// SPDX-License-Identifier: GPL-2.0-or-later /* * Support for LGDT3302 and LGDT3303 - VSB/QAM * * Copyright (C) 2005 Wilson Michaels */ /* * NOTES ABOUT THIS DRIVER * * This Linux driver supports: * DViCO FusionHDTV 3 Gold-Q * DViCO FusionHDTV 3 Gold-T * DViCO FusionHDTV 5 Gold * DViCO FusionHDTV 5 Lite * DViCO FusionHDTV 5 USB Gold * Air2PC/AirStar 2 ATSC 3rd generation (HD5000) * pcHDTV HD5500 * */ #include #include #include #include #include #include #include #include #include #include "lgdt330x_priv.h" #include "lgdt330x.h" /* Use Equalizer Mean Squared Error instead of Phaser Tracker MSE */ /* #define USE_EQMSE */ static int debug; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "Turn on/off lgdt330x frontend debugging (default:off)."); #define dprintk(state, fmt, arg...) do { \ if (debug) \ dev_printk(KERN_DEBUG, &state->client->dev, fmt, ##arg);\ } while (0) struct lgdt330x_state { struct i2c_client *client; /* Configuration settings */ struct lgdt330x_config config; struct dvb_frontend frontend; /* Demodulator private data */ enum fe_modulation current_modulation; u32 snr; /* Result of last SNR calculation */ u16 ucblocks; unsigned long last_stats_time; /* Tuner private data */ u32 current_frequency; }; static int i2c_write_demod_bytes(struct lgdt330x_state *state, const u8 *buf, /* data bytes to send */ int len /* number of bytes to send */) { int i; int err; for (i = 0; i < len - 1; i += 2) { err = i2c_master_send(state->client, buf, 2); if (err != 2) { dev_warn(&state->client->dev, "%s: error (addr %02x <- %02x, err = %i)\n", __func__, buf[0], buf[1], err); if (err < 0) return err; else return -EREMOTEIO; } buf += 2; } return 0; } /* * This routine writes the register (reg) to the demod bus * then reads the data returned for (len) bytes. */ static int i2c_read_demod_bytes(struct lgdt330x_state *state, enum I2C_REG reg, u8 *buf, int len) { u8 wr[] = { reg }; struct i2c_msg msg[] = { { .addr = state->client->addr, .flags = 0, .buf = wr, .len = 1 }, { .addr = state->client->addr, .flags = I2C_M_RD, .buf = buf, .len = len }, }; int ret; ret = i2c_transfer(state->client->adapter, msg, 2); if (ret != 2) { dev_warn(&state->client->dev, "%s: addr 0x%02x select 0x%02x error (ret == %i)\n", __func__, state->client->addr, reg, ret); if (ret >= 0) ret = -EIO; } else { ret = 0; } return ret; } /* Software reset */ static int lgdt3302_sw_reset(struct lgdt330x_state *state) { u8 ret; u8 reset[] = { IRQ_MASK, /* * bit 6 is active low software reset * bits 5-0 are 1 to mask interrupts */ 0x00 }; ret = i2c_write_demod_bytes(state, reset, sizeof(reset)); if (ret == 0) { /* force reset high (inactive) and unmask interrupts */ reset[1] = 0x7f; ret = i2c_write_demod_bytes(state, reset, sizeof(reset)); } return ret; } static int lgdt3303_sw_reset(struct lgdt330x_state *state) { u8 ret; u8 reset[] = { 0x02, 0x00 /* bit 0 is active low software reset */ }; ret = i2c_write_demod_bytes(state, reset, sizeof(reset)); if (ret == 0) { /* force reset high (inactive) */ reset[1] = 0x01; ret = i2c_write_demod_bytes(state, reset, sizeof(reset)); } return ret; } static int lgdt330x_sw_reset(struct lgdt330x_state *state) { switch (state->config.demod_chip) { case LGDT3302: return lgdt3302_sw_reset(state); case LGDT3303: return lgdt3303_sw_reset(state); default: return -ENODEV; } } static int lgdt330x_init(struct dvb_frontend *fe) { struct lgdt330x_state *state = fe->demodulator_priv; struct