// SPDX-License-Identifier: GPL-2.0-only /* * Analog Devices ADV7511 HDMI Transmitter Device Driver * * Copyright 2013 Cisco Systems, Inc. and/or its affiliates. All rights reserved. */ /* * This file is named adv7511-v4l2.c so it doesn't conflict with the Analog * Device ADV7511 (config fragment CONFIG_DRM_I2C_ADV7511). */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int debug; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "debug level (0-2)"); MODULE_DESCRIPTION("Analog Devices ADV7511 HDMI Transmitter Device Driver"); MODULE_AUTHOR("Hans Verkuil"); MODULE_LICENSE("GPL v2"); #define MASK_ADV7511_EDID_RDY_INT 0x04 #define MASK_ADV7511_MSEN_INT 0x40 #define MASK_ADV7511_HPD_INT 0x80 #define MASK_ADV7511_HPD_DETECT 0x40 #define MASK_ADV7511_MSEN_DETECT 0x20 #define MASK_ADV7511_EDID_RDY 0x10 #define EDID_MAX_RETRIES (8) #define EDID_DELAY 250 #define EDID_MAX_SEGM 8 #define ADV7511_MAX_WIDTH 1920 #define ADV7511_MAX_HEIGHT 1200 #define ADV7511_MIN_PIXELCLOCK 20000000 #define ADV7511_MAX_PIXELCLOCK 225000000 #define ADV7511_MAX_ADDRS (3) /* ********************************************************************** * * Arrays with configuration parameters for the ADV7511 * ********************************************************************** */ struct i2c_reg_value { unsigned char reg; unsigned char value; }; struct adv7511_state_edid { /* total number of blocks */ u32 blocks; /* Number of segments read */ u32 segments; u8 data[EDID_MAX_SEGM * 256]; /* Number of EDID read retries left */ unsigned read_retries; bool complete; }; struct adv7511_state { struct adv7511_platform_data pdata; struct v4l2_subdev sd; struct media_pad pad; struct v4l2_ctrl_handler hdl; int chip_revision; u8 i2c_edid_addr; u8 i2c_pktmem_addr; u8 i2c_cec_addr; struct i2c_client *i2c_cec; struct cec_adapter *cec_adap; u8 cec_addr[ADV7511_MAX_ADDRS]; u8 cec_valid_addrs; bool cec_enabled_adap; /* Is the adv7511 powered on? */ bool power_on; /* Did we receive hotplug and rx-sense signals? */ bool have_monitor; bool enabled_irq; /* timings from s_dv_timings */ struct v4l2_dv_timings dv_timings; u32 fmt_code; u32 colorspace; u32 ycbcr_enc; u32 quantization; u32 xfer_func; u32 content_type; /* controls */ struct v4l2_ctrl *hdmi_mode_ctrl; struct v4l2_ctrl *hotplug_ctrl; struct v4l2_ctrl *rx_sense_ctrl; struct v4l2_ctrl *have_edid0_ctrl; struct v4l2_ctrl *rgb_quantization_range_ctrl; struct v4l2_ctrl *content_type_ctrl; struct i2c_client *i2c_edid; struct i2c_client *i2c_pktmem; struct adv7511_state_edid edid; /* Running counter of the number of detected EDIDs (for debugging) */ unsigned edid_detect_counter; struct workqueue_struct *work_queue; struct delayed_work edid_handler; /* work entry */ }; static void adv7511_check_monitor_present_status(struct v4l2_subdev *sd); static bool adv7511_check_edid_status(struct v4l2_subdev *sd); static void adv7511_setup(struct v4l2_subdev *sd); static int adv7511_s_i2s_clock_freq(struct v4l2_subdev *sd, u32 freq); static int adv7511_s_clock_freq(struct v4l2_subdev *sd, u32 freq); static const struct v4l2_dv_timings_cap adv7511_timings_cap = { .type = V4L2_DV_BT_656_1120, /* keep this initialization for compatibility with GCC < 4.4.6 */ .reserved = { 0 }, V4L2_INIT_BT_TIMINGS(640, ADV7511_MAX_WIDTH, 350, ADV7511_MAX_HEIGHT, ADV7511_MIN_PIXELCLOCK, ADV7511_MAX_PIXELCLOCK, V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT | V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT, V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING | V4L2_DV_BT_CAP_CUSTOM) }; static inline struct adv7511_state *get_adv7511_state(struct v4l2_subdev *sd) { return container_of(sd, struct adv7511_state, sd); } static inline struct v4l2_subdev *to_sd(struct v4l2_ctrl *ctrl) { return &container_of(ctrl->handler, struct adv7511_state, hdl)->sd; } /* ------------------------ I2C ----------------------------------------------- */ static s32 adv_smbus_read_byte_data_check(struct i2c_client *client, u8 command, bool check) { union i2c_smbus_data data; if (!i2c_smbus_xfer(client->adapter, client->addr, client->flags, I2C_SMBUS_READ, command, I2C_SMBUS_BYTE_DATA, &data)) return data.byte; if (check) v4l_err(client, "error reading %02x, %02x\n", client->addr, command); return -1; } static s32 adv_smbus_read_byte_data(struct i2c_client *client, u8 command) { int i; for (i = 0; i < 3; i++) { int ret = adv_smbus_read_byte_data_check(client, command, true); if (ret >= 0) { if (i) v4l_err(client, "read ok after %d retries\n", i); return ret; } } v4l_err(client, "read failed\n"); return -1; } static int adv7511_rd(struct v4l2_subdev *sd, u8 reg) { struct i2c_client *client = v4l2_get_subdevdata(sd); return adv_smbus_read_byte_data(client, reg); } static int adv7511_wr(struct v4l2_subdev *sd, u8 reg, u8 val) { struct i2c_client *client = v4l2_get_subdevdata(sd); int ret; int i; for (i = 0; i < 3; i++) { ret = i2c_smbus_write_byte_data(client, reg, val); if (ret == 0) return 0; } v4l2_err(sd, "%s: i2c write error\n", __func__); return ret; } /* To set specific bits in the register, a clear-mask is given (to be AND-ed), and then the value-mask (to be OR-ed). */ static inline void adv7511_wr_and_or(struct v4l2_subdev *sd, u8 reg, u8 clr_mask, u8 val_mask) { adv7511_wr(sd, reg, (adv7511_rd(sd, reg) & clr_mask) | val_mask); } static int adv7511_edid_rd(struct v4l2_subdev *sd, uint16_t len, uint8_t *buf) { struct adv7511_state *state = get_adv7511_state(sd); int i; v4l2_dbg(1, debug, sd, "%s:\n", __func__); for (i = 0; i < len; i += I2C_SMBUS_BLOCK_MAX) { s32 ret; ret = i2c_smbus_read_i2c_block_data(state->i2c_edid, i, I2C_SMBUS_BLOCK_MAX, buf + i); if (ret < 0) { v4l2_err(sd, "%s: i2c read