// SPDX-License-Identifier: GPL-2.0-only /* * drxd_hard.c: DVB-T Demodulator Micronas DRX3975D-A2,DRX397xD-B1 * * Copyright (C) 2003-2007 Micronas */ #include #include #include #include #include #include #include #include #include #include "drxd.h" #include "drxd_firm.h" #define DRX_FW_FILENAME_A2 "drxd-a2-1.1.fw" #define DRX_FW_FILENAME_B1 "drxd-b1-1.1.fw" #define CHUNK_SIZE 48 #define DRX_I2C_RMW 0x10 #define DRX_I2C_BROADCAST 0x20 #define DRX_I2C_CLEARCRC 0x80 #define DRX_I2C_SINGLE_MASTER 0xC0 #define DRX_I2C_MODEFLAGS 0xC0 #define DRX_I2C_FLAGS 0xF0 #define DEFAULT_LOCK_TIMEOUT 1100 #define DRX_CHANNEL_AUTO 0 #define DRX_CHANNEL_HIGH 1 #define DRX_CHANNEL_LOW 2 #define DRX_LOCK_MPEG 1 #define DRX_LOCK_FEC 2 #define DRX_LOCK_DEMOD 4 /****************************************************************************/ enum CSCDState { CSCD_INIT = 0, CSCD_SET, CSCD_SAVED }; enum CDrxdState { DRXD_UNINITIALIZED = 0, DRXD_STOPPED, DRXD_STARTED }; enum AGC_CTRL_MODE { AGC_CTRL_AUTO = 0, AGC_CTRL_USER, AGC_CTRL_OFF }; enum OperationMode { OM_Default, OM_DVBT_Diversity_Front, OM_DVBT_Diversity_End }; struct SCfgAgc { enum AGC_CTRL_MODE ctrlMode; u16 outputLevel; /* range [0, ... , 1023], 1/n of fullscale range */ u16 settleLevel; /* range [0, ... , 1023], 1/n of fullscale range */ u16 minOutputLevel; /* range [0, ... , 1023], 1/n of fullscale range */ u16 maxOutputLevel; /* range [0, ... , 1023], 1/n of fullscale range */ u16 speed; /* range [0, ... , 1023], 1/n of fullscale range */ u16 R1; u16 R2; u16 R3; }; struct SNoiseCal { int cpOpt; short cpNexpOfs; short tdCal2k; short tdCal8k; }; enum app_env { APPENV_STATIC = 0, APPENV_PORTABLE = 1, APPENV_MOBILE = 2 }; enum EIFFilter { IFFILTER_SAW = 0, IFFILTER_DISCRETE = 1 }; struct drxd_state { struct dvb_frontend frontend; struct dvb_frontend_ops ops; struct dtv_frontend_properties props; const struct firmware *fw; struct device *dev; struct i2c_adapter *i2c; void *priv; struct drxd_config config; int i2c_access; int init_done; struct mutex mutex; u8 chip_adr; u16 hi_cfg_timing_div; u16 hi_cfg_bridge_delay; u16 hi_cfg_wakeup_key; u16 hi_cfg_ctrl; u16 intermediate_freq; u16 osc_clock_freq; enum CSCDState cscd_state; enum CDrxdState drxd_state; u16 sys_clock_freq; s16 osc_clock_deviation; u16 expected_sys_clock_freq; u16 insert_rs_byte; u16 enable_parallel; int operation_mode; struct SCfgAgc if_agc_cfg; struct SCfgAgc rf_agc_cfg; struct SNoiseCal noise_cal; u32 fe_fs_add_incr; u32 org_fe_fs_add_incr; u16 current_fe_if_incr; u16 m_FeAgRegAgPwd; u16 m_FeAgRegAgAgcSio; u16 m_EcOcRegOcModeLop; u16 m_EcOcRegSncSncLvl; u8 *m_InitAtomicRead; u8 *m_HiI2cPatch; u8 *m_ResetCEFR; u8 *m_InitFE_1; u8 *m_InitFE_2; u8 *m_InitCP; u8 *m_InitCE; u8 *m_InitEQ; u8 *m_InitSC; u8 *m_InitEC; u8 *m_ResetECRAM; u8 *m_InitDiversityFront; u8 *m_InitDiversityEnd; u8 *m_DisableDiversity; u8 *m_StartDiversityFront; u8 *m_StartDiversityEnd; u8 *m_DiversityDelay8MHZ; u8 *m_DiversityDelay6MHZ; u8 *microcode; u32 microcode_length; int type_A; int PGA; int diversity; int tuner_mirrors; enum app_env app_env_default; enum app_env app_env_diversity; }; /****************************************************************************/ /* I2C **********************************************************************/ /****************************************************************************/ static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 * data, int len) { struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len }; if (i2c_transfer(adap, &msg, 1) != 1) return -1; return 0; } static int i2c_read(struct i2c_adapter *adap, u8 adr, u8 *msg, int len, u8 *answ, int alen) { struct i2c_msg msgs[2] = { { .addr = adr, .flags = 0, .buf = msg, .len = len }, { .addr = adr, .flags = I2C_M_RD, .buf = answ, .len = alen } }; if (i2c_transfer(adap, msgs, 2) != 2) return -1; return 0; } static inline u32 MulDiv32(u32 a, u32 b, u32 c) { u64 tmp64; tmp64 = (u64)a * (u64)b; do_div(tmp64, c); return (u32) tmp64; } static int Read16(struct drxd_state *state, u32 reg, u16 *data, u8 flags) { u8 adr = state->config.demod_address; u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff, flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff }; u8 mm2[2]; if (i2c_read(state->i2c, adr, mm1, 4, mm2, 2) < 0) return -1; if (data) *data = mm2[0] | (mm2[1] << 8); return mm2[0] | (mm2[1] << 8); } static int Read32(struct drxd_state *state, u32 reg, u32 *data, u8 flags) { u8 adr = state->config.demod_address; u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff, flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff }; u8 mm2[4]; if (i2c_read(state->i2c, adr, mm1, 4, mm2, 4) < 0) return -1; if (data) *data = mm2[0] | (mm2[1] << 8) | (mm2[2] << 16) | (mm2[3] << 24); return 0; } static int Write16(struct drxd_state *state, u32 reg, u16 data, u8 flags) { u8 adr = state->config.demod_address; u8 mm[6] = { reg & 0xff, (reg >> 16) & 0xff, flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff, data & 0xff, (data >> 8) & 0xff }; if (i2c_write(state->i2c, adr, mm, 6) < 0) return -1; return 0; } static int Write32(struct drxd_state *state, u32 reg, u32 data, u8 flags) { u8 adr = state->config.demod_address; u8 mm[8] = { reg & 0xff, (reg >> 16) & 0xff, flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff, data & 0xff, (data >> 8) & 0xff, (data >> 16) & 0xff, (data >> 24) & 0xff }; if (i2c_write(state->i2c, adr, mm, 8) < 0) return -1; return 0; } static int write_chunk(struct drxd_state *state, u32 reg, u8 *data, u32 len, u8 flags) { u8 adr = state->config.demod_address; u8 mm[CHUNK_SIZE + 4] = { reg & 0xff, (reg >> 16) & 0xff, flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff }; int i; for (i = 0; i < len; i++) mm[4 + i] = data[i]; if (i2c_write(state->i2c, adr, mm, 4 + len) < 0) { printk(KERN_ERR "error in write_chunk\n"); return -1; } return 0; } static int WriteBlock(struct drxd_state *state, u32 Address, u16 BlockSize, u8 *pBlock, u8 Flags) { while (BlockSize > 0) { u16 Chunk = BlockSize > CHUNK_SIZE ? CHUNK_SIZE : BlockSize; if (write_chunk(state, Address, pBlock, Chunk, Flags) < 0) return -1; pBlock += Chunk; Address += (Chunk >> 1); BlockSize -= Chunk; } return 0; } static int WriteTable(struct drxd_state *state, u8 * pTable) { int status = 0; if (!pTable) return 0; while (!status) { u16 Length; u32 Address = pTable[0] | (pTable[1] << 8) | (pTable[2] << 16) | (pTable[3] << 24); if (Address == 0xFFFFFFFF) break; pTable += sizeof(u32); Length = pTable[0] | (pTable[1] << 8); pTable += sizeof(u16); if (!Length) break; status = WriteBlock(state, Address, Length * 2, pTable, 0); pTable += (Length * 2); } return status; } /****************************************************************************/ /****************************************************************************/ /****************************************************************************/ static int ResetCEFR(struct drxd_state *state) { return WriteTable(state, state->m_ResetCEFR); } static int InitCP(struct drxd_state *state) { return WriteTable(state, state->m_InitCP); } static int InitCE(struct drxd_state *state) { int status; enum app_env AppEnv = state->app_env_default; do { status = WriteTable(state, state->m_InitCE); if (status < 0) break; if (state->operation_mode == OM_DVBT_Diversity_Front || state->operation_mode == OM_DVBT_Diversity_End) { AppEnv = state->app_env_diversity; } if (AppEnv == APPENV_STATIC) { status = Write16(state, CE_REG_TAPSET__A, 0x0000, 0); if (status < 0) break; } else if (AppEnv == APPENV_PORTABLE) { status = Write16(state, CE_REG_TAPSET__A, 0x0001, 0); if (status < 0) break; } else if (AppEnv == APPENV_MOBILE && state->type_A) { status = Write16(state, CE_REG_TAPSET__A, 0x0002, 0); if (status < 0) break; } else if (AppEnv == APPENV_MOBILE && !state->type_A) { status = Write16(state, CE_REG_TAPSET__A, 0x0006, 0); if (status < 0) break; } /* start ce */ status = Write16(state, B_CE_REG_COMM_EXEC__A, 0x0001, 0); if (status < 0) break; } while (0); return status; } static int StopOC(struct drxd_state *state) { int status = 0; u16 ocSyncLvl = 0; u16 ocModeLop = state->m_EcOcRegOcModeLop; u16 dtoIncLop = 0; u16 dtoIncHip = 0; do { /* Store output configuration */ status = Read16(state, EC_OC_REG_SNC_ISC_LVL__A, &ocSyncLvl, 0); if (status < 0) break; /* CHK_ERROR(Read16(EC_OC_REG_OC_MODE_LOP__A, &ocModeLop)); */ state->m_EcOcRegSncSncLvl = ocSyncLvl; /* m_EcOcRegOcModeLop = ocModeLop; */ /* Flush FIFO (byte-boundary) at fixed rate */ status = Read16(state, EC_OC_REG_RCN_MAP_LOP__A, &dtoIncLop, 0); if (status < 0) break; status = Read16(state, EC_OC_REG_RCN_MAP_HIP__A, &dtoIncHip, 0); if (status < 0) break; status = Write16(state, EC_OC_REG_DTO_INC_LOP__A, dtoIncLop, 0); if (status < 0) break; status = Write16(state, EC_OC_REG_DTO_INC_HIP__A, dtoIncHip, 0); if (status < 0) break; ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC__M); ocModeLop |= EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC_STATIC; status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0); if (status < 0) break; status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0); if (status < 0) break; msleep(1); /* Output pins to '0' */ status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS__M, 0); if (status < 0) break; /* Force the OC out of sync */ ocSyncLvl &= ~(EC_OC_REG_SNC_ISC_LVL_OSC__M); status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, ocSyncLvl, 0); if (status < 0) break; ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M); ocModeLop |= EC_OC_REG_OC_MODE_LOP_PAR_ENA_ENABLE; ocModeLop |= 0x2; /* Magically-out-of-sync */ status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0); if (status < 0) break; status = Write16(state, EC_OC_REG_COMM_INT_STA__A, 0x0, 0); if (status < 0) break; status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0); if (status < 0) break; } while (0); return status; } static int StartOC(struct drxd_state *state) { int status = 0; do { /* Stop OC */ status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0); if (status < 0) break; /* Restore output configuration */ status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, state->m_EcOcRegSncSncLvl, 0); if (status < 0) break; status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, state->m_EcOcRegOcModeLop, 0); if (status < 0) break; /* Output pins active again */ status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS_INIT, 0); if (status < 0) break; /* Start OC */ status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0); if (status < 0) break; } while (0); return status; } static int InitEQ(struct drxd_state *state) { return WriteTable(state, state->m_InitEQ); } static int InitEC(struct drxd_state *state) { return WriteTable(state, state->m_InitEC); } static int InitSC(struct drxd_state *state) { return WriteTable(state, state->m_InitSC); } static int InitAtomicRead(struct drxd_state *state) { return WriteTable(state, state->m_InitAtomicRead); } static int CorrectSysClockDeviation(struct drxd_state *state); static int DRX_GetLockStatus(struct drxd_state *state, u32 * pLockStatus) { u16 ScRaRamLock = 0; const u16 mpeg_lock_mask = (SC_RA_RAM_LOCK_MPEG__M | SC_RA_RAM_LOCK_FEC__M | SC_RA_RAM_LOCK_DEMOD__M); const u16 fec_lock_mask = (SC_RA_RAM_LOCK_FEC__M | SC_RA_RAM_LOCK_DEMOD__M); const u16 demod_lock_mask = SC_RA_RAM_LOCK_DEMOD__M; int status; *pLockStatus = 0; status = Read16(state, SC_RA_RAM_LOCK__A, &ScRaRamLock, 0x0000); if (status < 0) { printk(KERN_ERR "Can't read SC_RA_RAM_LOCK__A status = %08x\n", status); return status; } if (state->drxd_state != DRXD_STARTED) return 0; if ((ScRaRamLock & mpeg_lock_mask) == mpeg_lock_mask) { *pLockStatus |= DRX_LOCK_MPEG; CorrectSysClockDeviation(state); } if ((ScRaRamLock & fec_lock_mask) == fec_lock_mask) *pLockStatus |= DRX_LOCK_FEC; if ((ScRaRamLock & demod_lock_mask) == demod_lock_mask) *pLockStatus |= DRX_LOCK_DEMOD; return 0; } /****************************************************************************/ static int SetCfgIfAgc(struct drxd_state *state, struct SCfgAgc *cfg) { int status; if (cfg->outputLevel > DRXD_FE_CTRL_MAX) return -1; if (cfg->ctrlMode == AGC_CTRL_USER) { do { u16 FeAgRegPm1AgcWri; u16 FeAgRegAgModeLop; status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0); if (status < 0) break; FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M); FeAgRegAgModeLop |= FE_AG_REG_AG_MODE_LOP_MODE_4_STATIC; status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0); if (status < 0) break; FeAgRegPm1AgcWri = (u16) (cfg->outputLevel & FE_AG_REG_PM1_AGC_WRI__M); status = Write16(state, FE_AG_REG_PM1_AGC_WRI__A, FeAgRegPm1AgcWri, 0); if (status < 0) break; } while (0); } else if (cfg->ctrlMode == AGC_CTRL_AUTO) { if (((cfg->maxOutputLevel) < (cfg->minOutputLevel)) || ((cfg->maxOutputLevel) > DRXD_FE_CTRL_MAX) || ((cfg->speed) > DRXD_FE_CTRL_MAX) || ((cfg->settleLevel) > DRXD_FE_CTRL_MAX) ) return -1; do { u16 FeAgRegAgModeLop; u16 FeAgRegEgcSetLvl; u16 slope, offset; /* == Mode == */ status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0); if (status < 0) break; FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M); FeAgRegAgModeLop |= FE_AG_REG_AG_MODE_LOP_MODE_4_DYNAMIC; status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0); if (status < 0) break; /* == Settle level == */ FeAgRegEgcSetLvl = (u16) ((cfg->settleLevel >> 1) & FE_AG_REG_EGC_SET_LVL__M); status = Write16(state, FE_AG_REG_EGC_SET_LVL__A, FeAgRegEgcSetLvl, 0); if (status < 0) break; /* == Min/Max == */ slope = (u16) ((cfg->maxOutputLevel - cfg->minOutputLevel) / 2); offset = (u16) ((cfg->maxOutputLevel + cfg->minOutputLevel) / 2 - 511); status = Write16(state, FE_AG_REG_GC1_AGC_RIC__A, slope, 0); if (status < 0) break; status = Write16(state, FE_AG_REG_GC1_AGC_OFF__A, offset, 0); if (status < 0) break; /* == Speed == */ { const u16 maxRur = 8; static const u16 slowIncrDecLUT[] = { 3, 4, 4, 5, 6 }; static const u16 fastIncrDecLUT[] = { 14, 15, 15, 16, 17, 18, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31 }; u16 fineSteps = (DRXD_FE_CTRL_MAX + 1) / (maxRur + 1); u16 fineSpeed = (u16) (cfg->speed - ((cfg->speed / fineSteps) * fineSteps)); u16 invRurCount = (u16) (cfg->speed / fineSteps); u16 rurCount; if (invRurCount > maxRur) { rurCount = 0; fineSpeed += fineSteps; } else { rurCount = maxRur - invRurCount; } /* fastInc = default * (2^(fineSpeed/fineSteps)) => range[default...2*default> slowInc = default * (2^(fineSpeed/fineSteps)) */ { u16 fastIncrDec = fastIncrDecLUT[fineSpeed / ((fineSteps / (14 + 1)) + 1)]; u16 slowIncrDec = slowIncrDecLUT[fineSpeed / (fineSteps / (3 + 1))]; status = Write16(state, FE_AG_REG_EGC_RUR_CNT__A, rurCount, 0); if (status < 0) break; status = Write16(state, FE_AG_REG_EGC_FAS_INC__A, fastIncrDec, 0); if (status < 0) break; status = Write16(state, FE_AG_REG_EGC_FAS_DEC__A, fastIncrDec, 0); if (status < 0) break; status = Write16(state, FE_AG_REG_EGC_SLO_INC__A, slowIncrDec, 0); if (status < 0) break; status = Write16(state, FE_AG_REG_EGC_SLO_DEC__A, slowIncrDec, 0); if (status < 0) break; } } } while (0); } else { /* No OFF mode for IF control */ return -1; } return status; } static int SetCfgRfAgc(struct drxd_state *state, struct SCfgAgc *cfg) { int status = 0; if (cfg->outputLevel > DRXD_FE_CTRL_MAX) return -1; if (cfg->ctrlMode == AGC_CTRL_USER) { do { u16 AgModeLop = 0; u16 level = (cfg->outputLevel); if (level == DRXD_FE_CTRL_MAX) level++; status = Write16(state, FE_AG_REG_PM2_AGC_WRI__A, level, 0x0000); if (status < 0) break; /*==== Mode ====*/ /* Powerdown PD2, WRI source */ state->m_FeAgRegAgPwd &= ~(FE_AG_REG_AG_PWD_PWD_PD2__M); state->m_FeAgRegAgPwd |= FE_AG_REG_AG_PWD_PWD_PD2_DISABLE; status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000); if (status < 0) break; status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000); if (status < 0) break; AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M | FE_AG_REG_AG_MODE_LOP_MODE_E__M)); AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC | FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC); status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000); if (status < 0) break; /* enable AGC2 pin */ { u16 FeAgRegAgAgcSio = 0; status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000); if (status < 0) break; FeAgRegAgAgcSio &= ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M); FeAgRegAgAgcSio |= FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT; status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000); if (status < 0) break; } } while (0); } else if (cfg->ctrlMode == AGC_CTRL_AUTO) { u16 AgModeLop = 0; do { u16 level; /* Automatic control */ /* Powerup PD2, AGC2 as output, TGC source */ (state->m_FeAgRegAgPwd) &= ~(FE_AG_REG_AG_PWD_PWD_PD2__M); (state->m_FeAgRegAgPwd) |= FE_AG_REG_AG_PWD_PWD_PD2_DISABLE; status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000); if (status < 0) break; status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000); if (status < 0) break; AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M | FE_AG_REG_AG_MODE_LOP_MODE_E__M)); AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC | FE_AG_REG_AG_MODE_LOP_MODE_E_DYNAMIC); status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000); if (status < 0) break; /* Settle level */ level = (((cfg->settleLevel) >> 4) & FE_AG_REG_TGC_SET_LVL__M); status = Write16(state, FE_AG_REG_TGC_SET_LVL__A, level, 0x0000); if (status < 0) break; /* Min/max: don't care */ /* Speed: TODO */ /* enable AGC2 pin */ { u16 FeAgRegAgAgcSio = 0; status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000); if (status < 0) break; FeAgRegAgAgcSio &= ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M); FeAgRegAgAgcSio |= FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT; status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000); if (status < 0) break; } } while (0); } else { u16 AgModeLop = 0; do { /* No RF AGC control */ /* Powerdown PD2, AGC2 as output, WRI source */ (state->m_FeAgRegAgPwd) &= ~(FE_AG_REG_AG_PWD_PWD_PD2__M); (state->m_FeAgRegAgPwd) |= FE_AG_REG_AG_PWD_PWD_PD2_ENABLE; status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000); if (status < 0) break; status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000); if (status < 0) break; AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M | FE_AG_REG_AG_MODE_LOP_MODE_E__M)); AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC | FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC); status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000); if (status < 0) break; /* set FeAgRegAgAgcSio AGC2 (RF) as input */ { u16 FeAgRegAgAgcSio = 0; status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000); if (status < 0) break; FeAgRegAgAgcSio &= ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M); FeAgRegAgAgcSio |= FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_INPUT; status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000); if (status < 0) break; } } while (0); } return status; } static int ReadIFAgc(struct drxd_state *state, u32 * pValue) { int status = 0; *pValue = 0; if (state->if_agc_cfg.ctrlMode != AGC_CTRL_OFF) { u16 Value; status = Read16(state, FE_AG_REG_GC1_AGC_DAT__A, &Value, 0); Value &= FE_AG_REG_GC1_AGC_DAT__M; if (status >= 0) { /* 3.3V | R1 | Vin - R3 - * -- Vout | R2 | GND */ u32 R1 = state->if_agc_cfg.R1; u32 R2 = state->if_agc_cfg.R2; u32 R3 = state->if_agc_cfg.R3; u32 Vmax, Rpar, Vmin, Vout; if (R2 == 0 && (R1 == 0 || R3 == 0)) return 0; Vmax = (3300 * R2) / (R1 + R2); Rpar = (R2 * R3) / (R3 + R2); Vmin = (3300 * Rpar) / (R1 + Rpar); Vout = Vmin + ((Vmax - Vmin) * Value) / 1024; *pValue = Vout; } } return status; } static int load_firmware(struct drxd_state *state, const char *fw_name) { const struct firmware *fw; if (request_firmware(&fw, fw_name, state->dev) < 0) { printk(KERN_ERR "drxd: firmware load failure [%s]\n", fw_name); return -EIO; } state->microcode = kmemdup(fw->data, fw->size, GFP_KERNEL); if (!state->microcode) { release_firmware(fw); return -ENOMEM; } state->microcode_length = fw->size; release_firmware(fw); return 0; } static int DownloadMicrocode(struct drxd_state *state, const u8 *pMCImage, u32 Length) { u8 *pSrc; u32 Address; u16 nBlocks; u16 BlockSize; u32 offset = 0; int i, status = 0; pSrc = (u8 *) pMCImage; /* We're not using Flags */ /* Flags = (pSrc[0] << 8) | pSrc[1]; */ pSrc += sizeof(u16); offset += sizeof(u16); nBlocks = (pSrc[0] << 8) | pSrc[1]; pSrc += sizeof(u16); offset += sizeof(u16); for (i = 0; i < nBlocks; i++) { Address = (pSrc[0] << 24) | (pSrc[1] << 16) | (pSrc[2] << 8) | pSrc[3]; pSrc += sizeof(u32); offset += sizeof(u32); BlockSize = ((pSrc[0] << 8) | pSrc[1]) * sizeof(u16); pSrc += sizeof(u16); offset += sizeof(u16); /* We're not using Flags */ /* u16 Flags = (pSrc[0] << 8) | pSrc[1]; */ pSrc += sizeof(u16); offset += sizeof(u16); /* We're not using BlockCRC */ /* u16 BlockCRC = (pSrc[0] << 8) | pSrc[1]; */ pSrc += sizeof(u16); offset += sizeof(u16); status = WriteBlock(state, Address, BlockSize, pSrc, DRX_I2C_CLEARCRC); if (status < 0) break; pSrc += BlockSize; offset += BlockSize; } return status; } static int HI_Command(struct drxd_state *state, u16 cmd, u16 * pResult) { u32 nrRetries = 0; int status; status = Write16(state, HI_RA_RAM_SRV_CMD__A, cmd, 0); if (status < 0) return status; do { nrRetries += 1; if (nrRetries > DRXD_MAX_RETRIES) { status = -1; break; } status = Read16(state, HI_RA_RAM_SRV_CMD__A, NULL, 0); } while (status != 0); if (status >= 0) status = Read16(state, HI_RA_RAM_SRV_RES__A, pResult, 0); return status; } static int HI_CfgCommand(struct drxd_state *state) { int status = 0; mutex_lock(&state->mutex); Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0); Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, state->hi_cfg_timing_div, 0); Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, state->hi_cfg_bridge_delay, 0); Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, state->hi_cfg_wakeup_key, 0); Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, state->hi_cfg_ctrl, 0); Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0); if ((state->hi_cfg_ctrl & HI_RA_RAM_SRV_CFG_ACT_PWD_EXE) == HI_RA_RAM_SRV_CFG_ACT_PWD_EXE) status = Write16(state, HI_RA_RAM_SRV_CMD__A, HI_RA_RAM_SRV_CMD_CONFIG, 0); else status = HI_Command(state, HI_RA_RAM_SRV_CMD_CONFIG, NULL); mutex_unlock(&state->mutex); return status; } static int InitHI(struct drxd_state *state) { state->hi_cfg_wakeup_key = (state->chip_adr); /* port/bridge/power down ctrl */ state->hi_cfg_ctrl = HI_RA_RAM_SRV_CFG_ACT_SLV0_ON; return HI_CfgCommand(state); } static int HI_ResetCommand(struct drxd_state *state) { int status; mutex_lock(&state->mutex); status = Write16(state, HI_RA_RAM_SRV_RST_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0); if (status == 0) status = HI_Command(state, HI_RA_RAM_SRV_CMD_RESET, NULL); mutex_unlock(&state->mutex); msleep(1); return status; } static int DRX_ConfigureI2CBridge(struct drxd_state *state, int bEnableBridge) { state->hi_cfg_ctrl &= (~HI_RA_RAM_SRV_CFG_ACT_BRD__M); if (bEnableBridge) state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_ON; else state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_OFF; return HI_CfgCommand(state); } #define HI_TR_WRITE 0x9 #define HI_TR_READ 0xA #define HI_TR_READ_WRITE 0xB #define HI_TR_BROADCAST 0x4 #if 0 static int AtomicReadBlock(struct drxd_state *state, u32 Addr, u16 DataSize, u8 *pData, u8 Flags) { int status; int i = 0; /* Parameter check */ if ((!pData) || ((DataSize & 1) != 0)) return -1; mutex_lock(&state->mutex); do { /* Instruct HI to read n bytes */ /* TODO use proper names forthese egisters */ status = Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, (HI_TR_FUNC_ADDR & 0xFFFF), 0); if (status < 0) break; status = Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, (u16) (Addr >> 16), 0); if (status < 0) break; status = Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, (u16) (Addr & 0xFFFF), 0); if (status < 0) break; status = Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, (u16) ((DataSize / 2) - 1), 0); if (status < 0) break; status = Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, HI_TR_READ, 0); if (status < 0) break; status = HI_Command(state, HI_RA_RAM_SRV_CMD_EXECUTE, 0); if (status < 0) break; } while (0); if (status >= 0) { for (i = 0; i < (DataSize / 2); i += 1) { u16 word; status = Read16(state, (HI_RA_RAM_USR_BEGIN__A + i), &word, 0); if (status < 0) break; pData[2 * i] = (u8) (word & 0xFF); pData[(2 * i) + 1] = (u8) (word >> 8); } } mutex_unlock(&state->mutex); return status; } static int AtomicReadReg32(struct drxd_state *state, u32 Addr, u32 *pData, u8 Flags) { u8 buf[sizeof(u32)]; int status; if (!pData) return -1; status = AtomicReadBlock(state, Addr, sizeof(u32), buf, Flags); *pData = (((u32) buf[0]) << 0) + (((u32) buf[1]) << 8) + (((u32) buf[2]) << 16) + (((u32) buf[3]) << 24); return status; } #endif static int StopAllProcessors(struct drxd_state *state) { return Write16(state, HI_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, DRX_I2C_BROADCAST); } static int EnableAndResetMB(struct drxd_state *state) { if (state->type_A) { /* disable? monitor bus observe @ EC_OC */ Write16(state, EC_OC_REG_OC_MON_SIO__A, 0x0000, 0x0000); } /* do inverse broadcast, followed by explicit write to HI */ Write16(state, HI_COMM_MB__A, 0x0000, DRX_I2C_BROADCAST); Write16(state, HI_COMM_MB__A, 0x0000, 0x0000); return 0; } static int InitCC(struct drxd_state *state) { int status = 0; if (state->osc_clock_freq == 0 || state->osc_clock_freq > 20000 || (state->osc_clock_freq % 4000) != 0) { printk(KERN_ERR "invalid osc frequency %d\n", state->osc_clock_freq); return -1; } status |= Write16(state, CC_REG_OSC_MODE__A, CC_REG_OSC_MODE_M20, 0); status |= Write16(state, CC_REG_PLL_MODE__A, CC_REG_PLL_MODE_BYPASS_PLL | CC_REG_PLL_MODE_PUMP_CUR_12, 0); status |= Write16(state, CC_REG_REF_DIVIDE__A, state->osc_clock_freq / 4000, 0); status |= Write16(state, CC_REG_PWD_MODE__A, CC_REG_PWD_MODE_DOWN_PLL, 0); status |= Write16(state, CC_REG_UPDATE__A, CC_REG_UPDATE_KEY, 0); return status; } static int ResetECOD(struct drxd_state *state) { int status = 0; if (state->type_A) status = Write16(state, EC_OD_REG_SYNC__A, 0x0664, 0); else status = Write16(state, B_EC_OD_REG_SYNC__A, 0x0664, 0); if (!(status < 0)) status = WriteTable(state, state->m_ResetECRAM); if (!