dtv_frontend_properties *p = &fe->dtv_property_cache; char *chip_name; int err; /* * Array of byte pairs * to initialize each different chip */ static const u8 lgdt3302_init_data[] = { /* Use 50MHz param values from spec sheet since xtal is 50 */ /* * Change the value of NCOCTFV[25:0] of carrier * recovery center frequency register */ VSB_CARRIER_FREQ0, 0x00, VSB_CARRIER_FREQ1, 0x87, VSB_CARRIER_FREQ2, 0x8e, VSB_CARRIER_FREQ3, 0x01, /* * Change the TPCLK pin polarity * data is valid on falling clock */ DEMUX_CONTROL, 0xfb, /* * Change the value of IFBW[11:0] of * AGC IF/RF loop filter bandwidth register */ AGC_RF_BANDWIDTH0, 0x40, AGC_RF_BANDWIDTH1, 0x93, AGC_RF_BANDWIDTH2, 0x00, /* * Change the value of bit 6, 'nINAGCBY' and * 'NSSEL[1:0] of ACG function control register 2 */ AGC_FUNC_CTRL2, 0xc6, /* * Change the value of bit 6 'RFFIX' * of AGC function control register 3 */ AGC_FUNC_CTRL3, 0x40, /* * Set the value of 'INLVTHD' register 0x2a/0x2c * to 0x7fe */ AGC_DELAY0, 0x07, AGC_DELAY2, 0xfe, /* * Change the value of IAGCBW[15:8] * of inner AGC loop filter bandwidth */ AGC_LOOP_BANDWIDTH0, 0x08, AGC_LOOP_BANDWIDTH1, 0x9a }; static const u8 lgdt3303_init_data[] = { 0x4c, 0x14 }; static const u8 flip_1_lgdt3303_init_data[] = { 0x4c, 0x14, 0x87, 0xf3 }; static const u8 flip_2_lgdt3303_init_data[] = { 0x4c, 0x14, 0x87, 0xda }; /* * Hardware reset is done using gpio[0] of cx23880x chip. * I'd like to do it here, but don't know how to find chip address. * cx88-cards.c arranges for the reset bit to be inactive (high). * Maybe there needs to be a callable function in cx88-core or * the caller of this function needs to do it. */ switch (state->config.demod_chip) { case LGDT3302: chip_name = "LGDT3302"; err = i2c_write_demod_bytes(state, lgdt3302_init_data, sizeof(lgdt3302_init_data)); break; case LGDT3303: chip_name = "LGDT3303"; switch (state->config.clock_polarity_flip) { case 2: err = i2c_write_demod_bytes(state, flip_2_lgdt3303_init_data, sizeof(flip_2_lgdt3303_init_data)); break; case 1: err = i2c_write_demod_bytes(state, flip_1_lgdt3303_init_data, sizeof(flip_1_lgdt3303_init_data)); break; case 0: default: err = i2c_write_demod_bytes(state, lgdt3303_init_data, sizeof(lgdt3303_init_data)); } break; default: chip_name = "undefined"; dev_warn(&state->client->dev, "Only LGDT3302 and LGDT3303 are supported chips.\n"); err = -ENODEV; } dprintk(state, "Initialized the %s chip\n", chip_name); if (err < 0) return err; p->cnr.len = 1; p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; p->block_error.len = 1; p->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; p->block_count.len = 1; p->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; state->last_stats_time = 0; return lgdt330x_sw_reset(state); } static int lgdt330x_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks) { struct lgdt330x_state *state = fe->demodulator_priv; *ucblocks = state->ucblocks; return 0; } static int lgdt330x_set_parameters(struct dvb_frontend *fe) { struct dtv_frontend_properties *p = &fe->dtv_property_cache; struct lgdt330x_state *state = fe->demodulator_priv; /* * Array of byte pairs * to initialize 8VSB for lgdt3303 chip 50 MHz IF */ static const u8 lgdt3303_8vsb_44_data[] = { 0x04, 0x00, 0x0d, 0x40, 0x0e, 0x87, 0x0f, 0x8e, 0x10, 0x01, 0x47, 0x8b }; /* * Array of byte pairs * to initialize QAM for lgdt3303 chip */ static const u8 lgdt3303_qam_data[] = { 0x04, 0x00, 0x0d, 