error\n", __func__); return ret; } } return 0; } static inline int adv7511_cec_read(struct v4l2_subdev *sd, u8 reg) { struct adv7511_state *state = get_adv7511_state(sd); return i2c_smbus_read_byte_data(state->i2c_cec, reg); } static int adv7511_cec_write(struct v4l2_subdev *sd, u8 reg, u8 val) { struct adv7511_state *state = get_adv7511_state(sd); int ret; int i; for (i = 0; i < 3; i++) { ret = i2c_smbus_write_byte_data(state->i2c_cec, reg, val); if (ret == 0) return 0; } v4l2_err(sd, "%s: I2C Write Problem\n", __func__); return ret; } static inline int adv7511_cec_write_and_or(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val) { return adv7511_cec_write(sd, reg, (adv7511_cec_read(sd, reg) & mask) | val); } static int adv7511_pktmem_rd(struct v4l2_subdev *sd, u8 reg) { struct adv7511_state *state = get_adv7511_state(sd); return adv_smbus_read_byte_data(state->i2c_pktmem, reg); } static int adv7511_pktmem_wr(struct v4l2_subdev *sd, u8 reg, u8 val) { struct adv7511_state *state = get_adv7511_state(sd); int ret; int i; for (i = 0; i < 3; i++) { ret = i2c_smbus_write_byte_data(state->i2c_pktmem, reg, val); if (ret == 0) return 0; } v4l2_err(sd, "%s: i2c write error\n", __func__); return ret; } /* To set specific bits in the register, a clear-mask is given (to be AND-ed), and then the value-mask (to be OR-ed). */ static inline void adv7511_pktmem_wr_and_or(struct v4l2_subdev *sd, u8 reg, u8 clr_mask, u8 val_mask) { adv7511_pktmem_wr(sd, reg, (adv7511_pktmem_rd(sd, reg) & clr_mask) | val_mask); } static inline bool adv7511_have_hotplug(struct v4l2_subdev *sd) { return adv7511_rd(sd, 0x42) & MASK_ADV7511_HPD_DETECT; } static inline bool adv7511_have_rx_sense(struct v4l2_subdev *sd) { return adv7511_rd(sd, 0x42) & MASK_ADV7511_MSEN_DETECT; } static void adv7511_csc_conversion_mode(struct v4l2_subdev *sd, u8 mode) { adv7511_wr_and_or(sd, 0x18, 0x9f, (mode & 0x3)<<5); } static void adv7511_csc_coeff(struct v4l2_subdev *sd, u16 A1, u16 A2, u16 A3, u16 A4, u16 B1, u16 B2, u16 B3, u16 B4, u16 C1, u16 C2, u16 C3, u16 C4) { /* A */ adv7511_wr_and_or(sd, 0x18, 0xe0, A1>>8); adv7511_wr(sd, 0x19, A1); adv7511_wr_and_or(sd, 0x1A, 0xe0, A2>>8); adv7511_wr(sd, 0x1B, A2); adv7511_wr_and_or(sd, 0x1c, 0xe0, A3>>8); adv7511_wr(sd, 0x1d, A3); adv7511_wr_and_or(sd, 0x1e, 0xe0, A4>>8); adv7511_wr(sd, 0x1f, A4); /* B */ adv7511_wr_and_or(sd, 0x20, 0xe0, B1>>8); adv7511_wr(sd, 0x21, B1); adv7511_wr_and_or(sd, 0x22, 0xe0, B2>>8); adv7511_wr(sd, 0x23, B2); adv7511_wr_and_or(sd, 0x24, 0xe0, B3>>8); adv7511_wr(sd, 0x25, B3); adv7511_wr_and_or(sd, 0x26, 0xe0, B4>>8); adv7511_wr(sd, 0x27, B4); /* C */ adv7511_wr_and_or(sd, 0x28, 0xe0, C1>>8); adv7511_wr(sd, 0x29, C1); adv7511_wr_and_or(sd, 0x2A, 0xe0, C2>>8); adv7511_wr(sd, 0x2B, C2); adv7511_wr_and_or(sd, 0x2C, 0xe0, C3>>8); adv7511_wr(sd, 0x2D, C3); adv7511_wr_and_or(sd, 0x2E, 0xe0, C4>>8); adv7511_wr(sd, 0x2F, C4); } static void adv7511_csc_rgb_full2limit(struct v4l2_subdev *sd, bool enable) { if (enable) { u8 csc_mode = 0; adv7511_csc_conversion_mode(sd, csc_mode); adv7511_csc_coeff(sd, 4096-564, 0, 0, 256, 0, 4096-564, 0, 256, 0, 0, 4096-564, 256); /* enable CSC */ adv7511_wr_and_or(sd, 0x18, 0x7f, 0x80); /* AVI infoframe: Limited range RGB (16-235) */ adv7511_wr_and_or(sd, 0x57, 0xf3, 0x04); } else { /* disable CSC */ adv7511_wr_and_or(sd, 0x18, 0x7f, 0x0); /* AVI infoframe: Full range RGB (0-255) */ adv7511_wr_and_or(sd, 0x57, 0xf3, 0x08); } } static void adv7511_set_rgb_quantization_mode(struct v4l2_subdev *sd, struct v4l2_ctrl *ctrl) { struct adv7511_state *state = get_adv7511_state(sd); /* Only makes sense for RGB formats */ if (state->fmt_code != MEDIA_BUS_FMT_RGB888_1X24) { /* so just keep quantization */ adv7511_csc_rgb_full2limit(sd, false); return; } switch (ctrl->val) { case V4L2_DV_RGB_RANGE_AUTO: /* automatic */ if (state->dv_timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) { /* CE format, RGB limited range (16-235) */ adv7511_csc_rgb_full2limit(sd, true); } else { /* not CE format, RGB full range (0-255) */ adv7511_csc_rgb_full2limit(sd, false); } break; case V4L2_DV_RGB_RANGE_LIMITED: /* RGB limited range (16-235) */ adv7511_csc_rgb_full2limit(sd, true); break; case V4L2_DV_RGB_RANGE_FULL: /* RGB full range (0-255) */ adv7511_csc_rgb_full2limit(sd, false); break; } } /* ------------------------------ CTRL OPS ------------------------------ */ static int adv7511_s_ctrl(struct v4l2_ctrl *ctrl) { struct v4l2_subdev *sd = to_sd(ctrl); struct adv7511_state *state = get_adv7511_state(sd); v4l2_dbg(1, debug, sd, "%s: ctrl id: %d, ctrl->val %d\n", __func__, ctrl->id, ctrl->val); if (state->hdmi_mode_ctrl == ctrl) { /* Set HDMI or DVI-D */ adv7511_wr_and_or(sd, 0xaf, 0xfd, ctrl->val == V4L2_DV_TX_MODE_HDMI ? 0x02 : 0x00); return 0; } if (state->rgb_quantization_range_ctrl == ctrl) { adv7511_set_rgb_quantization_mode(sd, ctrl); return 0; } if (state->content_type_ctrl == ctrl) { u8 itc, cn; state->content_type = ctrl->val; itc = state->content_type != V4L2_DV_IT_CONTENT_TYPE_NO_ITC; cn = itc ? state->content_type : V4L2_DV_IT_CONTENT_TYPE_GRAPHICS; adv7511_wr_and_or(sd, 0x57, 0x7f, itc << 7); adv7511_wr_and_or(sd, 0x59, 0xcf, cn << 4); return 0; } return -EINVAL; } static const struct v4l2_ctrl_ops adv7511_ctrl_ops = { .s_ctrl = adv7511_s_ctrl, }; /* ---------------------------- CORE OPS ------------------------------------------- */ #ifdef CONFIG_VIDEO_ADV_DEBUG static void adv7511_inv_register(struct v4l2_subdev *sd) { struct adv7511_state *state = get_adv7511_state(sd); v4l2_info(sd, "0x000-0x0ff: Main Map\n"); if (state->i2c_cec) v4l2_info(sd, "0x100-0x1ff: CEC Map\n"); } static int adv7511_g_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg) { struct