(status < 0)) status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0001, 0); return status; } /* Configure PGA switch */ static int SetCfgPga(struct drxd_state *state, int pgaSwitch) { int status; u16 AgModeLop = 0; u16 AgModeHip = 0; do { if (pgaSwitch) { /* PGA on */ /* fine gain */ status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000); if (status < 0) break; AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M)); AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_DYNAMIC; status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000); if (status < 0) break; /* coarse gain */ status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000); if (status < 0) break; AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M)); AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_DYNAMIC; status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000); if (status < 0) break; /* enable fine and coarse gain, enable AAF, no ext resistor */ status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFY_PCY_AFY_REN, 0x0000); if (status < 0) break; } else { /* PGA off, bypass */ /* fine gain */ status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000); if (status < 0) break; AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M)); AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_STATIC; status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000); if (status < 0) break; /* coarse gain */ status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000); if (status < 0) break; AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M)); AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_STATIC; status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000); if (status < 0) break; /* disable fine and coarse gain, enable AAF, no ext resistor */ status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 0x0000); if (status < 0) break; } } while (0); return status; } static int InitFE(struct drxd_state *state) { int status; do { status = WriteTable(state, state->m_InitFE_1); if (status < 0) break; if (state->type_A) { status = Write16(state, FE_AG_REG_AG_PGA_MODE__A, FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 0); } else { if (state->PGA) status = SetCfgPga(state, 0); else status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 0); } if (status < 0) break; status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, state->m_FeAgRegAgAgcSio, 0x0000); if (status < 0) break; status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000); if (status < 0) break; status = WriteTable(state, state->m_InitFE_2); if (status < 0) break; } while (0); return status; } static int InitFT(struct drxd_state *state) { /* norm OFFSET, MB says =2 voor 8K en =3 voor 2K waarschijnlijk SC stuff */ return Write16(state, FT_REG_COMM_EXEC__A, 0x0001, 0x0000); } static int SC_WaitForReady(struct drxd_state *state) { int i; for (i = 0; i < DRXD_MAX_RETRIES; i += 1) { int status = Read16(state, SC_RA_RAM_CMD__A, NULL, 0); if (status == 0) return status; } return -1; } static int SC_SendCommand(struct drxd_state *state, u16 cmd) { int status = 0, ret; u16 errCode; status = Write16(state, SC_RA_RAM_CMD__A, cmd, 0); if (status < 0) return status; SC_WaitForReady(state); ret = Read16(state, SC_RA_RAM_CMD_ADDR__A, &errCode, 0); if (ret < 0 || errCode == 0xFFFF) { printk(KERN_ERR "Command Error\n"); status = -1; } return status; } static int SC_ProcStartCommand(struct drxd_state *state, u16 subCmd, u16 param0, u16 param1) { int ret, status = 0; u16 scExec; mutex_lock(&state->mutex); do { ret = Read16(state, SC_COMM_EXEC__A, &scExec, 0); if (ret < 0 || scExec != 1) { status = -1; break; } SC_WaitForReady(state); status |= Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0); status |= Write16(state, SC_RA_RAM_PARAM1__A, param1, 0); status |= Write16(state, SC_RA_RAM_PARAM0__A, param0, 0); SC_SendCommand(state, SC_RA_RAM_CMD_PROC_START); } while (0); mutex_unlock(&state->mutex); return status; } static int SC_SetPrefParamCommand(struct drxd_state *state, u16 subCmd, u16 param0, u16 param1) { int status; mutex_lock(&state->mutex); do { status = SC_WaitForReady(state); if (status < 0) break; status = Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0); if (status < 0) break; status = Write16(state, SC_RA_RAM_PARAM1__A, param1, 0); if (status < 0) break; status = Write16(state, SC_RA_RAM_PARAM0__A, param0, 0); if (status < 0) break; status = SC_SendCommand(state, SC_RA_RAM_CMD_SET_PREF_PARAM); if (status < 0) break; } while (0); mutex_unlock(&state->mutex); return status; } #if 0 static int SC_GetOpParamCommand(struct drxd_state *state, u16 * result) { int status = 0; mutex_lock(&state->mutex); do { status = SC_WaitForReady(state); if (status < 0) break; status = SC_SendCommand(state, SC_RA_RAM_CMD_GET_OP_PARAM); if (status < 0) break; status = Read16(state, SC_RA_RAM_PARAM0__A, result, 0); if (status < 0) break; } while (0); mutex_unlock(&state->mutex); return status; } #endif static int ConfigureMPEGOutput(struct drxd_state *state, int bEnableOutput) { int status; do { u16 EcOcRegIprInvMpg = 0; u16 EcOcRegOcModeLop = 0; u16 EcOcRegOcModeHip = 0; u16 EcOcRegOcMpgSio = 0; /*CHK_ERROR(Read16(state, EC_OC_REG_OC_MODE_LOP__A, &EcOcRegOcModeLop, 0)); */ if (state->operation_mode == OM_DVBT_Diversity_Front) { if (bEnableOutput) { EcOcRegOcModeHip |= B_EC_OC_REG_OC_MODE_HIP_MPG_BUS_SRC_MONITOR; } else EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M; EcOcRegOcModeLop |= EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE; } else { EcOcRegOcModeLop = state->m_EcOcRegOcModeLop; if (bEnableOutput) EcOcRegOcMpgSio &= (~(EC_OC_REG_OC_MPG_SIO__M)); else EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M; /* Don't Insert RS Byte */ if (state->insert_rs_byte) { EcOcRegOcModeLop &= (~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M)); EcOcRegOcModeHip &= (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M); EcOcRegOcModeHip |= EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_ENABLE; } else { EcOcRegOcModeLop |= EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE; EcOcRegOcModeHip &= (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M); EcOcRegOcModeHip |= EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_DISABLE; } /* Mode = Parallel */ if (state->enable_parallel) EcOcRegOcModeLop &= (~(EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE__M)); else EcOcRegOcModeLop |= EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE_SERIAL; } /* Invert Data */ /* EcOcRegIprInvMpg |= 0x00FF; */ EcOcRegIprInvMpg &= (~(0x00FF)); /* Invert Error ( we don't use the pin ) */ /* EcOcRegIprInvMpg |= 0x0100; */ EcOcRegIprInvMpg &= (~(0x0100)); /* Invert Start ( we don't use the pin ) */ /* EcOcRegIprInvMpg |= 0x0200; */ EcOcRegIprInvMpg &= (~(0x0200)); /* Invert Valid ( we don't use the pin ) */ /* EcOcRegIprInvMpg |= 0x0400; */ EcOcRegIprInvMpg &= (~(0x0400)); /* Invert Clock */ /* EcOcRegIprInvMpg |= 0x0800; */ EcOcRegIprInvMpg &= (~(0x0800)); /* EcOcRegOcModeLop =0x05; */ status = Write16(state, EC_OC_REG_IPR_INV_MPG__A, EcOcRegIprInvMpg, 0); if (status < 0) break; status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, EcOcRegOcModeLop, 0); if (status < 0) break; status = Write16(state, EC_OC_REG_OC_MODE_HIP__A, EcOcRegOcModeHip, 0x0000); if (status < 0) break; status = Write16(state, EC_OC_REG_OC_MPG_SIO__A, EcOcRegOcMpgSio, 0); if (status < 0) break; } while (0); return status; } static int SetDeviceTypeId(struct drxd_state *state) { int status = 0; u16 deviceId = 0; do { status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0); if (status < 0) break; /* TODO: why twice? */ status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0); if (status < 0) break; printk(KERN_INFO "drxd: deviceId = %04x\n", deviceId); state->type_A = 0; state->PGA = 0; state->diversity = 0; if (deviceId == 0) { /* on A2 only 3975 available */ state->type_A = 1; printk(KERN_INFO "DRX3975D-A2\n"); } else { deviceId >>= 12; printk(KERN_INFO "DRX397%dD-B1\n", deviceId); switch (deviceId) { case 4: state->diversity = 1; fallthrough; case 3: case 7: state->PGA = 1; break; case 6: state->diversity = 1; fallthrough; case 5: case 8: break; default: status = -1; break; } } } while (0); if (status < 0) return status; /* Init Table selection */ state->m_InitAtomicRead = DRXD_InitAtomicRead; state->m_InitSC = DRXD_InitSC; state->m_ResetECRAM = DRXD_ResetECRAM; if (state->type_A) { state->m_ResetCEFR = DRXD_ResetCEFR; state->m_InitFE_1 = DRXD_InitFEA2_1; state->m_InitFE_2 = DRXD_InitFEA2_2; state->m_InitCP = DRXD_InitCPA2; state->m_InitCE = DRXD_InitCEA2; state->m_InitEQ = DRXD_InitEQA2; state->m_InitEC = DRXD_InitECA2; if (load_firmware(state, DRX_FW_FILENAME_A2)) return -EIO; } else { state->m_ResetCEFR = NULL; state->m_InitFE_1 = DRXD_InitFEB1_1; state->m_InitFE_2 = DRXD_InitFEB1_2; state->m_InitCP = DRXD_InitCPB1; state->m_InitCE = DRXD_InitCEB1; state->m_InitEQ = DRXD_InitEQB1; state->m_InitEC = DRXD_InitECB1; if (load_firmware(state, DRX_FW_FILENAME_B1)) return -EIO; } if (state->diversity) { state->m_InitDiversityFront = DRXD_InitDiversityFront; state->m_InitDiversityEnd = DRXD_InitDiversityEnd; state->m_DisableDiversity = DRXD_DisableDiversity; state->m_StartDiversityFront = DRXD_StartDiversityFront; state->m_StartDiversityEnd = DRXD_StartDiversityEnd; state->m_DiversityDelay8MHZ = DRXD_DiversityDelay8MHZ; state->m_DiversityDelay6MHZ = DRXD_DiversityDelay6MHZ; } else { state->m_InitDiversityFront = NULL; state->m_InitDiversityEnd = NULL; state->m_DisableDiversity = NULL; state->m_StartDiversityFront = NULL; state->m_StartDiversityEnd = NULL; state->m_DiversityDelay8MHZ = NULL; state->m_DiversityDelay6MHZ = NULL; } return status; } static int CorrectSysClockDeviation(struct drxd_state *state) { int status; s32 incr = 0; s32 nomincr = 0; u32 bandwidth = 0; u32 sysClockInHz = 0; u32 sysClockFreq = 0; /* in kHz */ s16 oscClockDeviation; s16 Diff; do { /* Retrieve bandwidth and incr, sanity check */ /* These accesses should be AtomicReadReg32, but that causes trouble (at least for diversity */ status = Read32(state, LC_RA_RAM_IFINCR_NOM_L__A, ((u32 *) &nomincr), 0); if (status < 0) break; status = Read32(state, FE_IF_REG_INCR0__A, (u32 *) &incr, 0); if (status < 0) break; if (state->type_A) { if ((nomincr - incr < -500) || (nomincr - incr > 500)) break; } else { if ((nomincr - incr < -2000) || (nomincr - incr > 2000)) break; } switch (state->props.bandwidth_hz) { case 8000000: bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ; break; case 7000000: bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ; break; case 6000000: bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ; break; default: return -1; } /* Compute new sysclock value sysClockFreq = (((incr + 2^23)*bandwidth)/2^21)/1000 */ incr += (1 << 23); sysClockInHz = MulDiv32(incr, bandwidth, 1 << 21); sysClockFreq = (u32) (sysClockInHz / 1000); /* rounding */ if ((sysClockInHz % 1000) > 500) sysClockFreq++; /* Compute clock deviation in ppm */ oscClockDeviation = (u16) ((((s32) (sysClockFreq) - (s32) (state->expected_sys_clock_freq)) * 1000000L) / (s32) (state->expected_sys_clock_freq)); Diff = oscClockDeviation - state->osc_clock_deviation; /*printk(KERN_INFO "sysclockdiff=%d\n", Diff); */ if (Diff >= -200 && Diff <= 200) { state->sys_clock_freq = (u16) sysClockFreq; if (oscClockDeviation != state->osc_clock_deviation) { if (state->config.osc_deviation) { state->config.osc_deviation(state->priv, oscClockDeviation, 1); state->osc_clock_deviation = oscClockDeviation; } } /* switch OFF SRMM scan in SC */ status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DONT_SCAN, 0); if (status < 0) break; /* overrule FE_IF internal value for proper re-locking */ status = Write16(state, SC_RA_RAM_IF_SAVE__AX, state->current_fe_if_incr, 0); if (status < 0) break; state->cscd_state = CSCD_SAVED; } } while (0); return status; } static int DRX_Stop(struct drxd_state *state) { int status; if (state->drxd_state != DRXD_STARTED) return 0; do { if (state->cscd_state != CSCD_SAVED) { u32 lock; status = DRX_GetLockStatus(state, &lock); if (status < 0) break; } status = StopOC(state); if (status < 0) break; state->drxd_state = DRXD_STOPPED; status = ConfigureMPEGOutput(state, 0); if (status < 0) break; if (state->type_A) { /* Stop relevant processors off the device */ status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0x0000); if (status < 0) break; status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); if (status < 0) break; status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); if (status < 0) break; } else { /* Stop all processors except HI & CC & FE */ status = Write16(state, B_SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); if (status < 0) break; status = Write16(state, B_LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); if (status < 0) break; status = Write16(state, B_FT_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); if (status < 0) break; status = Write16(state, B_CP_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); if (status < 0) break; status = Write16(state, B_CE_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); if (status < 0) break; status = Write16(state, B_EQ_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); if (status < 0) break; status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0); if (status < 0) break; } } while (0); return status; } #if 0 /* Currently unused */ static int SetOperationMode(struct drxd_state *state, int oMode) { int status; do { if (state->drxd_state != DRXD_STOPPED) { status = -1; break; } if (oMode == state->operation_mode) { status = 0; break; } if (oMode != OM_Default && !state->diversity) { status = -1; break; } switch (oMode) { case OM_DVBT_Diversity_Front: status = WriteTable(state, state->m_InitDiversityFront); break; case OM_DVBT_Diversity_End: status = WriteTable(state, state->m_InitDiversityEnd); break; case OM_Default: /* We need to check how to get DRXD out of diversity */ default: status = WriteTable(state, state->m_DisableDiversity); break; } } while (0); if (!status) state->operation_mode = oMode; return status; } #endif static int StartDiversity(struct drxd_state *state) { int status = 0; u16 rcControl; do { if (state->operation_mode == OM_DVBT_Diversity_Front) { status = WriteTable(state, state->m_StartDiversityFront); if (status < 0) break; } else if (state->operation_mode == OM_DVBT_Diversity_End) { status = WriteTable(state, state->m_StartDiversityEnd); if (status < 0) break; if (state->props.bandwidth_hz == 8000000) { status = WriteTable(state, state->m_DiversityDelay8MHZ); if (status < 0) break; } else { status = WriteTable(state, state->m_DiversityDelay6MHZ); if (status < 0) break; } status = Read16(state, B_EQ_REG_RC_SEL_CAR__A, &rcControl, 0); if (status < 0) break; rcControl &= ~(B_EQ_REG_RC_SEL_CAR_FFTMODE__M); rcControl |= B_EQ_REG_RC_SEL_CAR_DIV_ON | /* combining enabled */ B_EQ_REG_RC_SEL_CAR_MEAS_A_CC | B_EQ_REG_RC_SEL_CAR_PASS_A_CC | B_EQ_REG_RC_SEL_CAR_LOCAL_A_CC; status = Write16(state, B_EQ_REG_RC_SEL_CAR__A, rcControl, 0); if (status < 0) break; } } while (0); return status; } static int SetFrequencyShift(struct drxd_state *state, u32 offsetFreq, int channelMirrored) { int negativeShift = (state->tuner_mirrors == channelMirrored); /* Handle all mirroring * * Note: ADC mirroring (aliasing) is implictly handled by limiting * feFsRegAddInc to 28 bits below * (if the result before masking is more than 28 bits, this means * that the ADC is mirroring. * The masking is in fact the aliasing of the ADC) * */ /* Compute register value, unsigned computation */ state->fe_fs_add_incr = MulDiv32(state->intermediate_freq + offsetFreq, 1 << 28, state->sys_clock_freq); /* Remove integer part */ state->fe_fs_add_incr &= 0x0FFFFFFFL; if (negativeShift) state->fe_fs_add_incr = ((1 << 28) - state->fe_fs_add_incr); /* Save the frequency shift without tunerOffset compensation for CtrlGetChannel. */ state->org_fe_fs_add_incr = MulDiv32(state->intermediate_freq, 1 << 28, state->sys_clock_freq); /* Remove integer part */ state->org_fe_fs_add_incr &= 0x0FFFFFFFL; if (negativeShift) state->org_fe_fs_add_incr = ((1L << 28) - state->org_fe_fs_add_incr); return Write32(state, FE_FS_REG_ADD_INC_LOP__A, state->fe_fs_add_incr, 0); } static int SetCfgNoiseCalibration(struct drxd_state *state, struct SNoiseCal *noiseCal) { u16 beOptEna; int status = 0; do { status = Read16(state, SC_RA_RAM_BE_OPT_ENA__A, &beOptEna, 0); if (status < 0) break; if (noiseCal->cpOpt) { beOptEna |= (1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT); } else { beOptEna &= ~(1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT); status = Write16(state, CP_REG_AC_NEXP_OFFS__A, noiseCal->cpNexpOfs, 0); if (status < 0) break; } status = Write16(state, SC_RA_RAM_BE_OPT_ENA__A, beOptEna, 0); if (status < 0) break; if (!state->type_A) { status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_2K__A, noiseCal->tdCal2k, 0); if (status < 0) break; status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_8K__A, noiseCal->tdCal8k, 0); if (status < 0) break; } } while (0); return status; } static int DRX_Start(struct drxd_state *state, s32 off) { struct dtv_frontend_properties *p = &state->props; int status; u16 transmissionParams = 0; u16 operationMode = 0; u16 qpskTdTpsPwr = 0; u16 qam16TdTpsPwr = 0; u16 qam64TdTpsPwr = 0; u32 feIfIncr = 0; u32 bandwidth = 0; int mirrorFreqSpect; u16 qpskSnCeGain = 0; u16 qam16SnCeGain = 0; u16 qam64SnCeGain = 0; u16 qpskIsGainMan = 0; u16 qam16IsGainMan = 0; u16 qam64IsGainMan = 0; u16 qpskIsGainExp = 0; u16 qam16IsGainExp = 0; u16 