0x00, 0x0e, 0x00, 0x0f, 0x00, 0x10, 0x00, 0x51, 0x63, 0x47, 0x66, 0x48, 0x66, 0x4d, 0x1a, 0x49, 0x08, 0x4a, 0x9b }; u8 top_ctrl_cfg[] = { TOP_CONTROL, 0x03 }; int err = 0; /* Change only if we are actually changing the modulation */ if (state->current_modulation != p->modulation) { switch (p->modulation) { case VSB_8: dprintk(state, "VSB_8 MODE\n"); /* Select VSB mode */ top_ctrl_cfg[1] = 0x03; /* Select ANT connector if supported by card */ if (state->config.pll_rf_set) state->config.pll_rf_set(fe, 1); if (state->config.demod_chip == LGDT3303) { err = i2c_write_demod_bytes(state, lgdt3303_8vsb_44_data, sizeof(lgdt3303_8vsb_44_data)); } break; case QAM_64: dprintk(state, "QAM_64 MODE\n"); /* Select QAM_64 mode */ top_ctrl_cfg[1] = 0x00; /* Select CABLE connector if supported by card */ if (state->config.pll_rf_set) state->config.pll_rf_set(fe, 0); if (state->config.demod_chip == LGDT3303) { err = i2c_write_demod_bytes(state, lgdt3303_qam_data, sizeof(lgdt3303_qam_data)); } break; case QAM_256: dprintk(state, "QAM_256 MODE\n"); /* Select QAM_256 mode */ top_ctrl_cfg[1] = 0x01; /* Select CABLE connector if supported by card */ if (state->config.pll_rf_set) state->config.pll_rf_set(fe, 0); if (state->config.demod_chip == LGDT3303) { err = i2c_write_demod_bytes(state, lgdt3303_qam_data, sizeof(lgdt3303_qam_data)); } break; default: dev_warn(&state->client->dev, "%s: Modulation type(%d) UNSUPPORTED\n", __func__, p->modulation); return -1; } if (err < 0) dev_warn(&state->client->dev, "%s: error blasting bytes to lgdt3303 for modulation type(%d)\n", __func__, p->modulation); /* * select serial or parallel MPEG hardware interface * Serial: 0x04 for LGDT3302 or 0x40 for LGDT3303 * Parallel: 0x00 */ top_ctrl_cfg[1] |= state->config.serial_mpeg; /* Select the requested mode */ i2c_write_demod_bytes(state, top_ctrl_cfg, sizeof(top_ctrl_cfg)); if (state->config.set_ts_params) state->config.set_ts_params(fe, 0); state->current_modulation = p->modulation; } /* Tune to the specified frequency */ if (fe->ops.tuner_ops.set_params) { fe->ops.tuner_ops.set_params(fe); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); } /* Keep track of the new frequency */ /* * FIXME this is the wrong way to do this... * The tuner is shared with the video4linux analog API */ state->current_frequency = p->frequency; lgdt330x_sw_reset(state); return 0; } static int lgdt330x_get_frontend(struct dvb_frontend *fe, struct dtv_frontend_properties *p) { struct lgdt330x_state *state = fe->demodulator_priv; p->frequency = state->current_frequency; return 0; } /* * Calculate SNR estimation (scaled by 2^24) * * 8-VSB SNR equations from LGDT3302 and LGDT3303 datasheets, QAM * equations from LGDT3303 datasheet. VSB is the same between the '02 * and '03, so maybe QAM is too? Perhaps someone with a newer datasheet * that has QAM information could verify? * * For 8-VSB: (two ways, take your pick) * LGDT3302: * SNR_EQ = 10 * log10(25 * 24^2 / EQ_MSE) * LGDT3303: * SNR_EQ = 10 * log10(25 * 32^2 / EQ_MSE) * LGDT3302 & LGDT3303: * SNR_PT = 10 * log10(25 * 32^2 / PT_MSE) (we use this one) * For 64-QAM: * SNR = 10 * log10( 688128 / MSEQAM) * For 256-QAM: * SNR = 10 * log10( 696320 / MSEQAM) * * We re-write the snr equation as: * SNR * 2^24 = 10*(c - intlog10(MSE)) * Where for 256-QAM, c = log10(696320) * 2^24, and so on. */ static u32 calculate_snr(u32 mse, u32 c) { if (mse == 0) /* No signal */ return 0; mse = intlog10(mse); if (mse > c) { /* * Negative SNR, which is possible, but realisticly the * demod will lose lock before the signal gets this bad. * The API only allows for unsigned values, so just return 0 */ return 0; } return 10 * (c - mse); } static int lgdt3302_read_snr(struct dvb_frontend *fe) { struct lgdt330x_state *state = fe->demodulator_priv; u8 buf[5]; /* read data buffer */ u32 noise; /* noise value */ u32 c; /* per-modulation SNR calculation constant */ switch (state->current_modulation) { case VSB_8: i2c_read_demod_bytes(state, LGDT3302_EQPH_ERR0, buf, 5); #ifdef USE_EQMSE /* Use Equalizer Mean-Square Error Register */ /* SNR for ranges from -15.61 to +41.58 */ noise = ((buf[0] & 7) << 16) | (buf[1] << 8) | buf[2]; c = 69765745; /* log10(25*24^2)*2^24 */ #else /* Use Phase Tracker Mean-Square Error Register */ /* SNR for ranges from -13.11 to +44.08 */ noise = ((buf[0] & 7 << 3) << 13) | (buf[3] << 8) | buf[4]; c = 73957994; /* log10(25*32^2)*2^24 */ #endif break; case QAM_64: case QAM_256: i2c_read_demod_bytes(state, CARRIER_MSEQAM1, buf, 2); noise = ((buf[0] & 3) << 8) | buf[1]; c = state->current_modulation == QAM_64 ? 97939837 : 98026066; /* log10(688128)*2^24 and log10(696320)*2^24 */ break; default: dev_err(&state->client->dev, "%s: Modulation set to unsupported value\n", __func__); state->snr = 0; return -EREMOTEIO; /* return -EDRIVER_IS_GIBBERED; */ } state->snr = calculate_snr(noise, c); dprintk(state, "noise = 0x%08x, snr = %d.%02d dB\n", noise, state->snr >> 24, (((state->snr >> 8) & 0xffff) * 100) >> 16); return 0; } static int lgdt3303_read_snr(struct dvb_frontend *fe) { struct lgdt330x_state *state = fe->demodulator_priv; u8 buf[5]; /* read data buffer */ u32 noise; /* noise value */ u32 c; /* per-modulation SNR calculation constant */ switch (state->current_modulation) { case VSB_8: i2c_read_demod_bytes(state, LGDT3303_EQPH_ERR0, buf, 5); #ifdef USE_EQMSE /* Use Equalizer Mean-Square Error Register */ /* SNR for ranges from -16.12 to +44.08 */ noise = ((buf[0] & 0x78) << 13) | (buf[1] << 8) | buf[2]; c = 73957994; /* log10(25*32^2)*2^24 */ #else /* Use Phase Tracker Mean-Square Error Register */ /* SNR for ranges from -13.11 to +44.08 */ noise = ((buf[0] & 7) << 16) | (buf[3] << 8) | buf[4]; c = 73957994; /* log10(25*32^2)*2^24 */ #endif break; case QAM_64: case QAM_256: i2c_read_demod_bytes(state, CARRIER_MSEQAM1, buf, 2); noise = (buf[0] << 8) | buf[1]; c = state->current_modulation == QAM_64 ? 97939837 : 98026066; /* log10(688128)*2^24 and log10(696320)*2^24 */ break; default: dev_err(&state->client->dev, "%s: Modulation set to unsupported value\n", __func__); state->snr = 0; return -EREMOTEIO; /* return -EDRIVER_IS_GIBBERED; */ } state->snr = calculate_snr(noise, c); dprintk(state, "noise = 0x%08x, snr = %d.%02d dB\n", noise, state->snr >> 24, (((state->snr >> 8) & 0xffff) * 100) >> 16); return 0; } static int lgdt330x_read_snr(struct dvb_frontend *fe, u16 *snr) { struct lgdt330x_state *state = fe->demodulator_priv; *snr = (state->snr) >> 16; /* Convert from 8.24 fixed-point to 8.8 */ return 0; } static int lgdt330x_read_signal_strength(struct dvb_frontend *fe, u16 *strength) { /* Calculate Strength from SNR up to 35dB */ /* * Even though the SNR can go higher than 35dB, there is some comfort * factor in having a range of strong signals that can show at 100% */ struct lgdt330x_state *state = fe->demodulator_priv; u16 snr; int ret; ret = fe->ops.read_snr(fe, &snr); if (ret != 0) return ret; /* Rather than use the 8.8 value snr, use state->snr which is 8.24 */ /* scale the range 0 - 35*2^24 into 0 - 65535 */ if (state->snr >= 8960 * 0x10000) *strength = 0xffff; else *strength = state->snr / 8960; return 0; } static int lgdt3302_read_status(struct dvb_frontend *fe, enum fe_status *status) { struct lgdt330x_state *state = fe->demodulator_priv; struct dtv_frontend_properties *p = &fe->dtv_property_cache; u8 buf[3]; int err; *status = 0; /* Reset status result */ /* AGC status register */ i2c_read_demod_bytes(state, AGC_STATUS, buf, 1); dprintk(state, "AGC_STATUS = 0x%02x\n", buf[0]); if ((buf[0] & 0x0c) == 0x8) { /* * Test signal does not exist flag * as well as the AGC lock flag. */ *status |= FE_HAS_SIGNAL; } /* * You must set the Mask bits to 1 in the IRQ_MASK in order * to see that status bit in the IRQ_STATUS register. * This is done in SwReset(); */ /* signal status */ i2c_read_demod_bytes(state, TOP_CONTROL, buf, sizeof(buf)); dprintk(state, "TOP_CONTROL = 0x%02x, IRO_MASK = 0x%02x, IRQ_STATUS = 0x%02x\n", buf[0], buf[1], buf[2]); /* sync status */ if ((buf[2] & 0x03) == 0x01) *status |= FE_HAS_SYNC; /* FEC error status */ if ((buf[2] & 0x0c) == 0x08) *status |= FE_HAS_LOCK | FE_HAS_VITERBI; /* Carrier Recovery Lock Status Register */ i2c_read_demod_bytes(state, CARRIER_LOCK, buf, 1); dprintk(state, "CARRIER_LOCK = 0x%02x\n", buf[0]); switch (state->current_modulation) { case QAM_256: case QAM_64: /* Need to understand why there are 3 lock levels here */ if ((buf[0] & 0x07) == 0x07) *status |= FE_HAS_CARRIER; break; case VSB_8: if ((buf[0] & 0x80) == 0x80) *status |= FE_HAS_CARRIER; break; default: dev_warn(&state->client->dev, "%s: Modulation set to unsupported value\n", __func__); } if (!(*status & FE_HAS_LOCK)) { p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; p->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; p->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; return 0; } if (state->last_stats_time && time_is_after_jiffies(state->last_stats_time)) return 0; state->last_stats_time = jiffies + msecs_to_jiffies(1000); err = lgdt3302_read_snr(fe); if (!err) { p->cnr.stat[0].scale = FE_SCALE_DECIBEL; p->cnr.stat[0].svalue = (((u64)state->snr) * 1000) >> 24; } else { p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; } err = i2c_read_demod_bytes(state, LGDT3302_PACKET_ERR_COUNTER1, buf, sizeof(buf)); if (!err) { state->ucblocks = (buf[0] << 8) | buf[1]; dprintk(state, "UCB = 0x%02x\n", state->ucblocks); p->block_error.stat[0].uvalue += state->ucblocks; /* FIXME: what's the basis for block count */ p->block_count.stat[0].uvalue += 10000; p->block_error.stat[0].scale = FE_SCALE_COUNTER; p->block_count.stat[0].scale = FE_SCALE_COUNTER; } else { p->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; p->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; } return 0; } static int lgdt3303_read_status(struct dvb_frontend *fe, enum fe_status *status) { struct lgdt330x_state *state = fe->demodulator_priv; struct dtv_frontend_properties *p = &fe->dtv_property_cache; u8 buf[3]; int err; *status = 0; /* Reset status result */ /* lgdt3303 AGC status register */ err = i2c_read_demod_bytes(state, 0x58, buf, 1); if (err < 0) return err; dprintk(state, "AGC_STATUS = 0x%02x\n", buf[0]); if ((buf[0] & 0x21) == 0x01) { /* * Test input signal does not exist flag * as well as the AGC lock