adv7511_state *state = get_adv7511_state(sd); reg->size = 1; switch (reg->reg >> 8) { case 0: reg->val = adv7511_rd(sd, reg->reg & 0xff); break; case 1: if (state->i2c_cec) { reg->val = adv7511_cec_read(sd, reg->reg & 0xff); break; } fallthrough; default: v4l2_info(sd, "Register %03llx not supported\n", reg->reg); adv7511_inv_register(sd); break; } return 0; } static int adv7511_s_register(struct v4l2_subdev *sd, const struct v4l2_dbg_register *reg) { struct adv7511_state *state = get_adv7511_state(sd); switch (reg->reg >> 8) { case 0: adv7511_wr(sd, reg->reg & 0xff, reg->val & 0xff); break; case 1: if (state->i2c_cec) { adv7511_cec_write(sd, reg->reg & 0xff, reg->val & 0xff); break; } fallthrough; default: v4l2_info(sd, "Register %03llx not supported\n", reg->reg); adv7511_inv_register(sd); break; } return 0; } #endif struct adv7511_cfg_read_infoframe { const char *desc; u8 present_reg; u8 present_mask; u8 header[3]; u16 payload_addr; }; static u8 hdmi_infoframe_checksum(u8 *ptr, size_t size) { u8 csum = 0; size_t i; /* compute checksum */ for (i = 0; i < size; i++) csum += ptr[i]; return 256 - csum; } static void log_infoframe(struct v4l2_subdev *sd, const struct adv7511_cfg_read_infoframe *cri) { struct i2c_client *client = v4l2_get_subdevdata(sd); struct device *dev = &client->dev; union hdmi_infoframe frame; u8 buffer[32]; u8 len; int i; if (!(adv7511_rd(sd, cri->present_reg) & cri->present_mask)) { v4l2_info(sd, "%s infoframe not transmitted\n", cri->desc); return; } memcpy(buffer, cri->header, sizeof(cri->header)); len = buffer[2]; if (len + 4 > sizeof(buffer)) { v4l2_err(sd, "%s: invalid %s infoframe length %d\n", __func__, cri->desc, len); return; } if (cri->payload_addr >= 0x100) { for (i = 0; i < len; i++) buffer[i + 4] = adv7511_pktmem_rd(sd, cri->payload_addr + i - 0x100); } else { for (i = 0; i < len; i++) buffer[i + 4] = adv7511_rd(sd, cri->payload_addr + i); } buffer[3] = 0; buffer[3] = hdmi_infoframe_checksum(buffer, len + 4); if (hdmi_infoframe_unpack(&frame, buffer, len + 4) < 0) { v4l2_err(sd, "%s: unpack of %s infoframe failed\n", __func__, cri->desc); return; } hdmi_infoframe_log(KERN_INFO, dev, &frame); } static void adv7511_log_infoframes(struct v4l2_subdev *sd) { static const struct adv7511_cfg_read_infoframe cri[] = { { "AVI", 0x44, 0x10, { 0x82, 2, 13 }, 0x55 }, { "Audio", 0x44, 0x08, { 0x84, 1, 10 }, 0x73 }, { "SDP", 0x40, 0x40, { 0x83, 1, 25 }, 0x103 }, }; int i; for (i = 0; i < ARRAY_SIZE(cri); i++) log_infoframe(sd, &cri[i]); } static int adv7511_log_status(struct v4l2_subdev *sd) { struct adv7511_state *state = get_adv7511_state(sd); struct adv7511_state_edid *edid = &state->edid; int i; static const char * const states[] = { "in reset", "reading EDID", "idle", "initializing HDCP", "HDCP enabled", "initializing HDCP repeater", "6", "7", "8", "9", "A", "B", "C", "D", "E", "F" }; static const char * const errors[] = { "no error", "bad receiver BKSV", "Ri mismatch", "Pj mismatch", "i2c error", "timed out", "max repeater cascade exceeded", "hash check failed", "too many devices", "9", "A", "B", "C", "D", "E", "F" }; v4l2_info(sd, "power %s\n", state->power_on ? "on" : "off"); v4l2_info(sd, "%s hotplug, %s Rx Sense, %s EDID (%d block(s))\n", (adv7511_rd(sd, 0x42) & MASK_ADV7511_HPD_DETECT) ? "detected" : "no", (adv7511_rd(sd, 0x42) & MASK_ADV7511_MSEN_DETECT) ? "detected" : "no", edid->segments ? "found" : "no", edid->blocks); v4l2_info(sd, "%s output %s\n", (adv7511_rd(sd, 0xaf) & 0x02) ? "HDMI" : "DVI-D", (adv7511_rd(sd, 0xa1) & 0x3c) ? "disabled" : "enabled"); v4l2_info(sd, "state: %s, error: %s, detect count: %u, msk/irq: %02x/%02x\n", states[adv7511_rd(sd, 0xc8) & 0xf], errors[adv7511_rd(sd, 0xc8) >> 4], state->edid_detect_counter, adv7511_rd(sd, 0x94), adv7511_rd(sd, 0x96)); v4l2_info(sd, "RGB quantization: %s range\n", adv7511_rd(sd, 0x18) & 0x80 ? "limited" : "full"); if (adv7511_rd(sd, 0xaf) & 0x02) { /* HDMI only */ u8 manual_cts = adv7511_rd(sd, 0x0a) & 0x80; u32 N = (adv7511_rd(sd, 0x01) & 0xf) << 16 | adv7511_rd(sd, 0x02) << 8 | adv7511_rd(sd, 0x03); u8 vic_detect = adv7511_rd(sd, 0x3e) >> 2; u8 vic_sent = adv7511_rd(sd, 0x3d) & 0x3f; u32 CTS; if (manual_cts) CTS = (adv7511_rd(sd, 0x07) & 0xf) << 16 | adv7511_rd(sd, 0x08) << 8 | adv7511_rd(sd, 0x09); else CTS = (adv7511_rd(sd, 0x04) & 0xf) << 16 | adv7511_rd(sd, 0x05) << 8 | adv7511_rd(sd, 0x06); v4l2_info(sd, "CTS %s mode: N %d, CTS %d\n", manual_cts ? "manual" : "automatic", N, CTS); v4l2_info(sd, "VIC: detected %d, sent %d\n", vic_detect, vic_sent); adv7511_log_infoframes(sd); } if (state->dv_timings.type == V4L2_DV_BT_656_1120) v4l2_print_dv_timings(sd->name, "timings: ", &state->dv_timings, false); else v4l2_info(sd, "no timings set\n"); v4l2_info(sd, "i2c edid addr: 0x%x\n", state->i2c_edid_addr); if (state->i2c_cec == NULL) return 0; v4l2_info(sd, "i2c cec addr: 0x%x\n", state->i2c_cec_addr); v4l2_info(sd, "CEC: %s\n", state->cec_enabled_adap ? "enabled" : "disabled"); if (state->cec_enabled_adap) { for (i = 0; i < ADV7511_MAX_ADDRS; i++) { bool is_valid = state->cec_valid_addrs & (1 << i); if (is_valid) v4l2_info(sd, "CEC Logical Address: 0x%x\n", state->cec_addr[i]); } } v4l2_info(sd, "i2c pktmem addr: 0x%x\n", state->i2c_pktmem_addr); return 0; } /* Power up/down adv7511 */ static int adv7511_s_power(struct v4l2_subdev *sd, int on) { struct adv7511_state *state = get_adv7511_state(sd); const int retries = 20; int i; v4l2_dbg(1, debug, sd, "%s: power %s\n", __func__, on ? "on" : "off"); state->power_on = on; if (!on) { /* Power down */ adv7511_wr_and_or(sd, 0x41, 0xbf, 0x40); return true; } /* Power up */ /* The adv7511 does not always come up immediately. Retry multiple times. */ for (i = 0; i < retries; i++) { adv7511_wr_and_or(sd, 0x41, 0xbf, 0x0); if ((adv7511_rd(sd, 0x41) & 0x40) == 0) break; adv7511_wr_and_or(sd, 0x41, 0xbf, 0x40); msleep(10); } if (i == retries) { v4l2_dbg(1, debug, sd, "%s: failed to powerup the adv7511!