8 op, u32 timf) { struct dib7000p_state *state = fe->demodulator_priv; switch (op) { case DEMOD_TIMF_SET: state->timf = timf; break; case DEMOD_TIMF_UPDATE: dib7000p_update_timf(state); break; case DEMOD_TIMF_GET: break; } dib7000p_set_bandwidth(state, state->current_bandwidth); return state->timf; } static void dib7000p_set_channel(struct dib7000p_state *state, struct dtv_frontend_properties *ch, u8 seq) { u16 value, est[4]; dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->bandwidth_hz)); /* nfft, guard, qam, alpha */ value = 0; switch (ch->transmission_mode) { case TRANSMISSION_MODE_2K: value |= (0 << 7); break; case TRANSMISSION_MODE_4K: value |= (2 << 7); break; default: case TRANSMISSION_MODE_8K: value |= (1 << 7); break; } switch (ch->guard_interval) { case GUARD_INTERVAL_1_32: value |= (0 << 5); break; case GUARD_INTERVAL_1_16: value |= (1 << 5); break; case GUARD_INTERVAL_1_4: value |= (3 << 5); break; default: case GUARD_INTERVAL_1_8: value |= (2 << 5); break; } switch (ch->modulation) { case QPSK: value |= (0 << 3); break; case QAM_16: value |= (1 << 3); break; default: case QAM_64: value |= (2 << 3); break; } switch (HIERARCHY_1) { case HIERARCHY_2: value |= 2; break; case HIERARCHY_4: value |= 4; break; default: case HIERARCHY_1: value |= 1; break; } dib7000p_write_word(state, 0, value); dib7000p_write_word(state, 5, (seq << 4) | 1); /* do not force tps, search list 0 */ /* P_dintl_native, P_dintlv_inv, P_hrch, P_code_rate, P_select_hp */ value = 0; if (1 != 0) value |= (1 << 6); if (ch->hierarchy == 1) value |= (1 << 4); if (1 == 1) value |= 1; switch ((ch->hierarchy == 0 || 1 == 1) ? ch->code_rate_HP : ch->code_rate_LP) { case FEC_2_3: value |= (2 << 1); break; case FEC_3_4: value |= (3 << 1); break; case FEC_5_6: value |= (5 << 1); break; case FEC_7_8: value |= (7 << 1); break; default: case FEC_1_2: value |= (1 << 1); break; } dib7000p_write_word(state, 208, value); /* offset loop parameters */ dib7000p_write_word(state, 26, 0x6680); dib7000p_write_word(state, 32, 0x0003); dib7000p_write_word(state, 29, 0x1273); dib7000p_write_word(state, 33, 0x0005); /* P_dvsy_sync_wait */ switch (ch->transmission_mode) { case TRANSMISSION_MODE_8K: value = 256; break; case TRANSMISSION_MODE_4K: value = 128; break; case TRANSMISSION_MODE_2K: default: value = 64; break; } switch (ch->guard_interval) { case GUARD_INTERVAL_1_16: value *= 2; break; case GUARD_INTERVAL_1_8: value *= 4; break; case GUARD_INTERVAL_1_4: value *= 8; break; default: case GUARD_INTERVAL_1_32: value *= 1; break; } if (state->cfg.diversity_delay == 0) state->div_sync_wait = (value * 3) / 2 + 48; else state->div_sync_wait = (value * 3) / 2 + state->cfg.diversity_delay; /* deactivate the possibility of diversity reception if extended interleaver */ state->div_force_off = !1 && ch->transmission_mode != TRANSMISSION_MODE_8K; dib7000p_set_diversity_in(&state->demod, state->div_state); /* channel estimation fine configuration */ switch (ch->modulation) { case QAM_64: est[0] = 0x0148; /* P_adp_regul_cnt 0.04 */ est[1] = 0xfff0; /* P_adp_noise_cnt -0.002 */ est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */ est[3] = 0xfff8; /* P_adp_noise_ext -0.001 */ break; case QAM_16: est[0] = 0x023d; /* P_adp_regul_cnt 0.07 */ est[1] = 0xffdf; /* P_adp_noise_cnt -0.004 */ est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */ est[3] = 0xfff0; /* P_adp_noise_ext -0.002 */ break; default: est[0] = 0x099a; /* P_adp_regul_cnt 0.3 */ est[1] = 0xffae; /* P_adp_noise_cnt -0.01 */ est[2] = 0x0333; /* P_adp_regul_ext 0.1 */ est[3] = 0xfff8; /* P_adp_noise_ext -0.002 */ break; } for (value = 0; value < 4; value++) dib7000p_write_word(state, 187 + value, est[value]); } static int dib7000p_autosearch_start(struct dvb_frontend *demod) { struct dtv_frontend_properties *ch = &demod->dtv_property_cache; struct dib7000p_state *state = demod->demodulator_priv; struct dtv_frontend_properties schan; u32 value, factor; u32 internal = dib7000p_get_internal_freq(state); schan = *ch; schan.modulation = QAM_64; schan.guard_interval = GUARD_INTERVAL_1_32; schan.transmission_mode = TRANSMISSION_MODE_8K; schan.code_rate_HP = FEC_2_3; schan.code_rate_LP = FEC_3_4; schan.hierarchy = 0; dib7000p_set_channel(state, &schan, 7); factor = BANDWIDTH_TO_KHZ(ch->bandwidth_hz); if (factor >= 5000) { if (state->version == SOC7090) factor = 2; else factor = 1; } else factor = 6; value = 30 * internal * factor; dib7000p_write_word(state, 6, (u16) ((value >> 16) & 0xffff)); dib7000p_write_word(state, 7, (u16) (value & 0xffff)); value = 100 * internal * factor; dib7000p_write_word(state, 8, (u16) ((value >> 16) & 0xffff)); dib7000p_write_word(state, 9, (u16) (value & 0xffff)); value = 500 * internal * factor; dib7000p_write_word(state, 10, (u16) ((value >> 16) & 0xffff)); dib7000p_write_word(state, 11, (u16) (value & 0xffff)); value = dib7000p_read_word(state, 0); dib7000p_write_word(state, 0, (u16) ((1 << 9) | value)); dib7000p_read_word(state, 1284); dib7000p_write_word(state, 0, (u16) value); return 0; } static int dib7000p_autosearch_is_irq(struct dvb_frontend *demod) { struct dib7000p_state *state = demod->demodulator_priv; u16 irq_pending = dib7000p_read_word(state, 1284); if (irq_pending & 0x1) return 1; if (irq_pending & 0x2) return 2; return 0; } static void dib7000p_spur_protect(struct dib7000p_state *state, u32 rf_khz, u32 bw) { static s16 notch[] = { 16143, 14402, 12238, 9713, 6902, 3888, 759, -2392 }; static u8 sine[] = { 0, 2, 3, 5, 6, 8, 9, 11, 13, 14, 16, 17, 19, 20, 22, 24, 25, 27, 28, 30, 31, 33, 34, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51, 53, 55, 56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80, 82, 83, 85, 86, 88, 89, 91, 92, 94, 95, 97, 98, 99, 101, 102, 104, 105, 107, 108, 109, 111, 112, 114, 115, 117, 118, 119, 121, 122, 