flag. */ *status |= FE_HAS_SIGNAL; } /* Carrier Recovery Lock Status Register */ i2c_read_demod_bytes(state, CARRIER_LOCK, buf, 1); dprintk(state, "CARRIER_LOCK = 0x%02x\n", buf[0]); switch (state->current_modulation) { case QAM_256: case QAM_64: /* Need to understand why there are 3 lock levels here */ if ((buf[0] & 0x07) == 0x07) *status |= FE_HAS_CARRIER; else break; i2c_read_demod_bytes(state, 0x8a, buf, 1); dprintk(state, "QAM LOCK = 0x%02x\n", buf[0]); if ((buf[0] & 0x04) == 0x04) *status |= FE_HAS_SYNC; if ((buf[0] & 0x01) == 0x01) *status |= FE_HAS_LOCK; if ((buf[0] & 0x08) == 0x08) *status |= FE_HAS_VITERBI; break; case VSB_8: if ((buf[0] & 0x80) == 0x80) *status |= FE_HAS_CARRIER; else break; i2c_read_demod_bytes(state, 0x38, buf, 1); dprintk(state, "8-VSB LOCK = 0x%02x\n", buf[0]); if ((buf[0] & 0x02) == 0x00) *status |= FE_HAS_SYNC; if ((buf[0] & 0x01) == 0x01) *status |= FE_HAS_VITERBI | FE_HAS_LOCK; break; default: dev_warn(&state->client->dev, "%s: Modulation set to unsupported value\n", __func__); } if (!(*status & FE_HAS_LOCK)) { p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; p->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; p->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; return 0; } if (state->last_stats_time && time_is_after_jiffies(state->last_stats_time)) return 0; state->last_stats_time = jiffies + msecs_to_jiffies(1000); err = lgdt3303_read_snr(fe); if (!err) { p->cnr.stat[0].scale = FE_SCALE_DECIBEL; p->cnr.stat[0].svalue = (((u64)state->snr) * 1000) >> 24; } else { p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; } err = i2c_read_demod_bytes(state, LGDT3303_PACKET_ERR_COUNTER1, buf, sizeof(buf)); if (!err) { state->ucblocks = (buf[0] << 8) | buf[1]; dprintk(state, "UCB = 0x%02x\n", state->ucblocks); p->block_error.stat[0].uvalue += state->ucblocks; /* FIXME: what's the basis for block count */ p->block_count.stat[0].uvalue += 10000; p->block_error.stat[0].scale = FE_SCALE_COUNTER; p->block_count.stat[0].scale = FE_SCALE_COUNTER; } else { p->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; p->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; } return 0; } static int lgdt330x_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *fe_tune_settings) { /* I have no idea about this - it may not be needed */ fe_tune_settings->min_delay_ms = 500; fe_tune_settings->step_size = 0; fe_tune_settings->max_drift = 0; return 0; } static void lgdt330x_release(struct dvb_frontend *fe) { struct lgdt330x_state *state = fe->demodulator_priv; struct i2c_client *client = state->client; dev_dbg(&client->dev, "\n"); i2c_unregister_device(client); } static struct dvb_frontend *lgdt330x_get_dvb_frontend(struct i2c_client *client) { struct lgdt330x_state *state = i2c_get_clientdata(client); dev_dbg(&client->dev, "\n"); return &state->frontend; } static const struct dvb_frontend_ops lgdt3302_ops; static const struct dvb_frontend_ops lgdt3303_ops; static int lgdt330x_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct lgdt330x_state *state = NULL; u8 buf[1]; /* Allocate memory for the internal state */ state = kzalloc(sizeof(*state), GFP_KERNEL); if (!state) goto error; /* Setup the state */ memcpy(&state->config, client->dev.platform_data, sizeof(state->config)); i2c_set_clientdata(client, state); state->client = client; /* Create dvb_frontend */ switch (state->config.demod_chip) { case LGDT3302: memcpy(&state->frontend.ops, &lgdt3302_ops, sizeof(struct dvb_frontend_ops)); break; case LGDT3303: memcpy(&state->frontend.ops, &lgdt3303_ops, sizeof(struct dvb_frontend_ops)); break; default: goto error; } state->frontend.demodulator_priv = state; /* Setup get frontend callback */ state->config.get_dvb_frontend = lgdt330x_get_dvb_frontend; /* Verify communication with demod chip */ if (i2c_read_demod_bytes(state, 2, buf, 1)) goto error; state->current_frequency = -1; state->current_modulation = -1; dev_info(&state->client->dev, "Demod loaded for LGDT330%s chip\n", state->config.demod_chip == LGDT3302 ? "2" : "3"); return 0; error: kfree(state); if (debug) dev_printk(KERN_DEBUG, &client->dev, "Error loading lgdt330x driver\n"); return -ENODEV; } struct dvb_frontend *lgdt330x_attach(const struct lgdt330x_config *_config, u8 demod_address, struct i2c_adapter *i2c) { struct i2c_client *client; struct i2c_board_info board_info = {}; struct lgdt330x_config config = *_config; strscpy(board_info.type, "lgdt330x", sizeof(board_info.type)); board_info.addr = demod_address; board_info.platform_data = &config; client = i2c_new_client_device(i2c, &board_info); if (!i2c_client_has_driver(client)) return NULL; return lgdt330x_get_dvb_frontend(client); } EXPORT_SYMBOL_GPL(lgdt330x_attach); static const struct dvb_frontend_ops lgdt3302_ops = { .delsys = { SYS_ATSC, SYS_DVBC_ANNEX_B }, .info = { .name = "LG Electronics LGDT3302 VSB/QAM Frontend", .frequency_min_hz = 54 * MHz, .frequency_max_hz = 858 * MHz, .frequency_stepsize_hz = 62500, .symbol_rate_min = 5056941, /* QAM 64 */ .symbol_rate_max = 10762000, /* VSB 8 */ .caps = FE_CAN_QAM_64 | FE_CAN_QAM_256 | FE_CAN_8VSB }, .init = lgdt330x_init, .set_frontend = lgdt330x_set_parameters, .get_frontend = lgdt330x_get_frontend, .get_tune_settings = lgdt330x_get_tune_settings, .read_status = lgdt3302_read_status, .read_signal_strength = lgdt330x_read_signal_strength, .read_snr = lgdt330x_read_snr, .read_ucblocks = lgdt330x_read_ucblocks, .release = lgdt330x_release, }; static const struct dvb_frontend_ops lgdt3303_ops = { .delsys = { SYS_ATSC, SYS_DVBC_ANNEX_B }, .info = { .name = "LG Electronics LGDT3303 VSB/QAM Frontend", .frequency_min_hz = 54 * MHz, .frequency_max_hz = 858 * MHz, .frequency_stepsize_hz = 62500, .symbol_rate_min = 5056941, /* QAM 64 */ .symbol_rate_max = 10762000, /* VSB 8 */ .caps = FE_CAN_QAM_64 | FE_CAN_QAM_256 | FE_CAN_8VSB }, .init = lgdt330x_init, .set_frontend = lgdt330x_set_parameters, .get_frontend = lgdt330x_get_frontend, .get_tune_settings = lgdt330x_get_tune_settings, .read_status = lgdt3303_read_status, .read_signal_strength = lgdt330x_read_signal_strength, .read_snr = lgdt330x_read_snr, .read_ucblocks = lgdt330x_read_ucblocks, .release = lgdt330x_release, }; static int lgdt330x_remove(struct i2c_client *client) { struct lgdt330x_state *state = i2c_get_clientdata(client); dev_dbg(&client->dev, "\n"); kfree(state); return 0; } static const struct i2c_device_id lgdt330x_id_table[] = { {"lgdt330x", 0}, {} }; MODULE_DEVICE_TABLE(i2c, lgdt330x_id_table); static struct i2c_driver lgdt330x_driver = { .driver = { .name = "lgdt330x", .suppress_bind_attrs = true, }, .probe = lgdt330x_probe, .remove = lgdt330x_remove, .id_table = lgdt330x_id_table, }; module_i2c_driver(lgdt330x_driver); MODULE_DESCRIPTION("LGDT330X (ATSC 8VSB & ITU-T J.83 AnnexB 64/256 QAM) Demodulator Driver"); MODULE_AUTHOR("Wilson Michaels"); MODULE_LICENSE("GPL");