\n", __func__); adv7511_s_power(sd, 0); return false; } if (i > 1) v4l2_dbg(1, debug, sd, "%s: needed %d retries to powerup the adv7511\n", __func__, i); /* Reserved registers that must be set */ adv7511_wr(sd, 0x98, 0x03); adv7511_wr_and_or(sd, 0x9a, 0xfe, 0x70); adv7511_wr(sd, 0x9c, 0x30); adv7511_wr_and_or(sd, 0x9d, 0xfc, 0x01); adv7511_wr(sd, 0xa2, 0xa4); adv7511_wr(sd, 0xa3, 0xa4); adv7511_wr(sd, 0xe0, 0xd0); adv7511_wr(sd, 0xf9, 0x00); adv7511_wr(sd, 0x43, state->i2c_edid_addr); adv7511_wr(sd, 0x45, state->i2c_pktmem_addr); /* Set number of attempts to read the EDID */ adv7511_wr(sd, 0xc9, 0xf); return true; } #if IS_ENABLED(CONFIG_VIDEO_ADV7511_CEC) static int adv7511_cec_adap_enable(struct cec_adapter *adap, bool enable) { struct adv7511_state *state = cec_get_drvdata(adap); struct v4l2_subdev *sd = &state->sd; if (state->i2c_cec == NULL) return -EIO; if (!state->cec_enabled_adap && enable) { /* power up cec section */ adv7511_cec_write_and_or(sd, 0x4e, 0xfc, 0x01); /* legacy mode and clear all rx buffers */ adv7511_cec_write(sd, 0x4a, 0x00); adv7511_cec_write(sd, 0x4a, 0x07); adv7511_cec_write_and_or(sd, 0x11, 0xfe, 0); /* initially disable tx */ /* enabled irqs: */ /* tx: ready */ /* tx: arbitration lost */ /* tx: retry timeout */ /* rx: ready 1 */ if (state->enabled_irq) adv7511_wr_and_or(sd, 0x95, 0xc0, 0x39); } else if (state->cec_enabled_adap && !enable) { if (state->enabled_irq) adv7511_wr_and_or(sd, 0x95, 0xc0, 0x00); /* disable address mask 1-3 */ adv7511_cec_write_and_or(sd, 0x4b, 0x8f, 0x00); /* power down cec section */ adv7511_cec_write_and_or(sd, 0x4e, 0xfc, 0x00); state->cec_valid_addrs = 0; } state->cec_enabled_adap = enable; return 0; } static int adv7511_cec_adap_log_addr(struct cec_adapter *adap, u8 addr) { struct adv7511_state *state = cec_get_drvdata(adap); struct v4l2_subdev *sd = &state->sd; unsigned int i, free_idx = ADV7511_MAX_ADDRS; if (!state->cec_enabled_adap) return addr == CEC_LOG_ADDR_INVALID ? 0 : -EIO; if (addr == CEC_LOG_ADDR_INVALID) { adv7511_cec_write_and_or(sd, 0x4b, 0x8f, 0); state->cec_valid_addrs = 0; return 0; } for (i = 0; i < ADV7511_MAX_ADDRS; i++) { bool is_valid = state->cec_valid_addrs & (1 << i); if (free_idx == ADV7511_MAX_ADDRS && !is_valid) free_idx = i; if (is_valid && state->cec_addr[i] == addr) return 0; } if (i == ADV7511_MAX_ADDRS) { i = free_idx; if (i == ADV7511_MAX_ADDRS) return -ENXIO; } state->cec_addr[i] = addr; state->cec_valid_addrs |= 1 << i; switch (i) { case 0: /* enable address mask 0 */ adv7511_cec_write_and_or(sd, 0x4b, 0xef, 0x10); /* set address for mask 0 */ adv7511_cec_write_and_or(sd, 0x4c, 0xf0, addr); break; case 1: /* enable address mask 1 */ adv7511_cec_write_and_or(sd, 0x4b, 0xdf, 0x20); /* set address for mask 1 */ adv7511_cec_write_and_or(sd, 0x4c, 0x0f, addr << 4); break; case 2: /* enable address mask 2 */ adv7511_cec_write_and_or(sd, 0x4b, 0xbf, 0x40); /* set address for mask 1 */ adv7511_cec_write_and_or(sd, 0x4d, 0xf0, addr); break; } return 0; } static int adv7511_cec_adap_transmit(struct cec_adapter *adap, u8 attempts, u32 signal_free_time, struct cec_msg *msg) { struct adv7511_state *state = cec_get_drvdata(adap); struct v4l2_subdev *sd = &state->sd; u8 len = msg->len; unsigned int i; v4l2_dbg(1, debug, sd, "%s: len %d\n", __func__, len); if (len > 16) { v4l2_err(sd, "%s: len exceeded 16 (%d)\n", __func__, len); return -EINVAL; } /* * The number of retries is the number of attempts - 1, but retry * at least once. It's not clear if a value of 0 is allowed, so * let's do at least one retry. */ adv7511_cec_write_and_or(sd, 0x12, ~0x70, max(1, attempts - 1) << 4); /* clear cec tx irq status */ adv7511_wr(sd, 0x97, 0x38); /* write data */ for (i = 0; i < len; i++) adv7511_cec_write(sd, i, msg->msg[i]); /* set length (data + header) */ adv7511_cec_write(sd, 0x10, len); /* start transmit, enable tx */ adv7511_cec_write(sd, 0x11, 0x01); return 0; } static void adv_cec_tx_raw_status(struct v4l2_subdev *sd, u8 tx_raw_status) { struct adv7511_state *state = get_adv7511_state(sd); if ((adv7511_cec_read(sd, 0x11) & 0x01) == 0) { v4l2_dbg(1, debug, sd, "%s: tx raw: tx disabled\n", __func__); return; } if (tx_raw_status & 0x10) { v4l2_dbg(1, debug, sd, "%s: tx raw: arbitration lost\n", __func__); cec_transmit_done(state->cec_adap, CEC_TX_STATUS_ARB_LOST, 1, 0, 0, 0); return; } if (tx_raw_status & 0x08) { u8 status; u8 nack_cnt; u8 low_drive_cnt; v4l2_dbg(1, debug, sd, "%s: tx raw: retry failed\n", __func__); /* * We set this status bit since this hardware performs * retransmissions. */ status = CEC_TX_STATUS_MAX_RETRIES; nack_cnt = adv7511_cec_read(sd, 0x14) & 0xf; if (nack_cnt) status |= CEC_TX_STATUS_NACK; low_drive_cnt = adv7511_cec_read(sd, 0x14) >> 4; if (low_drive_cnt) status |= CEC_TX_STATUS_LOW_DRIVE; cec_transmit_done(state->cec_adap, status, 0, nack_cnt, low_drive_cnt, 0); return; } if (tx_raw_status & 0x20) { v4l2_dbg(1, debug, sd, "%s: tx raw: ready ok\n", __func__); cec_transmit_done(state->cec_adap, CEC_TX_STATUS_OK, 0, 0, 0, 0); return; } } static const struct cec_adap_ops adv7511_cec_adap_ops = { .adap_enable = adv7511_cec_adap_enable, .adap_log_addr = adv7511_cec_adap_log_addr, .adap_transmit = adv7511_cec_adap_transmit, }; #endif /* Enable interrupts */ static void adv7511_set_isr(struct v4l2_subdev *sd, bool enable) { struct adv7511_state *state = get_adv7511_state(sd); u8 irqs = MASK_ADV7511_HPD_INT | MASK_ADV7511_MSEN_INT; u8 irqs_rd; int retries = 100; v4l2_dbg(2, debug, sd, "%s: %s\n", __func__, enable ? "enable" : "disable"); if (state->enabled_irq == enable) return; state->enabled_irq = enable; /* The datasheet says that the EDID ready interrupt should be disabled if there is no hotplug. */ if (!enable) irqs = 0; else if (adv7511_have_hotplug(sd)) irqs |= MASK_ADV7511_EDID_RDY_INT; /* * This i2c write can fail (approx. 