123, 125, 126, 128, 129, 130, 132, 133, 134, 136, 137, 138, 140, 141, 142, 144, 145, 146, 147, 149, 150, 151, 152, 154, 155, 156, 157, 159, 160, 161, 162, 164, 165, 166, 167, 168, 170, 171, 172, 173, 174, 175, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 207, 208, 209, 210, 211, 212, 213, 214, 215, 215, 216, 217, 218, 219, 220, 220, 221, 222, 223, 224, 224, 225, 226, 227, 227, 228, 229, 229, 230, 231, 231, 232, 233, 233, 234, 235, 235, 236, 237, 237, 238, 238, 239, 239, 240, 241, 241, 242, 242, 243, 243, 244, 244, 245, 245, 245, 246, 246, 247, 247, 248, 248, 248, 249, 249, 249, 250, 250, 250, 251, 251, 251, 252, 252, 252, 252, 253, 253, 253, 253, 254, 254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }; u32 xtal = state->cfg.bw->xtal_hz / 1000; int f_rel = DIV_ROUND_CLOSEST(rf_khz, xtal) * xtal - rf_khz; int k; int coef_re[8], coef_im[8]; int bw_khz = bw; u32 pha; dprintk("relative position of the Spur: %dk (RF: %dk, XTAL: %dk)\n", f_rel, rf_khz, xtal); if (f_rel < -bw_khz / 2 || f_rel > bw_khz / 2) return; bw_khz /= 100; dib7000p_write_word(state, 142, 0x0610); for (k = 0; k < 8; k++) { pha = ((f_rel * (k + 1) * 112 * 80 / bw_khz) / 1000) & 0x3ff; if (pha == 0) { coef_re[k] = 256; coef_im[k] = 0; } else if (pha < 256) { coef_re[k] = sine[256 - (pha & 0xff)]; coef_im[k] = sine[pha & 0xff]; } else if (pha == 256) { coef_re[k] = 0; coef_im[k] = 256; } else if (pha < 512) { coef_re[k] = -sine[pha & 0xff]; coef_im[k] = sine[256 - (pha & 0xff)]; } else if (pha == 512) { coef_re[k] = -256; coef_im[k] = 0; } else if (pha < 768) { coef_re[k] = -sine[256 - (pha & 0xff)]; coef_im[k] = -sine[pha & 0xff]; } else if (pha == 768) { coef_re[k] = 0; coef_im[k] = -256; } else { coef_re[k] = sine[pha & 0xff]; coef_im[k] = -sine[256 - (pha & 0xff)]; } coef_re[k] *= notch[k]; coef_re[k] += (1 << 14); if (coef_re[k] >= (1 << 24)) coef_re[k] = (1 << 24) - 1; coef_re[k] /= (1 << 15); coef_im[k] *= notch[k]; coef_im[k] += (1 << 14); if (coef_im[k] >= (1 << 24)) coef_im[k] = (1 << 24) - 1; coef_im[k] /= (1 << 15); dprintk("PALF COEF: %d re: %d im: %d\n", k, coef_re[k], coef_im[k]); dib7000p_write_word(state, 143, (0 << 14) | (k << 10) | (coef_re[k] & 0x3ff)); dib7000p_write_word(state, 144, coef_im[k] & 0x3ff); dib7000p_write_word(state, 143, (1 << 14) | (k << 10) | (coef_re[k] & 0x3ff)); } dib7000p_write_word(state, 143, 0); } static int dib7000p_tune(struct dvb_frontend *demod) { struct dtv_frontend_properties *ch = &demod->dtv_property_cache; struct dib7000p_state *state = demod->demodulator_priv; u16 tmp = 0; if (ch != NULL) dib7000p_set_channel(state, ch, 0); else return -EINVAL; // restart demod dib7000p_write_word(state, 770, 0x4000); dib7000p_write_word(state, 770, 0x0000); msleep(45); /* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=0, P_ctrl_alpha_isi=3, P_ctrl_inh_cor4=1, P_ctrl_alpha_cor4=3 */ tmp = (0 << 14) | (4 << 10) | (0 << 9) | (3 << 5) | (1 << 4) | (0x3); if (state->sfn_workaround_active) { dprintk("SFN workaround is active\n"); tmp |= (1 << 9); dib7000p_write_word(state, 166, 0x4000); } else { dib7000p_write_word(state, 166, 0x0000); } dib7000p_write_word(state, 29, tmp); // never achieved a lock with that bandwidth so far - wait for osc-freq to update if (state->timf == 0) msleep(200); /* offset loop parameters */ /* P_timf_alpha, P_corm_alpha=6, P_corm_thres=0x80 */ tmp = (6 << 8) | 0x80; switch (ch->transmission_mode) { case TRANSMISSION_MODE_2K: tmp |= (2 << 12); break; case TRANSMISSION_MODE_4K: tmp |= (3 << 12); break; default: case TRANSMISSION_MODE_8K: tmp |= (4 << 12); break; } dib7000p_write_word(state, 26, tmp); /* timf_a(6xxx) */ /* P_ctrl_freeze_pha_shift=0, P_ctrl_pha_off_max */ tmp = (0 << 4); switch (ch->transmission_mode) { case TRANSMISSION_MODE_2K: tmp |= 0x6; break; case TRANSMISSION_MODE_4K: tmp |= 0x7; break; default: case TRANSMISSION_MODE_8K: tmp |= 0x8; break; } dib7000p_write_word(state, 32, tmp); /* P_ctrl_sfreq_inh=0, P_ctrl_sfreq_step */ tmp = (0 << 4); switch (ch->transmission_mode) { case TRANSMISSION_MODE_2K: tmp |= 0x6; break; case TRANSMISSION_MODE_4K: tmp |= 0x7; break; default: case TRANSMISSION_MODE_8K: tmp |= 0x8; break; } dib7000p_write_word(state, 33, tmp); tmp = dib7000p_read_word(state, 509); if (!((tmp >> 6) & 0x1)) { /* restart the fec */ tmp = dib7000p_read_word(state, 771); dib7000p_write_word(state, 771, tmp | (1 << 1)); dib7000p_write_word(state, 771, tmp); msleep(40); tmp = dib7000p_read_word(state, 509); } // we achieved a lock - it's time to update the osc freq if ((tmp >> 6) & 0x1) { dib7000p_update_timf(state); /* P_timf_alpha += 2 */ tmp = dib7000p_read_word(state, 26); dib7000p_write_word(state, 26, (tmp & ~(0xf << 12)) | ((((tmp >> 12) & 0xf) + 5) << 12)); } if (state->cfg.spur_protect) dib7000p_spur_protect(state, ch->frequency / 1000, BANDWIDTH_TO_KHZ(ch->bandwidth_hz)); dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->bandwidth_hz)); dib7000p_reset_stats(demod); return 0; } static int dib7000p_wakeup(struct dvb_frontend *demod) { struct dib7000p_state *state = demod->demodulator_priv; dib7000p_set_power_mode(state, DIB7000P_POWER_ALL); dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON); if (state->version == SOC7090) dib7000p_sad_calib(state); return 0; } static int dib7000p_sleep(struct dvb_frontend *demod) { struct dib7000p_state *state = demod->demodulator_priv; if (state->version == SOC7090) return dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY); return dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) | dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY); } static int dib7000p_identify(struct dib7000p_state *st) { u16 value; dprintk("checking demod on I2C address: %d (%x)\n", st->i2c_addr, st->i2c_addr); if ((value = dib7000p_read_word(st, 768)) != 0x01b3) { dprintk("wrong Vendor ID (read=0x%x)\n", value); return -EREMOTEIO; } if ((value = dib7000p_read_word(st, 769)) != 0x4000) { dprintk("wrong Device ID (%x)\n", value); return -EREMOTEIO; } return 0; } static int dib7000p_get_frontend(struct dvb_frontend *fe, struct dtv_frontend_properties *fep) { struct dib7000p_state *state = fe->demodulator_priv; u16 tps = dib7000p_read_word(state, 463); fep->inversion = INVERSION_AUTO; fep->bandwidth_hz = BANDWIDTH_TO_HZ(state->current_bandwidth); switch ((tps >> 8) & 0x3) { case 0: fep->transmission_mode = TRANSMISSION_MODE_2K; break; case 1: fep->transmission_mode = TRANSMISSION_MODE_8K; break; /* case 2: fep->transmission_mode = TRANSMISSION_MODE_4K; break; */ } switch (tps & 0x3) { case 0: fep->guard_interval = GUARD_INTERVAL_1_32; break; case 1: fep->guard_interval = GUARD_INTERVAL_1_16; break; case 2: fep->guard_interval = GUARD_INTERVAL_1_8; break; case 3: fep->guard_interval = GUARD_INTERVAL_1_4; break; } switch ((tps >> 14) & 0x3) { case 0: fep->modulation = QPSK; break; case 1: fep->modulation = QAM_16; break; case 2: default: fep->modulation = QAM_64; break; } /* as long as the frontend_param structure is fixed for hierarchical transmission I refuse to use it */ /* (tps >> 13) & 0x1 == hrch is used, (tps >> 10) & 0x7 == alpha */ fep->hierarchy = HIERARCHY_NONE; switch ((tps >> 5) & 0x7) { case 1: fep->code_rate_HP = FEC_1_2; break; case 2: fep->code_rate_HP = FEC_2_3; break; case 3: fep->code_rate_HP = FEC_3_4; break; case 5: fep->code_rate_HP = FEC_5_6; break; case 7: default: fep->code_rate_HP = FEC_7_8; break; } switch ((tps >> 2) & 0x7) { case 1: fep->code_rate_LP = FEC_1_2; break; case 2: fep->code_rate_LP = FEC_2_3; break; case 3: fep->code_rate_LP = FEC_3_4; break; case 5: fep->code_rate_LP = FEC_5_6; break; case 7: default: fep->code_rate_LP = FEC_7_8; break; } /* native interleaver: (dib7000p_read_word(state, 464) >> 5) & 0x1 */ return 0; } static int dib7000p_set_frontend(struct dvb_frontend *fe) { struct dtv_frontend_properties *fep = &fe->dtv_property_cache; struct dib7000p_state *state = fe->demodulator_priv; int time, ret; if (state->version == SOC7090) dib7090_set_diversity_in(fe, 0); else dib7000p_set_output_mode(state, OUTMODE_HIGH_Z); /* maybe the parameter has been changed */ state->sfn_workaround_active = buggy_sfn_workaround; if (fe->ops.tuner_ops.set_params) fe->ops.tuner_ops.set_params(fe); /* start up the AGC */ state->agc_state = 0; do { time = dib7000p_agc_startup(fe); if (time != -1) msleep(time); } while (time != -1); if (fep->transmission_mode == TRANSMISSION_MODE_AUTO || fep->guard_interval == GUARD_INTERVAL_AUTO || fep->modulation == QAM_AUTO || fep->code_rate_HP == FEC_AUTO) { int i = 800, found; dib7000p_autosearch_start(fe); do { msleep(1); found = dib7000p_autosearch_is_irq(fe); } while (found == 0 && i--); dprintk("autosearch returns: %d\n", found); if (found == 0 || found == 1) return 0; dib7000p_get_frontend(fe, fep); } ret = dib7000p_tune(fe); /* make this a config parameter */ if (state->version == SOC7090) { dib7090_set_output_mode(fe, state->cfg.output_mode); if (state->cfg.enMpegOutput == 0) { dib7090_setDibTxMux(state, MPEG_ON_DIBTX); dib7090_setHostBusMux(state, DIBTX_ON_HOSTBUS); } } else dib7000p_set_output_mode(state, state->cfg.output_mode); return ret; } static int dib7000p_get_stats(struct dvb_frontend *fe, enum fe_status stat); static int dib7000p_read_status(struct dvb_frontend *fe, enum fe_status *stat) { struct dib7000p_state *state = fe->demodulator_priv; u16 lock = dib7000p_read_word(state, 509); *stat = 0; if (lock & 0x8000) *stat |= FE_HAS_SIGNAL; if (lock & 0x3000) *stat |= FE_HAS_CARRIER; if (lock & 0x0100) *stat |= FE_HAS_VITERBI; if (lock & 0x0010) *stat |= FE_HAS_SYNC; if ((lock & 0x0038) == 0x38) *stat |= FE_HAS_LOCK; dib7000p_get_stats(fe, *stat); return 0; } static int dib7000p_read_ber(struct dvb_frontend *fe, u32 * ber) { struct dib7000p_state *state = fe->demodulator_priv; *ber = (dib7000p_read_word(state, 500) << 16) | dib7000p_read_word(state, 501); return 0; } static int dib7000p_read_unc_blocks(struct dvb_frontend *fe, u32 * unc) { struct dib7000p_state *state = fe->demodulator_priv; *unc = dib7000p_read_word(state, 506); return 0; } static int dib7000p_read_signal_strength(struct dvb_frontend *fe, u16 * strength) { struct dib7000p_state *state = fe->demodulator_priv; u16 val = dib7000p_read_word(state, 394); *strength = 65535 - val; return 0; } static u32 dib7000p_get_snr(struct dvb_frontend *fe) { struct dib7000p_state *state = fe->demodulator_priv; u16 val; s32 signal_mant, signal_exp, noise_mant, noise_exp; u32 result = 0; val = dib7000p_read_word(state, 479); noise_mant = (val >> 4) & 0xff; noise_exp = ((val & 0xf) << 2); val = dib7000p_read_word(state, 480); noise_exp += ((val >> 14) & 0x3); if ((noise_exp & 0x20) != 0) noise_exp -= 0x40; signal_mant = (val >> 6) & 0xFF; signal_exp = (val & 0x3F); if ((signal_exp & 0x20) != 0) signal_exp -= 0x40; if (signal_mant != 0) result = intlog10(2) * 10 * signal_exp + 10 * intlog10(signal_mant); else result = intlog10(2) * 10 * signal_exp - 100; if (noise_mant != 0) result -= intlog10(2) * 10 * noise_exp + 10 * intlog10(noise_mant); else result -= intlog10(2) * 10 * noise_exp - 100; return result; } static int dib7000p_read_snr(struct dvb_frontend *fe, u16 *snr) { u32 result; result = dib7000p_get_snr(fe); *snr = result / ((1 << 24) / 10); return 0; } static void dib7000p_reset_stats(struct dvb_frontend *demod) { struct dib7000p_state *state = demod->demodulator_priv; struct dtv_frontend_properties *c = &demod->dtv_property_cache; u32 ucb; memset(&c->strength, 0, sizeof(c->strength)); memset(&c->cnr, 0, sizeof(c->cnr)); memset(&c->post_bit_error, 0, sizeof(c->post_bit_error)); memset(&c->post_bit_count, 0, sizeof(c->post_bit_count)); memset(&c->block_error, 