qam64IsGainExp = 0; u16 bandwidthParam = 0; if (off < 0) off = (off - 500) / 1000; else off = (off + 500) / 1000; do { if (state->drxd_state != DRXD_STOPPED) return -1; status = ResetECOD(state); if (status < 0) break; if (state->type_A) { status = InitSC(state); if (status < 0) break; } else { status = InitFT(state); if (status < 0) break; status = InitCP(state); if (status < 0) break; status = InitCE(state); if (status < 0) break; status = InitEQ(state); if (status < 0) break; status = InitSC(state); if (status < 0) break; } /* Restore current IF & RF AGC settings */ status = SetCfgIfAgc(state, &state->if_agc_cfg); if (status < 0) break; status = SetCfgRfAgc(state, &state->rf_agc_cfg); if (status < 0) break; mirrorFreqSpect = (state->props.inversion == INVERSION_ON); switch (p->transmission_mode) { default: /* Not set, detect it automatically */ operationMode |= SC_RA_RAM_OP_AUTO_MODE__M; fallthrough; /* try first guess DRX_FFTMODE_8K */ case TRANSMISSION_MODE_8K: transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_8K; if (state->type_A) { status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_8K, 0x0000); if (status < 0) break; qpskSnCeGain = 99; qam16SnCeGain = 83; qam64SnCeGain = 67; } break; case TRANSMISSION_MODE_2K: transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_2K; if (state->type_A) { status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_2K, 0x0000); if (status < 0) break; qpskSnCeGain = 97; qam16SnCeGain = 71; qam64SnCeGain = 65; } break; } switch (p->guard_interval) { case GUARD_INTERVAL_1_4: transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4; break; case GUARD_INTERVAL_1_8: transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_8; break; case GUARD_INTERVAL_1_16: transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_16; break; case GUARD_INTERVAL_1_32: transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_32; break; default: /* Not set, detect it automatically */ operationMode |= SC_RA_RAM_OP_AUTO_GUARD__M; /* try first guess 1/4 */ transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4; break; } switch (p->hierarchy) { case HIERARCHY_1: transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A1; if (state->type_A) { status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0001, 0x0000); if (status < 0) break; status = Write16(state, EC_SB_REG_ALPHA__A, 0x0001, 0x0000); if (status < 0) break; qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN; qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA1; qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA1; qpskIsGainMan = SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE; qam16IsGainMan = SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE; qam64IsGainMan = SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE; qpskIsGainExp = SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE; qam16IsGainExp = SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE; qam64IsGainExp = SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE; } break; case HIERARCHY_2: transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A2; if (state->type_A) { status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0002, 0x0000); if (status < 0) break; status = Write16(state, EC_SB_REG_ALPHA__A, 0x0002, 0x0000); if (status < 0) break; qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN; qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA2; qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA2; qpskIsGainMan = SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE; qam16IsGainMan = SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_MAN__PRE; qam64IsGainMan = SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_MAN__PRE; qpskIsGainExp = SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE; qam16IsGainExp = SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_EXP__PRE; qam64IsGainExp = SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_EXP__PRE; } break; case HIERARCHY_4: transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A4; if (state->type_A) { status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0003, 0x0000); if (status < 0) break; status = Write16(state, EC_SB_REG_ALPHA__A, 0x0003, 0x0000); if (status < 0) break; qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN; qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA4; qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA4; qpskIsGainMan = SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE; qam16IsGainMan = SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_MAN__PRE; qam64IsGainMan = SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_MAN__PRE; qpskIsGainExp = SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE; qam16IsGainExp = SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_EXP__PRE; qam64IsGainExp = SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_EXP__PRE; } break; case HIERARCHY_AUTO: default: /* Not set, detect it automatically, start with none */ operationMode |= SC_RA_RAM_OP_AUTO_HIER__M; transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_NO; if (state->type_A) { status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0000, 0x0000); if (status < 0) break; status = Write16(state, EC_SB_REG_ALPHA__A, 0x0000, 0x0000); if (status < 0) break; qpskTdTpsPwr = EQ_TD_TPS_PWR_QPSK; qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHAN; qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHAN; qpskIsGainMan = SC_RA_RAM_EQ_IS_GAIN_QPSK_MAN__PRE; qam16IsGainMan = SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE; qam64IsGainMan = SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE; qpskIsGainExp = SC_RA_RAM_EQ_IS_GAIN_QPSK_EXP__PRE; qam16IsGainExp = SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE; qam64IsGainExp = SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE; } break; } if (status < 0) break; switch (p->modulation) { default: operationMode |= SC_RA_RAM_OP_AUTO_CONST__M; fallthrough; /* try first guess DRX_CONSTELLATION_QAM64 */ case QAM_64: transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM64; if (state->type_A) { status = Write16(state, EQ_REG_OT_CONST__A, 0x0002, 0x0000); if (status < 0) break; status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_64QAM, 0x0000); if (status < 0) break; status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0020, 0x0000); if (status < 0) break; status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0008, 0x0000); if (status < 0) break; status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0002, 0x0000); if (status < 0) break; status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam64TdTpsPwr, 0x0000); if (status < 0) break; status = Write16(state, EQ_REG_SN_CEGAIN__A, qam64SnCeGain, 0x0000); if (status < 0) break; status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam64IsGainMan, 0x0000); if (status < 0) break; status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam64IsGainExp, 0x0000); if (status < 0) break; } break; case QPSK: transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QPSK; if (state->type_A) { status = Write16(state, EQ_REG_OT_CONST__A, 0x0000, 0x0000); if (status < 0) break; status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_QPSK, 0x0000); if (status < 0) break; status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000); if (status < 0) break; status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0000, 0x0000); if (status < 0) break; status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000); if (status < 0) break; status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qpskTdTpsPwr, 0x0000); if (status < 0) break; status = Write16(state, EQ_REG_SN_CEGAIN__A, qpskSnCeGain, 0x0000); if (status < 0) break; status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qpskIsGainMan, 0x0000); if (status < 0) break; status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qpskIsGainExp, 0x0000); if (status < 0) break; } break; case QAM_16: transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM16; if (state->type_A) { status = Write16(state, EQ_REG_OT_CONST__A, 0x0001, 0x0000); if (status < 0) break; status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_16QAM, 0x0000); if (status < 0) break; status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000); if (status < 0) break; status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0004, 0x0000); if (status < 0) break; status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000); if (status < 0) break; status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam16TdTpsPwr, 0x0000); if (status < 0) break; status = Write16(state, EQ_REG_SN_CEGAIN__A, qam16SnCeGain, 0x0000); if (status < 0) break; status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam16IsGainMan, 