1 in 1000 writes). But it * is essential that this register is correct, so retry it * multiple times. * * Note that the i2c write does not report an error, but the readback * clearly shows the wrong value. */ do { adv7511_wr(sd, 0x94, irqs); irqs_rd = adv7511_rd(sd, 0x94); } while (retries-- && irqs_rd != irqs); if (irqs_rd != irqs) v4l2_err(sd, "Could not set interrupts: hw failure?\n"); adv7511_wr_and_or(sd, 0x95, 0xc0, (state->cec_enabled_adap && enable) ? 0x39 : 0x00); } /* Interrupt handler */ static int adv7511_isr(struct v4l2_subdev *sd, u32 status, bool *handled) { u8 irq_status; u8 cec_irq; /* disable interrupts to prevent a race condition */ adv7511_set_isr(sd, false); irq_status = adv7511_rd(sd, 0x96); cec_irq = adv7511_rd(sd, 0x97); /* clear detected interrupts */ adv7511_wr(sd, 0x96, irq_status); adv7511_wr(sd, 0x97, cec_irq); v4l2_dbg(1, debug, sd, "%s: irq 0x%x, cec-irq 0x%x\n", __func__, irq_status, cec_irq); if (irq_status & (MASK_ADV7511_HPD_INT | MASK_ADV7511_MSEN_INT)) adv7511_check_monitor_present_status(sd); if (irq_status & MASK_ADV7511_EDID_RDY_INT) adv7511_check_edid_status(sd); #if IS_ENABLED(CONFIG_VIDEO_ADV7511_CEC) if (cec_irq & 0x38) adv_cec_tx_raw_status(sd, cec_irq); if (cec_irq & 1) { struct adv7511_state *state = get_adv7511_state(sd); struct cec_msg msg; msg.len = adv7511_cec_read(sd, 0x25) & 0x1f; v4l2_dbg(1, debug, sd, "%s: cec msg len %d\n", __func__, msg.len); if (msg.len > 16) msg.len = 16; if (msg.len) { u8 i; for (i = 0; i < msg.len; i++) msg.msg[i] = adv7511_cec_read(sd, i + 0x15); adv7511_cec_write(sd, 0x4a, 0); /* toggle to re-enable rx 1 */ adv7511_cec_write(sd, 0x4a, 1); cec_received_msg(state->cec_adap, &msg); } } #endif /* enable interrupts */ adv7511_set_isr(sd, true); if (handled) *handled = true; return 0; } static const struct v4l2_subdev_core_ops adv7511_core_ops = { .log_status = adv7511_log_status, #ifdef CONFIG_VIDEO_ADV_DEBUG .g_register = adv7511_g_register, .s_register = adv7511_s_register, #endif .s_power = adv7511_s_power, .interrupt_service_routine = adv7511_isr, }; /* ------------------------------ VIDEO OPS ------------------------------ */ /* Enable/disable adv7511 output */ static int adv7511_s_stream(struct v4l2_subdev *sd, int enable) { struct adv7511_state *state = get_adv7511_state(sd); v4l2_dbg(1, debug, sd, "%s: %sable\n", __func__, (enable ? "en" : "dis")); adv7511_wr_and_or(sd, 0xa1, ~0x3c, (enable ? 0 : 0x3c)); if (enable) { adv7511_check_monitor_present_status(sd); } else { adv7511_s_power(sd, 0); state->have_monitor = false; } return 0; } static int adv7511_s_dv_timings(struct v4l2_subdev *sd, struct v4l2_dv_timings *timings) { struct adv7511_state *state = get_adv7511_state(sd); struct v4l2_bt_timings *bt = &timings->bt; u32 fps; v4l2_dbg(1, debug, sd, "%s:\n", __func__); /* quick sanity check */ if (!v4l2_valid_dv_timings(timings, &adv7511_timings_cap, NULL, NULL)) return -EINVAL; /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings if the format is one of the CEA or DMT timings. */ v4l2_find_dv_timings_cap(timings, &adv7511_timings_cap, 0, NULL, NULL); /* save timings */ state->dv_timings = *timings; /* set h/vsync polarities */ adv7511_wr_and_or(sd, 0x17, 0x9f, ((bt->polarities & V4L2_DV_VSYNC_POS_POL) ? 0 : 0x40) | ((bt->polarities & V4L2_DV_HSYNC_POS_POL) ? 0 : 0x20)); fps = (u32)bt->pixelclock / (V4L2_DV_BT_FRAME_WIDTH(bt) * V4L2_DV_BT_FRAME_HEIGHT(bt)); switch (fps) { case 24: adv7511_wr_and_or(sd, 0xfb, 0xf9, 1 << 1); break; case 25: adv7511_wr_and_or(sd, 0xfb, 0xf9, 2 << 1); break; case 30: adv7511_wr_and_or(sd, 0xfb, 0xf9, 3 << 1); break; default: adv7511_wr_and_or(sd, 0xfb, 0xf9, 0); break; } /* update quantization range based on new dv_timings */ adv7511_set_rgb_quantization_mode(sd, state->rgb_quantization_range_ctrl); return 0; } static int adv7511_g_dv_timings(struct v4l2_subdev *sd, struct v4l2_dv_timings *timings) { struct adv7511_state *state = get_adv7511_state(sd); v4l2_dbg(1, debug, sd, "%s:\n", __func__); if (!timings) return -EINVAL; *timings = state->dv_timings; return 0; } static int adv7511_enum_dv_timings(struct v4l2_subdev *sd, struct v4l2_enum_dv_timings *timings) { if (timings->pad != 0) return -EINVAL; return v4l2_enum_dv_timings_cap(timings, &adv7511_timings_cap, NULL, NULL); } static int adv7511_dv_timings_cap(struct v4l2_subdev *sd, struct v4l2_dv_timings_cap *cap) { if (cap->pad != 0) return -EINVAL; *cap = adv7511_timings_cap; return 0; } static const struct v4l2_subdev_video_ops adv7511_video_ops = { .s_stream = adv7511_s_stream, .s_dv_timings = adv7511_s_dv_timings, .g_dv_timings = adv7511_g_dv_timings, }; /* ------------------------------ AUDIO OPS ------------------------------ */ static int adv7511_s_audio_stream(struct v4l2_subdev *sd, int enable) { v4l2_dbg(1, debug, sd, "%s: %sable\n", __func__, (enable ? "en" : "dis")); if (enable) adv7511_wr_and_or(sd, 0x4b, 0x3f, 0x80); else adv7511_wr_and_or(sd, 0x4b, 0x3f, 0x40); return 0; } static int adv7511_s_clock_freq(struct v4l2_subdev *sd, u32 freq) { u32 N; switch (freq) { case 32000: N = 4096; break; case 44100: N = 6272; break; case 48000: N = 6144; break; case 88200: N = 12544; break; case 96000: N = 12288; break; case 176400: N = 25088; break; case 192000: N = 