0, sizeof(c->block_error)); c->strength.len = 1; c->cnr.len = 1; c->block_error.len = 1; c->block_count.len = 1; c->post_bit_error.len = 1; c->post_bit_count.len = 1; c->strength.stat[0].scale = FE_SCALE_DECIBEL; c->strength.stat[0].uvalue = 0; c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; dib7000p_read_unc_blocks(demod, &ucb); state->old_ucb = ucb; state->ber_jiffies_stats = 0; state->per_jiffies_stats = 0; } struct linear_segments { unsigned x; signed y; }; /* * Table to estimate signal strength in dBm. * This table should be empirically determinated by measuring the signal * strength generated by a RF generator directly connected into * a device. * This table was determinated by measuring the signal strength generated * by a DTA-2111 RF generator directly connected into a dib7000p device * (a Hauppauge Nova-TD stick), using a good quality 3 meters length * RC6 cable and good RC6 connectors, connected directly to antenna 1. * As the minimum output power of DTA-2111 is -31dBm, a 16 dBm attenuator * were used, for the lower power values. * The real value can actually be on other devices, or even at the * second antena input, depending on several factors, like if LNA * is enabled or not, if diversity is enabled, type of connectors, etc. * Yet, it is better to use this measure in dB than a random non-linear * percentage value, especially for antenna adjustments. * On my tests, the precision of the measure using this table is about * 0.5 dB, with sounds reasonable enough to adjust antennas. */ #define DB_OFFSET 131000 static struct linear_segments strength_to_db_table[] = { { 63630, DB_OFFSET - 20500}, { 62273, DB_OFFSET - 21000}, { 60162, DB_OFFSET - 22000}, { 58730, DB_OFFSET - 23000}, { 58294, DB_OFFSET - 24000}, { 57778, DB_OFFSET - 25000}, { 57320, DB_OFFSET - 26000}, { 56779, DB_OFFSET - 27000}, { 56293, DB_OFFSET - 28000}, { 55724, DB_OFFSET - 29000}, { 55145, DB_OFFSET - 30000}, { 54680, DB_OFFSET - 31000}, { 54293, DB_OFFSET - 32000}, { 53813, DB_OFFSET - 33000}, { 53427, DB_OFFSET - 34000}, { 52981, DB_OFFSET - 35000}, { 52636, DB_OFFSET - 36000}, { 52014, DB_OFFSET - 37000}, { 51674, DB_OFFSET - 38000}, { 50692, DB_OFFSET - 39000}, { 49824, DB_OFFSET - 40000}, { 49052, DB_OFFSET - 41000}, { 48436, DB_OFFSET - 42000}, { 47836, DB_OFFSET - 43000}, { 47368, DB_OFFSET - 44000}, { 46468, DB_OFFSET - 45000}, { 45597, DB_OFFSET - 46000}, { 44586, DB_OFFSET - 47000}, { 43667, DB_OFFSET - 48000}, { 42673, DB_OFFSET - 49000}, { 41816, DB_OFFSET - 50000}, { 40876, DB_OFFSET - 51000}, { 0, 0}, }; static u32 interpolate_value(u32 value, struct linear_segments *segments, unsigned len) { u64 tmp64; u32 dx; s32 dy; int i, ret; if (value >= segments[0].x) return segments[0].y; if (value < segments[len-1].x) return segments[len-1].y; for (i = 1; i < len - 1; i++) { /* If value is identical, no need to interpolate */ if (value == segments[i].x) return segments[i].y; if (value > segments[i].x) break; } /* Linear interpolation between the two (x,y) points */ dy = segments[i - 1].y - segments[i].y; dx = segments[i - 1].x - segments[i].x; tmp64 = value - segments[i].x; tmp64 *= dy; do_div(tmp64, dx); ret = segments[i].y + tmp64; return ret; } /* FIXME: may require changes - this one was borrowed from dib8000 */ static u32 dib7000p_get_time_us(struct dvb_frontend *demod) { struct dtv_frontend_properties *c = &demod->dtv_property_cache; u64 time_us, tmp64; u32 tmp, denom; int guard, rate_num, rate_denum = 1, bits_per_symbol; int interleaving = 0, fft_div; switch (c->guard_interval) { case GUARD_INTERVAL_1_4: guard = 4; break; case GUARD_INTERVAL_1_8: guard = 8; break; case GUARD_INTERVAL_1_16: guard = 16; break; default: case GUARD_INTERVAL_1_32: guard = 32; break; } switch (c->transmission_mode) { case TRANSMISSION_MODE_2K: fft_div = 4; break; case TRANSMISSION_MODE_4K: fft_div = 2; break; default: case TRANSMISSION_MODE_8K: fft_div = 1; break; } switch (c->modulation) { case DQPSK: case QPSK: bits_per_symbol = 2; break; case QAM_16: bits_per_symbol = 4; break; default: case QAM_64: bits_per_symbol = 6; break; } switch ((c->hierarchy == 0 || 1 == 1) ? c->code_rate_HP : c->code_rate_LP) { case FEC_1_2: rate_num = 1; rate_denum = 2; break; case FEC_2_3: rate_num = 2; rate_denum = 3; break; case FEC_3_4: rate_num = 3; rate_denum = 4; break; case FEC_5_6: rate_num = 5; rate_denum = 6; break; default: case FEC_7_8: rate_num = 7; rate_denum = 8; break; } denom = bits_per_symbol * rate_num * fft_div * 384; /* * FIXME: check if the math makes sense. If so, fill the * interleaving var. */ /* If calculus gets wrong, wait for 1s for the next stats */ if (!denom) return 0; /* Estimate the period for the total bit rate */ time_us = rate_denum * (1008 * 1562500L); tmp64 = time_us; do_div(tmp64, guard); time_us = time_us + tmp64; time_us += denom / 2; do_div(time_us, denom); tmp = 1008 * 96 * interleaving; time_us += tmp + tmp / guard; return time_us; } static int dib7000p_get_stats(struct dvb_frontend *demod, enum fe_status stat) { struct dib7000p_state *state = demod->demodulator_priv; struct dtv_frontend_properties *c = &demod->dtv_property_cache; int show_per_stats = 0; u32 time_us = 0, val, snr; u64 blocks, ucb; s32 db; u16 strength; /* Get Signal strength */ dib7000p_read_signal_strength(demod, &strength); val = strength; db = interpolate_value(val, strength_to_db_table, ARRAY_SIZE(strength_to_db_table)) - DB_OFFSET; c->strength.stat[0].svalue = db; /* UCB/BER/CNR measures require lock */ if (!