0x0000); if (status < 0) break; status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam16IsGainExp, 0x0000); if (status < 0) break; } break; } if (status < 0) break; switch (DRX_CHANNEL_HIGH) { default: case DRX_CHANNEL_AUTO: case DRX_CHANNEL_LOW: transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_LO; status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_LO, 0x0000); break; case DRX_CHANNEL_HIGH: transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_HI; status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_HI, 0x0000); break; } switch (p->code_rate_HP) { case FEC_1_2: transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_1_2; if (state->type_A) status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C1_2, 0x0000); break; default: operationMode |= SC_RA_RAM_OP_AUTO_RATE__M; fallthrough; case FEC_2_3: transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_2_3; if (state->type_A) status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C2_3, 0x0000); break; case FEC_3_4: transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_3_4; if (state->type_A) status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C3_4, 0x0000); break; case FEC_5_6: transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_5_6; if (state->type_A) status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C5_6, 0x0000); break; case FEC_7_8: transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_7_8; if (state->type_A) status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C7_8, 0x0000); break; } if (status < 0) break; /* First determine real bandwidth (Hz) */ /* Also set delay for impulse noise cruncher (only A2) */ /* Also set parameters for EC_OC fix, note EC_OC_REG_TMD_HIL_MAR is changed by SC for fix for some 8K,1/8 guard but is restored by InitEC and ResetEC functions */ switch (p->bandwidth_hz) { case 0: p->bandwidth_hz = 8000000; fallthrough; case 8000000: /* (64/7)*(8/8)*1000000 */ bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ; bandwidthParam = 0; status = Write16(state, FE_AG_REG_IND_DEL__A, 50, 0x0000); break; case 7000000: /* (64/7)*(7/8)*1000000 */ bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ; bandwidthParam = 0x4807; /*binary:0100 1000 0000 0111 */ status = Write16(state, FE_AG_REG_IND_DEL__A, 59, 0x0000); break; case 6000000: /* (64/7)*(6/8)*1000000 */ bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ; bandwidthParam = 0x0F07; /*binary: 0000 1111 0000 0111 */ status = Write16(state, FE_AG_REG_IND_DEL__A, 71, 0x0000); break; default: status = -EINVAL; } if (status < 0) break; status = Write16(state, SC_RA_RAM_BAND__A, bandwidthParam, 0x0000); if (status < 0) break; { u16 sc_config; status = Read16(state, SC_RA_RAM_CONFIG__A, &sc_config, 0); if (status < 0) break; /* enable SLAVE mode in 2k 1/32 to prevent timing change glitches */ if ((p->transmission_mode == TRANSMISSION_MODE_2K) && (p->guard_interval == GUARD_INTERVAL_1_32)) { /* enable slave */ sc_config |= SC_RA_RAM_CONFIG_SLAVE__M; } else { /* disable slave */ sc_config &= ~SC_RA_RAM_CONFIG_SLAVE__M; } status = Write16(state, SC_RA_RAM_CONFIG__A, sc_config, 0); if (status < 0) break; } status = SetCfgNoiseCalibration(state, &state->noise_cal); if (status < 0) break; if (state->cscd_state == CSCD_INIT) { /* switch on SRMM scan in SC */ status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DO_SCAN, 0x0000); if (status < 0) break; /* CHK_ERROR(Write16(SC_RA_RAM_SAMPLE_RATE_STEP__A, DRXD_OSCDEV_STEP, 0x0000));*/ state->cscd_state = CSCD_SET; } /* Now compute FE_IF_REG_INCR */ /*((( SysFreq/BandWidth)/2)/2) -1) * 2^23) => ((SysFreq / BandWidth) * (2^21) ) - (2^23) */ feIfIncr = MulDiv32(state->sys_clock_freq * 1000, (1ULL << 21), bandwidth) - (1 << 23); status = Write16(state, FE_IF_REG_INCR0__A, (u16) (feIfIncr & FE_IF_REG_INCR0__M), 0x0000); if (status < 0) break; status = Write16(state, FE_IF_REG_INCR1__A, (u16) ((feIfIncr >> FE_IF_REG_INCR0__W) & FE_IF_REG_INCR1__M), 0x0000); if (status < 0) break; /* Bandwidth setting done */ /* Mirror & frequency offset */ SetFrequencyShift(state, off, mirrorFreqSpect); /* Start SC, write channel settings to SC */ /* Enable SC after setting all other parameters */ status = Write16(state, SC_COMM_STATE__A, 0, 0x0000); if (status < 0) break; status = Write16(state, SC_COMM_EXEC__A, 1, 0x0000); if (status < 0) break; /* Write SC parameter registers, operation mode */ #if 1 operationMode = (SC_RA_RAM_OP_AUTO_MODE__M | SC_RA_RAM_OP_AUTO_GUARD__M | SC_RA_RAM_OP_AUTO_CONST__M | SC_RA_RAM_OP_AUTO_HIER__M | SC_RA_RAM_OP_AUTO_RATE__M); #endif status = SC_SetPrefParamCommand(state, 0x0000, transmissionParams, operationMode); if (status < 0) break; /* Start correct processes to get in lock */ status = SC_ProcStartCommand(state, SC_RA_RAM_PROC_LOCKTRACK, SC_RA_RAM_SW_EVENT_RUN_NMASK__M, SC_RA_RAM_LOCKTRACK_MIN); if (status < 0) break; status = StartOC(state); if (status < 0) break; if (state->operation_mode != OM_Default) { status = StartDiversity(state); if (status < 0) break; } state->drxd_state = DRXD_STARTED; } while (0); return status; } static int CDRXD(struct drxd_state *state, u32 IntermediateFrequency) { u32 ulRfAgcOutputLevel = 0xffffffff; u32 ulRfAgcSettleLevel = 528; /* Optimum value for MT2060 */ u32 ulRfAgcMinLevel = 0; /* Currently unused */ u32 ulRfAgcMaxLevel = DRXD_FE_CTRL_MAX; /* Currently unused */ u32 ulRfAgcSpeed = 0; /* Currently unused */ u32 ulRfAgcMode = 0; /*2; Off */ u32 ulRfAgcR1 = 820; u32 ulRfAgcR2 = 2200; u32 ulRfAgcR3 = 150; u32 ulIfAgcMode = 0; /* Auto */ u32 ulIfAgcOutputLevel = 0xffffffff; u32 ulIfAgcSettleLevel = 0xffffffff; u32 ulIfAgcMinLevel = 0xffffffff; u32 ulIfAgcMaxLevel = 0xffffffff; u32 ulIfAgcSpeed = 0xffffffff; u32 ulIfAgcR1 = 820; u32 ulIfAgcR2 = 2200; u32 ulIfAgcR3 = 150; u32 ulClock = state->config.clock; u32 ulSerialMode = 0; u32 ulEcOcRegOcModeLop = 4; /* Dynamic DTO source */ u32 ulHiI2cDelay = HI_I2C_DELAY; u32 ulHiI2cBridgeDelay = HI_I2C_BRIDGE_DELAY; u32 ulHiI2cPatch = 0; u32 ulEnvironment = APPENV_PORTABLE; u32 ulEnvironmentDiversity = APPENV_MOBILE; u32 ulIFFilter = IFFILTER_SAW; state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO; state->if_agc_cfg.outputLevel = 0; state->if_agc_cfg.settleLevel = 140; state->if_agc_cfg.minOutputLevel = 0; state->if_agc_cfg.maxOutputLevel = 1023; state->if_agc_cfg.speed = 904; if (ulIfAgcMode == 1 && ulIfAgcOutputLevel <= DRXD_FE_CTRL_MAX) { state->if_agc_cfg.ctrlMode = AGC_CTRL_USER; state->if_agc_cfg.outputLevel = (u16) (ulIfAgcOutputLevel); } if (ulIfAgcMode == 0 && ulIfAgcSettleLevel <= DRXD_FE_CTRL_MAX && ulIfAgcMinLevel <= DRXD_FE_CTRL_MAX && ulIfAgcMaxLevel <= DRXD_FE_CTRL_MAX && ulIfAgcSpeed <= DRXD_FE_CTRL_MAX) { state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO; state->if_agc_cfg.settleLevel = (u16) (ulIfAgcSettleLevel); state->if_agc_cfg.minOutputLevel = (u16) (ulIfAgcMinLevel); state->if_agc_cfg.maxOutputLevel = (u16) (ulIfAgcMaxLevel); state->if_agc_cfg.speed = (u16) (ulIfAgcSpeed); } state->if_agc_cfg.R1 = (u16) (ulIfAgcR1); state->if_agc_cfg.R2 = (u16) (ulIfAgcR2); state->if_agc_cfg.R3 = (u16) (ulIfAgcR3); state->rf_agc_cfg.R1 = (u16) (ulRfAgcR1); state->rf_agc_cfg.R2 = (u16) (ulRfAgcR2); state->rf_agc_cfg.R3 = (u16) (ulRfAgcR3); state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO; /* rest of the RFAgcCfg structure currently unused */ if (ulRfAgcMode == 1 && ulRfAgcOutputLevel <= DRXD_FE_CTRL_MAX) { state->rf_agc_cfg.ctrlMode = AGC_CTRL_USER; state->rf_agc_cfg.outputLevel = (u16) (ulRfAgcOutputLevel); } if (ulRfAgcMode == 0 && ulRfAgcSettleLevel <= DRXD_FE_CTRL_MAX && ulRfAgcMinLevel <= DRXD_FE_CTRL_MAX && ulRfAgcMaxLevel <= DRXD_FE_CTRL_MAX && ulRfAgcSpeed <= DRXD_FE_CTRL_MAX) { state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO; state->rf_agc_cfg.settleLevel = (u16) (ulRfAgcSettleLevel); state->rf_agc_cfg.minOutputLevel = (u16) (ulRfAgcMinLevel); state->rf_agc_cfg.maxOutputLevel = (u16) (ulRfAgcMaxLevel); state->rf_agc_cfg.speed = (u16) (ulRfAgcSpeed); } if (ulRfAgcMode == 2) state->rf_agc_cfg.ctrlMode = AGC_CTRL_OFF; if (ulEnvironment <= 2) state->app_env_default = (enum app_env) (ulEnvironment); if (ulEnvironmentDiversity <= 2) state->app_env_diversity = (enum app_env) (ulEnvironmentDiversity); if (ulIFFilter == IFFILTER_DISCRETE) { /* discrete filter */ state->noise_cal.cpOpt = 0; state->noise_cal.cpNexpOfs = 40; state->noise_cal.tdCal2k = -40; state->noise_cal.tdCal8k = -24; } else { /* SAW filter */ state->noise_cal.cpOpt = 1; state->noise_cal.cpNexpOfs = 0; state->noise_cal.tdCal2k = -21; state->noise_cal.tdCal8k = -24; } state->m_EcOcRegOcModeLop = (u16) (ulEcOcRegOcModeLop); state->chip_adr = (state->config.demod_address << 1) | 1; switch (ulHiI2cPatch) { case 1: state->m_HiI2cPatch = DRXD_HiI2cPatch_1; break; case 3: state->m_HiI2cPatch = DRXD_HiI2cPatch_3; break; default: state->m_HiI2cPatch = NULL; } /* modify tuner and clock attributes */ state->intermediate_freq = (u16) (IntermediateFrequency / 1000); /* expected system clock frequency in kHz */ state->expected_sys_clock_freq = 48000; /* real system clock frequency in kHz */ state->sys_clock_freq = 48000; state->osc_clock_freq = (u16) ulClock; state->osc_clock_deviation = 0; state->cscd_state = CSCD_INIT; state->drxd_state = DRXD_UNINITIALIZED; state->PGA = 0; state->type_A = 0; state->tuner_mirrors = 0; /* modify MPEG output attributes */ state->insert_rs_byte = state->config.insert_rs_byte; state->enable_parallel = (ulSerialMode != 1); /* Timing div, 250ns/Psys */ /* Timing div, = ( delay (nano seconds) * sysclk (kHz) )/ 1000 */ state->hi_cfg_timing_div = (u16) ((state->sys_clock_freq / 1000) * ulHiI2cDelay) / 1000; /* Bridge delay, uses oscilator clock */ /* Delay = ( delay (nano seconds) * oscclk (kHz) )/ 1000 */ state->hi_cfg_bridge_delay = (u16) ((state->osc_clock_freq / 1000) * ulHiI2cBridgeDelay) / 1000; state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER; /* state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; */ state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO; return 0; } static int DRXD_init(struct drxd_state *state, const u8 *fw, u32 fw_size) { int status = 0; u32 driverVersion; if (state->init_done) return 0; CDRXD(state, state->config.IF ? state->config.IF : 36000000); do { state->operation_mode = OM_Default; status = SetDeviceTypeId(state); if (status < 0) break; /* Apply I2c address patch to B1 */ if (!state->type_A && state->m_HiI2cPatch) { status = WriteTable(state, state->m_HiI2cPatch); if (status < 0) break; } if (state->type_A) { /* HI firmware patch for UIO readout, avoid clearing of result register */ status = Write16(state, 0x43012D, 0x047f, 0); if (status < 0) break; } status = HI_ResetCommand(state); if (status < 0) break; status = StopAllProcessors(state); if (status < 0) break; status = InitCC(state); if (status < 0) break; state->osc_clock_deviation = 0; if (state->config.osc_deviation) state->osc_clock_deviation = state->config.osc_deviation(state->priv, 0, 0); { /* Handle clock deviation */ s32 devB; s32 devA = (s32) (state->osc_clock_deviation) * (s32) (state->expected_sys_clock_freq); /* deviation in kHz */ s32 deviation = (devA / (1000000L)); /* rounding, signed */ if (devA > 0) devB = (2); else devB = (-2); if ((devB * (devA % 1000000L) > 1000000L)) { /* add +1 or -1 */ deviation += (devB / 2); } state->sys_clock_freq = (u16) ((state->expected_sys_clock_freq) + deviation); } status = InitHI(state); if (status < 0) break; status = InitAtomicRead(state); if (status < 0) break; status = EnableAndResetMB(state); if (status < 0) break; if (state->type_A) { status = ResetCEFR(state); if (status < 0) break; } if (fw) { status = DownloadMicrocode(state, fw, fw_size); if (status < 0) break; } else { status = DownloadMicrocode(state, state->microcode, state->microcode_length); if (status < 0) break; } if (state->PGA) { state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; SetCfgPga(state, 0); /* PGA = 0 dB */ } else { state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER; } state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO; status = InitFE(state); if (status < 0) break; status = InitFT(state); if (status < 0) break; status = InitCP(state); if (status < 0) break; status = InitCE(state); if (status < 0) break; status = InitEQ(state); if (status < 0) break; status = InitEC(state); if (status < 0) break; status = InitSC(state); if (status < 0) break; status = SetCfgIfAgc(state, &state->if_agc_cfg); if (status < 0) break; status = SetCfgRfAgc(state, &state->rf_agc_cfg); if (status < 0) break; state->cscd_state = CSCD_INIT; status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); if (status < 0) break; status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0); if (status < 0) break; driverVersion = (((VERSION_MAJOR / 10) << 4) + (VERSION_MAJOR % 10)) << 24; driverVersion += (((VERSION_MINOR / 10) << 4) + (VERSION_MINOR % 10)) << 16; driverVersion += ((VERSION_PATCH / 1000) << 12) + ((VERSION_PATCH / 100) << 8) + ((VERSION_PATCH / 10) << 4) + (VERSION_PATCH % 10); status = Write32(state, SC_RA_RAM_DRIVER_VERSION__AX, driverVersion, 0); if (status < 0) break; status = StopOC(state); if (status < 0) break; state->drxd_state = DRXD_STOPPED; state->init_done = 1; status = 0; } while (0); return status; } static int DRXD_status(struct drxd_state *state, u32 *pLockStatus) { DRX_GetLockStatus(state, pLockStatus); /*if (*pLockStatus&DRX_LOCK_MPEG) */ if (*pLockStatus & DRX_LOCK_FEC) { ConfigureMPEGOutput(state, 1); /* Get status again, in case we have MPEG lock now */ /*DRX_GetLockStatus(state, pLockStatus); */ } return 0; } /****************************************************************************/ /****************************************************************************/ /****************************************************************************/ static int drxd_read_signal_strength(struct dvb_frontend *fe, u16 * strength) { struct drxd_state *state = fe->demodulator_priv; u32 value; int res; res = ReadIFAgc(state, &value); if (res < 0) *strength = 0; else *strength = 0xffff - (value << 4); return 0; } static int drxd_read_status(struct dvb_frontend *fe, enum fe_status *status) { struct drxd_state *state = fe->demodulator_priv; u32 lock; DRXD_status(state, &lock); *status = 0; /* No MPEG lock in V255 firmware, bug ? */ #if 1 if (lock & DRX_LOCK_MPEG) *status |= FE_HAS_LOCK; #else if (lock & DRX_LOCK_FEC) *status |= FE_HAS_LOCK; #endif if (lock & DRX_LOCK_FEC) *status |= FE_HAS_VITERBI | FE_HAS_SYNC; if (lock & DRX_LOCK_DEMOD) *status |= FE_HAS_CARRIER | FE_HAS_SIGNAL; return 0; } static int drxd_init(struct dvb_frontend *fe) { struct drxd_state *state = fe->demodulator_priv; return DRXD_init(state, NULL, 0); } static int drxd_config_i2c(struct dvb_frontend *fe, int onoff) { struct drxd_state *state = fe->demodulator_priv; if (state->config.disable_i2c_gate_ctrl == 1) return 0; return DRX_ConfigureI2CBridge(state, onoff); } static int drxd_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *sets) { sets->min_delay_ms = 10000; sets->max_drift = 0; sets->step_size = 0; return 0; } static int drxd_read_ber(struct dvb_frontend *fe, u32 * ber) { *ber = 0; return 0; } static int drxd_read_snr(struct dvb_frontend *fe, u16 * snr) { *snr = 0; return 0; } static int drxd_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks) { *ucblocks = 0; return 0; } static int drxd_sleep(struct dvb_frontend *fe) { struct drxd_state *state = fe->demodulator_priv; ConfigureMPEGOutput(state, 0); return 0; } static int drxd_i2c_gate_ctrl(struct dvb_frontend *fe, int enable) { return drxd_config_i2c(fe, enable); } static int drxd_set_frontend(struct dvb_frontend *fe) { struct dtv_frontend_properties *p = &fe->dtv_property_cache; struct drxd_state *state = fe->demodulator_priv; s32 off = 0; state->props = *p; DRX_Stop(state); if (fe->ops.tuner_ops.set_params) { fe->ops.tuner_ops.set_params(fe); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); } msleep(200); return DRX_Start(state, off); } static void drxd_release(struct dvb_frontend *fe) { struct drxd_state *state = fe->demodulator_priv; kfree(state); } static const struct dvb_frontend_ops drxd_ops = { .delsys = { SYS_DVBT}, .info = { .name = "Micronas DRXD DVB-T", .frequency_min_hz = 47125 * kHz, .frequency_max_hz = 855250 * kHz, .frequency_stepsize_hz = 166667, .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS}, .release = drxd_release, .init = drxd_init, .sleep = drxd_sleep, .i2c_gate_ctrl = drxd_i2c_gate_ctrl, .set_frontend = drxd_set_frontend, .get_tune_settings = drxd_get_tune_settings, .read_status = drxd_read_status, .read_ber = drxd_read_ber, .read_signal_strength = drxd_read_signal_strength, .read_snr = drxd_read_snr, .read_ucblocks = drxd_read_ucblocks, }; struct dvb_frontend *drxd_attach(const struct drxd_config *config, void *priv, struct i2c_adapter *i2c, struct device *dev) { struct drxd_state *state = NULL; state = kzalloc(sizeof(*state), GFP_KERNEL); if (!state) return NULL; state->ops = drxd_ops; state->dev = dev; state->config = *config; state->i2c = i2c; state->priv = priv; mutex_init(&state->mutex); if (Read16(state, 0, NULL, 0) < 0) goto error; state->frontend.ops = drxd_ops; state->frontend.demodulator_priv = state; ConfigureMPEGOutput(state, 0); /* add few initialization to allow gate control */ CDRXD(state, state->config.IF ? state->config.IF : 36000000); InitHI(state); return &state->frontend; error: printk(KERN_ERR "drxd: not found\n"); kfree(state); return NULL; } EXPORT_SYMBOL_GPL(drxd_attach); MODULE_DESCRIPTION("DRXD driver"); MODULE_AUTHOR("Micronas"); MODULE_LICENSE("GPL");