24576; break; default: return -EINVAL; } /* Set N (used with CTS to regenerate the audio clock) */ adv7511_wr(sd, 0x01, (N >> 16) & 0xf); adv7511_wr(sd, 0x02, (N >> 8) & 0xff); adv7511_wr(sd, 0x03, N & 0xff); return 0; } static int adv7511_s_i2s_clock_freq(struct v4l2_subdev *sd, u32 freq) { u32 i2s_sf; switch (freq) { case 32000: i2s_sf = 0x30; break; case 44100: i2s_sf = 0x00; break; case 48000: i2s_sf = 0x20; break; case 88200: i2s_sf = 0x80; break; case 96000: i2s_sf = 0xa0; break; case 176400: i2s_sf = 0xc0; break; case 192000: i2s_sf = 0xe0; break; default: return -EINVAL; } /* Set sampling frequency for I2S audio to 48 kHz */ adv7511_wr_and_or(sd, 0x15, 0xf, i2s_sf); return 0; } static int adv7511_s_routing(struct v4l2_subdev *sd, u32 input, u32 output, u32 config) { /* Only 2 channels in use for application */ adv7511_wr_and_or(sd, 0x73, 0xf8, 0x1); /* Speaker mapping */ adv7511_wr(sd, 0x76, 0x00); /* 16 bit audio word length */ adv7511_wr_and_or(sd, 0x14, 0xf0, 0x02); return 0; } static const struct v4l2_subdev_audio_ops adv7511_audio_ops = { .s_stream = adv7511_s_audio_stream, .s_clock_freq = adv7511_s_clock_freq, .s_i2s_clock_freq = adv7511_s_i2s_clock_freq, .s_routing = adv7511_s_routing, }; /* ---------------------------- PAD OPS ------------------------------------- */ static int adv7511_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid) { struct adv7511_state *state = get_adv7511_state(sd); memset(edid->reserved, 0, sizeof(edid->reserved)); if (edid->pad != 0) return -EINVAL; if (edid->start_block == 0 && edid->blocks == 0) { edid->blocks = state->edid.blocks; return 0; } if (state->edid.blocks == 0) return -ENODATA; if (edid->start_block >= state->edid.blocks) return -EINVAL; if (edid->start_block + edid->blocks > state->edid.blocks) edid->blocks = state->edid.blocks - edid->start_block; memcpy(edid->edid, &state->edid.data[edid->start_block * 128], 128 * edid->blocks); return 0; } static int adv7511_enum_mbus_code(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_mbus_code_enum *code) { if (code->pad != 0) return -EINVAL; switch (code->index) { case 0: code->code = MEDIA_BUS_FMT_RGB888_1X24; break; case 1: code->code = MEDIA_BUS_FMT_YUYV8_1X16; break; case 2: code->code = MEDIA_BUS_FMT_UYVY8_1X16; break; default: return -EINVAL; } return 0; } static void adv7511_fill_format(struct adv7511_state *state, struct v4l2_mbus_framefmt *format) { format->width = state->dv_timings.bt.width; format->height = state->dv_timings.bt.height; format->field = V4L2_FIELD_NONE; } static int adv7511_get_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *format) { struct adv7511_state *state = get_adv7511_state(sd); if (format->pad != 0) return -EINVAL; memset(&format->format, 0, sizeof(format->format)); adv7511_fill_format(state, &format->format); if (format->which == V4L2_SUBDEV_FORMAT_TRY) { struct v4l2_mbus_framefmt *fmt; fmt = v4l2_subdev_get_try_format(sd, sd_state, format->pad); format->format.code = fmt->code; format->format.colorspace = fmt->colorspace; format->format.ycbcr_enc = fmt->ycbcr_enc; format->format.quantization = fmt->quantization; format->format.xfer_func = fmt->xfer_func; } else { format->format.code = state->fmt_code; format->format.colorspace = state->colorspace; format->format.ycbcr_enc = state->ycbcr_enc; format->format.quantization = state->quantization; format->format.xfer_func = state->xfer_func; } return 0; } static int adv7511_set_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *format) { struct adv7511_state *state = get_adv7511_state(sd); /* * Bitfield namings come the CEA-861-F standard, table 8 "Auxiliary * Video Information (AVI) InfoFrame Format" * * c = Colorimetry * ec = Extended Colorimetry * y = RGB or YCbCr * q = RGB Quantization Range * yq = YCC Quantization Range */ u8 c = HDMI_COLORIMETRY_NONE; u8 ec = HDMI_EXTENDED_COLORIMETRY_XV_YCC_601; u8 y = HDMI_COLORSPACE_RGB; u8 q = HDMI_QUANTIZATION_RANGE_DEFAULT; u8 yq = HDMI_YCC_QUANTIZATION_RANGE_LIMITED; u8 itc = state->content_type != V4L2_DV_IT_CONTENT_TYPE_NO_ITC; u8 cn = itc ? state->content_type : V4L2_DV_IT_CONTENT_TYPE_GRAPHICS; if (format->pad != 0) return -EINVAL; switch (format->format.code) { case MEDIA_BUS_FMT_UYVY8_1X16: case MEDIA_BUS_FMT_YUYV8_1X16: case MEDIA_BUS_FMT_RGB888_1X24: break; default: return -EINVAL; } adv7511_fill_format(state, &format->format); if (format->which == V4L2_SUBDEV_FORMAT_TRY) { struct v4l2_mbus_framefmt *fmt; fmt = v4l2_subdev_get_try_format(sd, sd_state, format->pad); fmt->code = format->format.code; fmt->colorspace = format->format.colorspace; fmt->ycbcr_enc = format->format.ycbcr_enc; fmt->quantization = format->format.quantization; fmt->xfer_func = format->format.xfer_func; return 0; } switch (format->format.code) { case MEDIA_BUS_FMT_UYVY8_1X16: adv7511_wr_and_or(sd, 0x15, 0xf0, 0x01); adv7511_wr_and_or(sd, 0x16, 0x03, 0xb8); y = HDMI_COLORSPACE_YUV422; break; case MEDIA_BUS_FMT_YUYV8_1X16: adv7511_wr_and_or(sd, 0x15, 0xf0, 0x01); adv7511_wr_and_or(sd, 0x16, 0x03, 0xbc); y = HDMI_COLORSPACE_YUV422; break; case MEDIA_BUS_FMT_RGB888_1X24: default: adv7511_wr_and_or(sd, 0x15, 0xf0, 0x00); adv7511_wr_and_or(sd, 0x16, 0x03, 0x00); break; } state->fmt_code = format->format.code; state->colorspace = format->format.colorspace; state->ycbcr_enc = format->format.ycbcr_enc; state->quantization = format->format.quantization; state->xfer_func = format->format.xfer_func; switch (format->format.colorspace) { case V4L2_COLORSPACE_OPRGB: c = HDMI_COLORIMETRY_EXTENDED; ec = y ? HDMI_EXTENDED_COLORIMETRY_OPYCC_601 : HDMI_EXTENDED_COLORIMETRY_OPRGB; break; case V4L2_COLORSPACE_SMPTE170M: c = y ? HDMI_COLORIMETRY_ITU_601 : HDMI_COLORIMETRY_NONE; if (y && format->format.ycbcr_enc == V4L2_YCBCR_ENC_XV601) { c = HDMI_COLORIMETRY_EXTENDED; ec = HDMI_EXTENDED_COLORIMETRY_XV_YCC_601; } break; case V4L2_COLORSPACE_REC709: c = y ? HDMI_COLORIMETRY_ITU_709 : HDMI_COLORIMETRY_NONE; if (y && format->format.ycbcr_enc == V4L2_YCBCR_ENC_XV709) { c = HDMI_COLORIMETRY_EXTENDED; ec = HDMI_EXTENDED_COLORIMETRY_XV_YCC_709; } break; case V4L2_COLORSPACE_SRGB: c = y ? HDMI_COLORIMETRY_EXTENDED : HDMI_COLORIMETRY_NONE; ec = y ? HDMI_EXTENDED_COLORIMETRY_S_YCC_601 : HDMI_EXTENDED_COLORIMETRY_XV_YCC_601; break; case V4L2_COLORSPACE_BT2020: c = HDMI_COLORIMETRY_EXTENDED; if (y && format->format.ycbcr_enc == V4L2_YCBCR_ENC_BT2020_CONST_LUM) ec = 5; /* Not yet available in hdmi.h */ else ec = 6; /* Not yet available in hdmi.h */ break; default: break; } /* * CEA-861-F says that for RGB formats the YCC range must match the * RGB range, although sources should ignore the YCC range. * * The RGB quantization range shouldn't be non-zero if the EDID doesn't * have the Q bit set in the Video Capabilities Data Block, however this * isn't checked at the moment. The assumption is that the application * knows the EDID and can detect this. * * The same is true for the YCC quantization range: non-standard YCC * quantization ranges should only be sent if the EDID has the YQ bit * set in the Video Capabilities Data Block. */ switch (format->format.quantization) { case V4L2_QUANTIZATION_FULL_RANGE: q = y ? HDMI_QUANTIZATION_RANGE_DEFAULT : HDMI_QUANTIZATION_RANGE_FULL; yq = q ? q - 1 : HDMI_YCC_QUANTIZATION_RANGE_FULL; break; case V4L2_QUANTIZATION_LIM_RANGE: q = y ? HDMI_QUANTIZATION_RANGE_DEFAULT : HDMI_QUANTIZATION_RANGE_LIMITED; yq = q ? q - 1 : HDMI_YCC_QUANTIZATION_RANGE_LIMITED; break; } adv7511_wr_and_or(sd, 0x4a, 0xbf, 0); adv7511_wr_and_or(sd, 0x55, 0x9f, y << 5); adv7511_wr_and_or(sd, 0x56, 0x3f, c << 6); adv7511_wr_and_or(sd, 0x57, 0x83, (ec << 4) | (q << 2) | (itc << 7)); adv7511_wr_and_or(sd, 0x59, 0x0f, (yq << 6) | (cn << 4)); adv7511_wr_and_or(sd, 0x4a, 0xff, 1); adv7511_set_rgb_quantization_mode(sd, state->rgb_quantization_range_ctrl); return 0; } static const struct v4l2_subdev_pad_ops adv7511_pad_ops = { .get_edid = adv7511_get_edid, .enum_mbus_code = adv7511_enum_mbus_code, .get_fmt = adv7511_get_fmt, .set_fmt = adv7511_set_fmt, .enum_dv_timings = adv7511_enum_dv_timings, .dv_timings_cap = adv7511_dv_timings_cap, }; /* --------------------- SUBDEV OPS --------------------------------------- */ static const struct v4l2_subdev_ops adv7511_ops = { .core = &adv7511_core_ops, .pad = &adv7511_pad_ops, .video = &adv7511_video_ops, .audio = &adv7511_audio_ops, }; /* ----------------------------------------------------------------------- */ static void adv7511_dbg_dump_edid(int lvl, int debug, struct v4l2_subdev *sd, int segment, u8 *buf) { if (debug >= lvl) { int i, j; v4l2_dbg(lvl, debug, sd, "edid segment %d\n", segment); for (i = 0; i < 256; i += 16) { u8 b[128]; u8 *bp = b; if (i == 128) v4l2_dbg(lvl, debug, sd, "\n"); for (j = i; j < i + 16; j++) { sprintf(bp, "0x%02x, ", buf[j]); bp += 6; } bp[0] = '\0'; v4l2_dbg(lvl, debug, sd, "%s\n", b); } } } static void adv7511_notify_no_edid(struct v4l2_subdev *sd) { struct adv7511_state *state = get_adv7511_state(sd); struct adv7511_edid_detect ed; /* We failed to read the EDID, so send an event for this. */ ed.present = false; ed.segment = adv7511_rd(sd, 0xc4); ed.phys_addr = CEC_PHYS_ADDR_INVALID; cec_s_phys_addr(state->cec_adap, ed.phys_addr, false); v4l2_subdev_notify(sd, ADV7511_EDID_DETECT, (void *)&ed); v4l2_ctrl_s_ctrl(state->have_edid0_ctrl, 0x0); } static void adv7511_edid_handler(struct work_struct *work) { struct delayed_work *dwork = to_delayed_work(work); struct adv7511_state *state = container_of(dwork, struct adv7511_state, edid_handler); struct v4l2_subdev *sd = &state->sd; v4l2_dbg(1, debug, sd, "%s:\n", __func__); if (adv7511_check_edid_status(sd)) { /* Return if we received the EDID. */ return; } if (adv7511_have_hotplug(sd)) { /* We must retry reading the EDID several times, it is possible * that initially the EDID couldn't be read due to i2c errors * (DVI connectors are particularly prone to this problem). */ if (state->edid.read_retries) { state->edid.read_retries--; v4l2_dbg(1, debug, sd, "%s: edid read failed\n", __func__); state->have_monitor = false; adv7511_s_power(sd, false); adv7511_s_power(sd, true); queue_delayed_work(state->work_queue, &state->edid_handler, EDID_DELAY); return; } } /* We failed to read the EDID, so send an event for this. */ adv7511_notify_no_edid(sd); v4l2_dbg(1, debug, sd, "%s: no edid found\n", __func__); } static void adv7511_audio_setup(struct v4l2_subdev *sd) { v4l2_dbg(1, debug, sd, "%s\n", __func__); adv7511_s_i2s_clock_freq(sd, 48000); adv7511_s_clock_freq(sd, 48000); adv7511_s_routing(sd, 0, 0, 0); } /* Configure hdmi transmitter. */ static void adv7511_setup(struct v4l2_subdev *sd) { struct adv7511_state *state = get_adv7511_state(sd); v4l2_dbg(1, debug, sd, "%s\n", __func__); /* Input format: RGB 4:4:4 */ adv7511_wr_and_or(sd, 0x15, 0xf0, 0x0); /* Output format: RGB 4:4:4 */ adv7511_wr_and_or(sd, 0x16, 0x7f, 0x0); /* 1st order interpolation 4:2:2 -> 4:4:4 up conversion, Aspect ratio: 16:9 */ adv7511_wr_and_or(sd, 0x17, 0xf9, 0x06); /* Disable pixel repetition */ adv7511_wr_and_or(sd, 0x3b, 0x9f, 0x0); /* Disable CSC */ adv7511_wr_and_or(sd, 0x18, 0x7f, 0x0); /* Output format: RGB 4:4:4, Active Format Information is valid, * underscanned */ adv7511_wr_and_or(sd, 0x55, 0x9c, 0x12); /* AVI Info frame packet enable, Audio Info frame disable */ adv7511_wr_and_or(sd, 0x44, 0xe7, 0x10); /* Colorimetry, Active format aspect ratio: same as