(stat & FE_HAS_LOCK)) { c->cnr.len = 1; c->block_count.len = 1; c->block_error.len = 1; c->post_bit_error.len = 1; c->post_bit_count.len = 1; c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; return 0; } /* Check if time for stats was elapsed */ if (time_after(jiffies, state->per_jiffies_stats)) { state->per_jiffies_stats = jiffies + msecs_to_jiffies(1000); /* Get SNR */ snr = dib7000p_get_snr(demod); if (snr) snr = (1000L * snr) >> 24; else snr = 0; c->cnr.stat[0].svalue = snr; c->cnr.stat[0].scale = FE_SCALE_DECIBEL; /* Get UCB measures */ dib7000p_read_unc_blocks(demod, &val); ucb = val - state->old_ucb; if (val < state->old_ucb) ucb += 0x100000000LL; c->block_error.stat[0].scale = FE_SCALE_COUNTER; c->block_error.stat[0].uvalue = ucb; /* Estimate the number of packets based on bitrate */ if (!time_us) time_us = dib7000p_get_time_us(demod); if (time_us) { blocks = 1250000ULL * 1000000ULL; do_div(blocks, time_us * 8 * 204); c->block_count.stat[0].scale = FE_SCALE_COUNTER; c->block_count.stat[0].uvalue += blocks; } show_per_stats = 1; } /* Get post-BER measures */ if (time_after(jiffies, state->ber_jiffies_stats)) { time_us = dib7000p_get_time_us(demod); state->ber_jiffies_stats = jiffies + msecs_to_jiffies((time_us + 500) / 1000); dprintk("Next all layers stats available in %u us.\n", time_us); dib7000p_read_ber(demod, &val); c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER; c->post_bit_error.stat[0].uvalue += val; c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER; c->post_bit_count.stat[0].uvalue += 100000000; } /* Get PER measures */ if (show_per_stats) { dib7000p_read_unc_blocks(demod, &val); c->block_error.stat[0].scale = FE_SCALE_COUNTER; c->block_error.stat[0].uvalue += val; time_us = dib7000p_get_time_us(demod); if (time_us) { blocks = 1250000ULL * 1000000ULL; do_div(blocks, time_us * 8 * 204); c->block_count.stat[0].scale = FE_SCALE_COUNTER; c->block_count.stat[0].uvalue += blocks; } } return 0; } static int dib7000p_fe_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune) { tune->min_delay_ms = 1000; return 0; } static void dib7000p_release(struct dvb_frontend *demod) { struct dib7000p_state *st = demod->demodulator_priv; dibx000_exit_i2c_master(&st->i2c_master); i2c_del_adapter(&st->dib7090_tuner_adap); kfree(st); } static int dib7000pc_detection(struct i2c_adapter *i2c_adap) { u8 *tx, *rx; struct i2c_msg msg[2] = { {.addr = 18 >> 1, .flags = 0, .len = 2}, {.addr = 18 >> 1, .flags = I2C_M_RD, .len = 2}, }; int ret = 0; tx = kzalloc(2, GFP_KERNEL); if (!tx) return -ENOMEM; rx = kzalloc(2, GFP_KERNEL); if (!rx) { ret = -ENOMEM; goto rx_memory_error; } msg[0].buf = tx; msg[1].buf = rx; tx[0] = 0x03; tx[1] = 0x00; if (i2c_transfer(i2c_adap, msg, 2) == 2) if (rx[0] == 0x01 && rx[1] == 0xb3) { dprintk("-D- DiB7000PC detected\n"); ret = 1; goto out; } msg[0].addr = msg[1].addr = 0x40; if (i2c_transfer(i2c_adap, msg, 2) == 2) if (rx[0] == 0x01 && rx[1] == 0xb3) { dprintk("-D- DiB7000PC detected\n"); ret = 1; goto out; } dprintk("-D- DiB7000PC not detected\n"); out: kfree(rx); rx_memory_error: kfree(tx); return ret; } static struct i2c_adapter *dib7000p_get_i2c_master(struct dvb_frontend *demod, enum dibx000_i2c_interface intf, int gating) { struct dib7000p_state *st = demod->demodulator_priv; return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating); } static int dib7000p_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff) { struct dib7000p_state *state = fe->demodulator_priv; u16 val = dib7000p_read_word(state, 235) & 0xffef; val |= (onoff & 0x1) << 4; dprintk("PID filter enabled %d\n", onoff); return dib7000p_write_word(state, 235, val); } static int dib7000p_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff) { struct dib7000p_state *state = fe->demodulator_priv; dprintk("PID filter: index %x, PID %d, OnOff %d\n", id, pid, onoff); return dib7000p_write_word(state, 241 + id, onoff ? (1 << 13) | pid : 0); } static int dib7000p_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, struct dib7000p_config cfg[]) { struct dib7000p_state *dpst; int k = 0; u8 new_addr = 0; dpst = kzalloc(sizeof(struct dib7000p_state), GFP_KERNEL); if (!dpst) return -ENOMEM; dpst->i2c_adap = i2c; mutex_init(&dpst->i2c_buffer_lock); for (k = no_of_demods - 1; k >= 0; k--) { dpst->cfg = cfg[k]; /* designated i2c address */ if (cfg[k].default_i2c_addr != 0) new_addr = cfg[k].default_i2c_addr + (k << 1); else new_addr = (0x40 + k) << 1; dpst->i2c_addr = new_addr; dib7000p_write_word(dpst, 1287, 0x0003); /* sram lead in, rdy */ if (dib7000p_identify(dpst) != 0) { dpst->i2c_addr = default_addr; dib7000p_write_word(dpst, 1287, 0x0003); /* sram lead in, rdy */ if (dib7000p_identify(dpst) != 0) { dprintk("DiB7000P #%d: not identified\n", k); kfree(dpst); return -EIO; } } /* start diversity to pull_down div_str - just for i2c-enumeration */ dib7000p_set_output_mode(dpst, OUTMODE_DIVERSITY); /* set new i2c address and force divstart */ dib7000p_write_word(dpst, 1285, (new_addr << 2) | 0x2); dprintk("IC %d initialized (to i2c_address 0x%x)\n", k, new_addr); } for (k = 0; k < no_of_demods; k++) { dpst->cfg = cfg[k]; if (cfg[k].default_i2c_addr != 0) dpst->i2c_addr = (cfg[k].default_i2c_addr + k) << 1; else dpst->i2c_addr = (0x40 + k) << 1; // unforce divstr dib7000p_write_word(dpst, 1285, dpst->i2c_addr << 2); /* deactivate div - it was just for i2c-enumeration */ dib7000p_set_output_mode(dpst, OUTMODE_HIGH_Z); } kfree(dpst); return 0; } static const s32 lut_1000ln_mant[] = { 6908, 6956, 7003, 7047, 7090, 7131, 7170, 7208, 7244, 7279, 7313, 7346, 7377, 7408, 7438, 7467, 7495, 7523, 7549, 7575, 7600 }; static s32 dib7000p_get_adc_power(struct dvb_frontend *fe) { struct dib7000p_state *state = fe->demodulator_priv; u32 tmp_val = 0, exp = 0, mant = 0; s32 pow_i; u16 buf[2]; u8 ix = 0; buf[0] = dib7000p_read_word(state, 0x184); buf[1] = dib7000p_read_word(state, 0x185); pow_i = (buf[0] << 16) | buf[1]; dprintk("raw pow_i = %d\n", pow_i); tmp_val = pow_i; while (tmp_val >>= 1) exp++; mant = (pow_i * 1000 / (1 << exp)); dprintk(" mant = %d exp = %d\n", mant / 1000, exp); ix = (u8) ((mant - 1000) / 100); /* index of the LUT */ dprintk(" ix = %d\n", ix); pow_i = (lut_1000ln_mant[ix] + 693 * (exp - 20) - 6908); pow_i = (pow_i << 8) / 1000; dprintk(" pow_i = %d\n", pow_i); return pow_i; } static int map_addr_to_serpar_number(struct i2c_msg *msg) { if ((msg->buf[0] <= 15)) msg->buf[0] -= 1; else if (msg->buf[0] == 17) msg->buf[0] = 15; else if (msg->buf[0] == 16) msg->buf[0] = 17; else if (msg->buf[0] == 19) msg->buf[0] = 16; else if (msg->buf[0] >= 21 && msg->buf[0] <= 25) msg->buf[0] -= 3; else if (msg->buf[0] == 28) msg->buf[0] = 23; else return -EINVAL; return 0; } static int w7090p_tuner_write_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) { struct dib7000p_state *state = i2c_get_adapdata(i2c_adap); u8 n_overflow = 1; u16 i = 1000; u16 serpar_num = msg[0].buf[0]; while (n_overflow == 1 && i) { n_overflow = (dib7000p_read_word(state, 1984) >> 1) & 0x1; i--; if (i == 0) dprintk("Tuner ITF: write busy (overflow)\n"); } dib7000p_write_word(state, 1985, (1 << 6) | (serpar_num & 0x3f)); dib7000p_write_word(state, 1986, (msg[0].buf[1] << 8) | msg[0].buf[2]); return num; } static int w7090p_tuner_read_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) { struct dib7000p_state *state = i2c_get_adapdata(i2c_adap); u8 n_overflow = 1, n_empty = 1; u16 i = 1000; u16 serpar_num = msg[0].buf[0]; u16 read_word; while (n_overflow == 1 && i) { n_overflow = (dib7000p_read_word(state, 1984) >> 1) & 0x1; i--; if (i == 0) dprintk("TunerITF: read busy (overflow)\n"); } dib7000p_write_word(state, 1985, (0 << 6) | (serpar_num & 0x3f)); i = 1000; while (n_empty == 1 && i) { n_empty = dib7000p_read_word(state, 1984) & 0x1; i--; if (i == 0) dprintk("TunerITF: read busy (empty)\n"); } read_word = dib7000p_read_word(state, 1987); msg[1].buf[0] = (read_word >> 8) & 0xff; msg[1].buf[1] = (read_word) & 0xff; return num; } static int w7090p_tuner_rw_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) { if (map_addr_to_serpar_number(&msg[0]) == 0) { /* else = Tuner regs to ignore : DIG_CFG, CTRL_RF_LT, PLL_CFG, PWM1_REG, ADCCLK, DIG_CFG_3; SLEEP_EN... */ if (num == 1) { /* write */ return w7090p_tuner_write_serpar(i2c_adap, msg, 1); } else { /* read */ return w7090p_tuner_read_serpar(i2c_adap, msg, 2); } } return num; } static int dib7090p_rw_on_apb(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num, u16 apb_address) { struct dib7000p_state *state = i2c_get_adapdata(i2c_adap); u16 word; if (num == 1) { /* write */ dib7000p_write_word(state, apb_address, ((msg[0].buf[1] << 8) | (msg[0].buf[2]))); } else { word = dib7000p_read_word(state, apb_address); msg[1].buf[0] = (word >> 8) & 0xff; msg[1].buf[1] = (word) & 0xff; } return num; } static int dib7090_tuner_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) { struct dib7000p_state *state = i2c_get_adapdata(i2c_adap); u16 apb_address = 0, word; int i = 0; switch (msg[0].buf[0]) { case 0x12: apb_address = 1920; break; case 0x14: apb_address = 1921; break; case 0x24: apb_address = 1922; break; case 0x1a: apb_address = 1923; break; case 0x22: apb_address = 1924; break; case 0x33: apb_address = 1926; break; case 0x34: apb_address = 1927; break; case 0x35: apb_address = 1928; break; case 0x36: apb_address = 1929; break; case 0x37: apb_address = 1930; break; case 0x38: apb_address = 1931; break; case 0x39: apb_address = 1932; break; case 0x2a: apb_address = 1935; break; case 0x2b: apb_address = 1936; break; case 0x2c: apb_address = 1937; break; case 0x2d: apb_address = 1938; break; case 0x2e: apb_address = 1939; break; case 0x2f: apb_address = 1940; break; case 0x30: apb_address = 1941; break; case 0x31: apb_address = 1942; break; case 0x32: apb_address = 1943; break; case 0x3e: apb_address = 1944; break; case 0x3f: apb_address = 1945; break; case 0x40: apb_address = 1948; break; case 0x25: apb_address = 914; break; case 0x26: apb_address = 915; break; case 0x27: apb_address = 917; break; case 0x28: apb_address = 916; break; case 0x1d: i = ((dib7000p_read_word(state, 72) >> 12) & 0x3); word = dib7000p_read_word(state, 384 + i); msg[1].buf[0] = (word >> 8) & 0xff; msg[1].buf[1] = (word) & 0xff; return num; case 0x1f: if (num == 1) { /* write */ word = (u16) ((msg[0].buf[1] << 8) | msg[0].buf[2]); word &= 0x3; word = (dib7000p_read_word(state, 72) & ~(3 << 12)) | (word << 12); dib7000p_write_word(state, 72, word); /* Set the proper input */ return num; } } if (apb_address != 0) /* R/W access via APB */ return dib7090p_rw_on_apb(i2c_adap, msg, num, apb_address); else /* R/W access via SERPAR */ return w7090p_tuner_rw_serpar(i2c_adap, msg, num); return 0; } static u32 dib7000p_i2c_func(struct i2c_adapter *adapter) { return I2C_FUNC_I2C; } static const struct i2c_algorithm dib7090_tuner_xfer_algo = { .master_xfer = dib7090_tuner_xfer, .functionality = dib7000p_i2c_func, }; static struct i2c_adapter *dib7090_get_i2c_tuner(struct dvb_frontend *fe) { struct dib7000p_state *st = fe->demodulator_priv; return &st->dib7090_tuner_adap; } static int dib7090_host_bus_drive(struct dib7000p_state *state, u8 drive) { u16 reg; /* drive host bus 2, 3, 4 */ reg = dib7000p_read_word(state, 1798) & ~((0x7) | (0x7 << 6) | (0x7 << 12)); reg |= (drive << 12) | (drive << 6) | drive; dib7000p_write_word(state, 1798, reg); /* drive host bus 5,6 */ reg = dib7000p_read_word(state, 1799) & ~((0x7 << 2) | (0x7 << 8)); reg |= (drive << 8) | (drive << 2); dib7000p_write_word(state, 1799, reg); /* drive host bus 7, 8, 9 */ reg = dib7000p_read_word(state, 1800) & ~((0x7) | (0x7 << 6) | (0x7 << 12)); reg |= (drive << 12) | (drive << 6) | drive; dib7000p_write_word(state, 1800, reg); /* drive host bus 10, 11 */ reg = dib7000p_read_word(state, 1801) & ~((0x7 << 2) | (0x7 << 8)); reg |= (drive << 8) | (drive << 2); dib7000p_write_word(state, 1801, reg); /* drive host bus 12, 13, 14 */ reg = dib7000p_read_word(state, 1802) & ~((0x7) | (0x7 << 6) | (0x7 << 12)); reg |= (drive << 12) | (drive << 6) | drive; dib7000p_write_word(state, 1802, reg); return 0; } static u32 dib7090_calcSyncFreq(u32 P_Kin, u32 P_Kout, u32 insertExtSynchro, u32 syncSize) { u32 quantif = 3; u32 nom = (insertExtSynchro * P_Kin + syncSize); u32 denom = P_Kout; u32 syncFreq = ((nom << quantif) / denom); if ((syncFreq & ((1 << quantif) - 1)) != 0) syncFreq = (syncFreq >> quantif) + 1; else syncFreq = (syncFreq >> quantif); if (syncFreq != 0) syncFreq = syncFreq - 1; return syncFreq; } static int dib7090_cfg_DibTx(struct dib7000p_state *state, u32 P_Kin, u32 P_Kout, u32 insertExtSynchro, u32 synchroMode, u32 syncWord, u32 syncSize) { dprintk("Configure DibStream Tx\n"); dib7000p_write_word(state, 1615, 1); dib7000p_write_word(state, 1603, P_Kin); dib7000p_write_word(state, 1605, P_Kout); dib7000p_write_word(state, 1606, insertExtSynchro); dib7000p_write_word(state, 1608, synchroMode); dib7000p_write_word(state, 1609, (syncWord >> 16) & 0xffff); dib7000p_write_word(state, 1610, syncWord & 0xffff); dib7000p_write_word(state, 1612, syncSize); dib7000p_write_word(state, 1615, 0); return 0; } static int dib7090_cfg_DibRx(struct dib7000p_state *state, u32 P_Kin, u32 P_Kout, u32 synchroMode, u32 insertExtSynchro, u32 syncWord, u32 syncSize, u32 dataOutRate) { u32 syncFreq; dprintk("Configure DibStream Rx\n"); if ((P_Kin != 0) && (P_Kout != 0)) { syncFreq = dib7090_calcSyncFreq(P_Kin, P_Kout, insertExtSynchro, syncSize); dib7000p_write_word(state, 1542, syncFreq); } dib7000p_write_word(state, 1554, 1); dib7000p_write_word(state, 1536, P_Kin); dib7000p_write_word(state, 1537, P_Kout); dib7000p_write_word(state, 1539, synchroMode); dib7000p_write_word(state, 1540, (syncWord >> 16) & 0xffff); dib7000p_write_word(state, 1541, syncWord & 0xffff); dib7000p_write_word(state, 1543, syncSize); dib7000p_write_word(state, 1544, dataOutRate); dib7000p_write_word(state, 1554, 0); return 0; } static void dib7090_enMpegMux(struct dib7000p_state *state, int onoff) { u16 reg_1287 = dib7000p_read_word(state, 1287); switch (onoff) { case 1: reg_1287 &= ~(1<<7); break; case 0: reg_1287 |= (1<<7); break; } dib7000p_write_word(state, 1287, reg_1287); } static void dib7090_configMpegMux(struct dib7000p_state *state, u16 pulseWidth, u16 enSerialMode, u16 enSerialClkDiv2) { dprintk("Enable Mpeg mux\n"); dib7090_enMpegMux(state, 0); /* If the input mode is MPEG do not divide the serial clock */ if ((enSerialMode == 1) && (state->input_mode_mpeg == 1)) enSerialClkDiv2 = 0; dib7000p_write_word(state, 1287, ((pulseWidth & 0x1f) << 2) | ((enSerialMode & 0x1) << 1) | (enSerialClkDiv2 & 0x1)); dib7090_enMpegMux(state, 1); } static void dib7090_setDibTxMux(struct dib7000p_state *state, int mode) { u16 reg_1288 = dib7000p_read_word(state, 1288) & ~(0x7 << 7); switch (mode) { case MPEG_ON_DIBTX: dprintk("SET MPEG ON DIBSTREAM TX\n"); dib7090_cfg_DibTx(state, 8, 5, 0, 0, 0, 0); reg_1288 |= (1<<9); break; case DIV_ON_DIBTX: dprintk("SET DIV_OUT ON DIBSTREAM TX\n"); dib7090_cfg_DibTx(state, 5, 5, 0, 0, 0, 0); reg_1288 |= (1<<8); break; case ADC_ON_DIBTX: dprintk("SET ADC_OUT ON DIBSTREAM TX\n"); dib7090_cfg_DibTx(state, 20, 5, 10, 0, 0, 0); reg_1288 |= (1<<7); break; default: break; } dib7000p_write_word(state, 1288, reg_1288); } static void dib7090_setHostBusMux(struct dib7000p_state *state, int mode) { u16 reg_1288 = dib7000p_read_word(state, 1288) & ~(0x7 << 4); switch (mode) { case DEMOUT_ON_HOSTBUS: dprintk("SET DEM OUT OLD INTERF ON HOST BUS\n"); dib7090_enMpegMux(state, 0); reg_1288 |= (1<<6); break; case DIBTX_ON_HOSTBUS: dprintk("SET DIBSTREAM TX ON HOST BUS\n"); dib7090_enMpegMux(state, 0); reg_1288 |= (1<<5); break; case MPEG_ON_HOSTBUS: dprintk("SET MPEG MUX ON HOST BUS\n"); reg_1288 |= (1<<4); break; default: break; } dib7000p_write_word(state, 1288, reg_1288); } static int dib7090_set_diversity_in(struct dvb_frontend *fe, int onoff) { struct dib7000p_state *state = fe->demodulator_priv; u16 reg_1287; switch (onoff) { case 0: /* only use the internal way - not the diversity input */ dprintk("%s mode OFF : by default Enable Mpeg INPUT\n", __func__); dib7090_cfg_DibRx(state, 8, 5, 0, 0, 0, 8, 0); /* Do not divide the serial clock of MPEG MUX */ /* in SERIAL MODE in case input mode MPEG is used */ reg_1287 = dib7000p_read_word(state, 1287); /* enSerialClkDiv2 == 1 ? */ if ((reg_1287 & 0x1) == 1) { /* force enSerialClkDiv2 = 0 */ reg_1287 &= ~0x1; dib7000p_write_word(state, 1287, reg_1287); } state->input_mode_mpeg = 1; break; case 1: /* both ways */ case 2: /* only the diversity input */ dprintk("%s ON : Enable diversity INPUT\n", __func__); dib7090_cfg_DibRx(state, 5, 5, 0, 0, 0, 0, 0); state->input_mode_mpeg = 0; break; } dib7000p_set_diversity_in(&state->demod, onoff); return 0; } static int dib7090_set_output_mode(struct dvb_frontend *fe, int mode) { struct dib7000p_state *state = fe->demodulator_priv; u16 outreg, smo_mode, fifo_threshold; u8 prefer_mpeg_mux_use = 1; int ret = 0; dib7090_host_bus_drive(state, 1); fifo_threshold = 1792; smo_mode = (dib7000p_read_word(state, 235) & 0x0050) | (1 << 1); outreg = dib7000p_read_word(state, 1286) & ~((1 << 10) | (0x7 << 6) | (1 << 1)); switch (mode) { case OUTMODE_HIGH_Z: outreg = 0; break; case OUTMODE_MPEG2_SERIAL: if (prefer_mpeg_mux_use) { dprintk("setting output mode TS_SERIAL using Mpeg Mux\n"); dib7090_configMpegMux(state, 3, 1, 1); dib7090_setHostBusMux(state, MPEG_ON_HOSTBUS); } else {/* Use Smooth block */ dprintk("setting output mode TS_SERIAL using Smooth bloc\n"); dib7090_setHostBusMux(state, DEMOUT_ON_HOSTBUS); outreg |= (2<<6) | (0 << 1); } break; case OUTMODE_MPEG2_PAR_GATED_CLK: if (prefer_mpeg_mux_use) { dprintk("setting output mode TS_PARALLEL_GATED using Mpeg Mux\n"); dib7090_configMpegMux(state, 2, 0, 0); dib7090_setHostBusMux(state, MPEG_ON_HOSTBUS); } else { /* Use Smooth block */ dprintk("setting output mode TS_PARALLEL_GATED using Smooth block\n"); dib7090_setHostBusMux(state, DEMOUT_ON_HOSTBUS); outreg |= (0<<6); } break; case OUTMODE_MPEG2_PAR_CONT_CLK: /* Using Smooth block only */ dprintk("setting output mode TS_PARALLEL_CONT using Smooth block\n"); dib7090_setHostBusMux(state, DEMOUT_ON_HOSTBUS); outreg |= (1<<6); break; case OUTMODE_MPEG2_FIFO: /* Using Smooth block because not supported by new Mpeg Mux bloc */ dprintk("setting output mode TS_FIFO using Smooth block\n"); dib7090_setHostBusMux(state, DEMOUT_ON_HOSTBUS); outreg |= (5<<6); smo_mode |= (3 << 1); fifo_threshold = 512; break; case OUTMODE_DIVERSITY: dprintk("setting output mode MODE_DIVERSITY\n"); dib7090_setDibTxMux(state, DIV_ON_DIBTX); dib7090_setHostBusMux(state, DIBTX_ON_HOSTBUS); break; case OUTMODE_ANALOG_ADC: dprintk("setting output mode MODE_ANALOG_ADC\n"); dib7090_setDibTxMux(state, ADC_ON_DIBTX); dib7090_setHostBusMux(state, DIBTX_ON_HOSTBUS); break; } if (mode != OUTMODE_HIGH_Z) outreg |= (1 << 10); if (state->cfg.output_mpeg2_in_188_bytes) smo_mode |= (1 << 5); ret |= dib7000p_write_word(state, 235, smo_mode); ret |= dib7000p_write_word(state, 236, fifo_threshold); /* synchronous fread */ ret |= dib7000p_write_word(state, 1286, outreg); return ret; } static int dib7090_tuner_sleep(struct dvb_frontend *fe, int onoff) { struct dib7000p_state *state = fe->demodulator_priv; u16 en_cur_state; dprintk("sleep dib7090: %d\n", onoff); en_cur_state = dib7000p_read_word(state, 1922); if (en_cur_state > 0xff) state->tuner_enable = en_cur_state; if (onoff) en_cur_state &= 0x00ff; else { if (state->tuner_enable != 0) en_cur_state = state->tuner_enable; } dib7000p_write_word(state, 1922, en_cur_state); return 0; } static int dib7090_get_adc_power(struct dvb_frontend *fe) { return dib7000p_get_adc_power(fe); } static int dib7090_slave_reset(struct dvb_frontend *fe) { struct dib7000p_state *state = fe->demodulator_priv; u16 reg; reg = dib7000p_read_word(state, 1794); dib7000p_write_word(state, 1794, reg | (4 << 12)); dib7000p_write_word(state, 1032, 0xffff); return 0; } static const struct dvb_frontend_ops dib7000p_ops; static struct dvb_frontend *dib7000p_init(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib7000p_config *cfg) { struct dvb_frontend *demod; struct dib7000p_state *st; st = kzalloc(sizeof(struct dib7000p_state), GFP_KERNEL); if (st == NULL) return NULL; memcpy(&st->cfg, cfg, sizeof(struct dib7000p_config)); st->i2c_adap = i2c_adap; st->i2c_addr = i2c_addr; st->gpio_val = cfg->gpio_val; st->gpio_dir = cfg->gpio_dir; /* Ensure the output mode remains at the previous default if it's * not specifically set by the caller. */ if ((st->cfg.output_mode != OUTMODE_MPEG2_SERIAL) && (st->cfg.output_mode != OUTMODE_MPEG2_PAR_GATED_CLK)) st->cfg.output_mode = OUTMODE_MPEG2_FIFO; demod = &st->demod; demod->demodulator_priv = st; memcpy(&st->demod.ops, &dib7000p_ops, sizeof(struct dvb_frontend_ops)); mutex_init(&st->i2c_buffer_lock); dib7000p_write_word(st, 1287, 0x0003); /* sram lead in, rdy */ if (dib7000p_identify(st) != 0) goto error; st->version = dib7000p_read_word(st, 897); /* FIXME: make sure the dev.parent field is initialized, or else request_firmware() will hit an OOPS (this should be moved somewhere more common) */ st->i2c_master.gated_tuner_i2c_adap.dev.parent = i2c_adap->dev.parent; dibx000_init_i2c_master(&st->i2c_master, DIB7000P, st->i2c_adap, st->i2c_addr); /* init 7090 tuner adapter */ strscpy(st->dib7090_tuner_adap.name, "DiB7090 tuner interface", sizeof(st->dib7090_tuner_adap.name)); st->dib7090_tuner_adap.algo = &dib7090_tuner_xfer_algo; st->dib7090_tuner_adap.algo_data = NULL; st->dib7090_tuner_adap.dev.parent = st->i2c_adap->dev.parent; i2c_set_adapdata(&st->dib7090_tuner_adap, st); i2c_add_adapter(&st->dib7090_tuner_adap); dib7000p_demod_reset(st); dib7000p_reset_stats(demod); if (st->version == SOC7090) { dib7090_set_output_mode(demod, st->cfg.output_mode); dib7090_set_diversity_in(demod, 0); } return demod; error: kfree(st); return NULL; } void *dib7000p_attach(struct dib7000p_ops *ops) { if (!ops) return NULL; ops->slave_reset = dib7090_slave_reset; ops->get_adc_power = dib7090_get_adc_power; ops->dib7000pc_detection = dib7000pc_detection; ops->get_i2c_tuner = dib7090_get_i2c_tuner; ops->tuner_sleep = dib7090_tuner_sleep; ops->init = dib7000p_init; ops->set_agc1_min = dib7000p_set_agc1_min; ops->set_gpio = dib7000p_set_gpio; ops->i2c_enumeration = dib7000p_i2c_enumeration; ops->pid_filter = dib7000p_pid_filter; ops->pid_filter_ctrl = dib7000p_pid_filter_ctrl; ops->get_i2c_master = dib7000p_get_i2c_master; ops->update_pll = dib7000p_update_pll; ops->ctrl_timf = dib7000p_ctrl_timf; ops->get_agc_values = dib7000p_get_agc_values; ops->set_wbd_ref = dib7000p_set_wbd_ref; return ops; } EXPORT_SYMBOL_GPL(dib7000p_attach); static const struct dvb_frontend_ops dib7000p_ops = { .delsys = { SYS_DVBT }, .info = { .name = "DiBcom 7000PC", .frequency_min_hz = 44250 * kHz, .frequency_max_hz = 867250 * kHz, .frequency_stepsize_hz = 62500, .caps = FE_CAN_INVERSION_AUTO | FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO, }, .release = dib7000p_release, .init = dib7000p_wakeup, .sleep = dib7000p_sleep, .set_frontend = dib7000p_set_frontend, .get_tune_settings = dib7000p_fe_get_tune_settings, .get_frontend = dib7000p_get_frontend, .read_status = dib7000p_read_status, .read_ber = dib7000p_read_ber, .read_signal_strength = dib7000p_read_signal_strength, .read_snr = dib7000p_read_snr, .read_ucblocks = dib7000p_read_unc_blocks, }; MODULE_AUTHOR("Olivier Grenie "); MODULE_AUTHOR("Patrick Boettcher "); MODULE_DESCRIPTION("Driver for the DiBcom 7000PC COFDM demodulator"); MODULE_LICENSE("GPL");