picure. */ adv7511_wr(sd, 0x56, 0xa8); /* No encryption */ adv7511_wr_and_or(sd, 0xaf, 0xed, 0x0); /* Positive clk edge capture for input video clock */ adv7511_wr_and_or(sd, 0xba, 0x1f, 0x60); adv7511_audio_setup(sd); v4l2_ctrl_handler_setup(&state->hdl); } static void adv7511_notify_monitor_detect(struct v4l2_subdev *sd) { struct adv7511_monitor_detect mdt; struct adv7511_state *state = get_adv7511_state(sd); mdt.present = state->have_monitor; v4l2_subdev_notify(sd, ADV7511_MONITOR_DETECT, (void *)&mdt); } static void adv7511_check_monitor_present_status(struct v4l2_subdev *sd) { struct adv7511_state *state = get_adv7511_state(sd); /* read hotplug and rx-sense state */ u8 status = adv7511_rd(sd, 0x42); v4l2_dbg(1, debug, sd, "%s: status: 0x%x%s%s\n", __func__, status, status & MASK_ADV7511_HPD_DETECT ? ", hotplug" : "", status & MASK_ADV7511_MSEN_DETECT ? ", rx-sense" : ""); /* update read only ctrls */ v4l2_ctrl_s_ctrl(state->hotplug_ctrl, adv7511_have_hotplug(sd) ? 0x1 : 0x0); v4l2_ctrl_s_ctrl(state->rx_sense_ctrl, adv7511_have_rx_sense(sd) ? 0x1 : 0x0); if ((status & MASK_ADV7511_HPD_DETECT) && ((status & MASK_ADV7511_MSEN_DETECT) || state->edid.segments)) { v4l2_dbg(1, debug, sd, "%s: hotplug and (rx-sense or edid)\n", __func__); if (!state->have_monitor) { v4l2_dbg(1, debug, sd, "%s: monitor detected\n", __func__); state->have_monitor = true; adv7511_set_isr(sd, true); if (!adv7511_s_power(sd, true)) { v4l2_dbg(1, debug, sd, "%s: monitor detected, powerup failed\n", __func__); return; } adv7511_setup(sd); adv7511_notify_monitor_detect(sd); state->edid.read_retries = EDID_MAX_RETRIES; queue_delayed_work(state->work_queue, &state->edid_handler, EDID_DELAY); } } else if (status & MASK_ADV7511_HPD_DETECT) { v4l2_dbg(1, debug, sd, "%s: hotplug detected\n", __func__); state->edid.read_retries = EDID_MAX_RETRIES; queue_delayed_work(state->work_queue, &state->edid_handler, EDID_DELAY); } else if (!(status & MASK_ADV7511_HPD_DETECT)) { v4l2_dbg(1, debug, sd, "%s: hotplug not detected\n", __func__); if (state->have_monitor) { v4l2_dbg(1, debug, sd, "%s: monitor not detected\n", __func__); state->have_monitor = false; adv7511_notify_monitor_detect(sd); } adv7511_s_power(sd, false); memset(&state->edid, 0, sizeof(struct adv7511_state_edid)); adv7511_notify_no_edid(sd); } } static bool edid_block_verify_crc(u8 *edid_block) { u8 sum = 0; int i; for (i = 0; i < 128; i++) sum += edid_block[i]; return sum == 0; } static bool edid_verify_crc(struct v4l2_subdev *sd, u32 segment) { struct adv7511_state *state = get_adv7511_state(sd); u32 blocks = state->edid.blocks; u8 *data = state->edid.data; if (!edid_block_verify_crc(&data[segment * 256])) return false; if ((segment + 1) * 2 <= blocks) return edid_block_verify_crc(&data[segment * 256 + 128]); return true; } static bool edid_verify_header(struct v4l2_subdev *sd, u32 segment) { static const u8 hdmi_header[] = { 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00 }; struct adv7511_state *state = get_adv7511_state(sd); u8 *data = state->edid.data; if (segment != 0) return true; return !memcmp(data, hdmi_header, sizeof(hdmi_header)); } static bool adv7511_check_edid_status(struct v4l2_subdev *sd) { struct adv7511_state *state = get_adv7511_state(sd); u8 edidRdy = adv7511_rd(sd, 0xc5); v4l2_dbg(1, debug, sd, "%s: edid ready (retries: %d)\n", __func__, EDID_MAX_RETRIES - state->edid.read_retries); if (state->edid.complete) return true; if (edidRdy & MASK_ADV7511_EDID_RDY) { int segment = adv7511_rd(sd, 0xc4); struct adv7511_edid_detect ed; int err; if (segment >= EDID_MAX_SEGM) { v4l2_err(sd, "edid segment number too big\n"); return false; } v4l2_dbg(1, debug, sd, "%s: got segment %d\n", __func__, segment); err = adv7511_edid_rd(sd, 256, &state->edid.data[segment * 256]); if (!err) { adv7511_dbg_dump_edid(2, debug, sd, segment, &state->edid.data[segment * 256]); if (segment == 0) { state->edid.blocks = state->edid.data[0x7e] + 1; v4l2_dbg(1, debug, sd, "%s: %d blocks in total\n", __func__, state->edid.blocks); } } if (err || !edid_verify_crc(sd, segment) || !edid_verify_header(sd, segment)) { /* Couldn't read EDID or EDID is invalid. Force retry! */ if (!err) v4l2_err(sd, "%s: edid crc or header error\n", __func__); state->have_monitor = false; adv7511_s_power(sd, false); adv7511_s_power(sd, true); return false; } /* one more segment read ok */ state->edid.segments = segment + 1; v4l2_ctrl_s_ctrl(state->have_edid0_ctrl, 0x1); if (((state->edid.data[0x7e] >> 1) + 1) > state->edid.segments) { /* Request next EDID segment */ v4l2_dbg(1, debug, sd, "%s: request segment %d\n", __func__, state->edid.segments); adv7511_wr(sd, 0xc9, 0xf); adv7511_wr(sd, 0xc4, state->edid.segments); state->edid.read_retries = EDID_MAX_RETRIES; queue_delayed_work(state->work_queue, &state->edid_handler, EDID_DELAY); return false; } v4l2_dbg(1, debug, sd, "%s: edid complete with %d segment(s)\n", __func__, state->edid.segments); state->edid.complete = true; ed.phys_addr = cec_get_edid_phys_addr(state->edid.data, state->edid.segments * 256, NULL); /* report when we have all segments but report only for segment 0 */ ed.present = true; ed.segment = 0; state->edid_detect_counter++; cec_s_phys_addr(state->cec_adap, ed.phys_addr, false); v4l2_subdev_notify(sd, ADV7511_EDID_DETECT, (void *)&ed); return ed.present; } return false; } static int adv7511_registered(struct v4l2_subdev *sd) { struct adv7511_state *state = get_adv7511_state(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); int err; err = cec_register_adapter(state->cec_adap, &client->dev); if (err) cec_delete_adapter(state->cec_adap); return err; } static void adv7511_unregistered(struct v4l2_subdev *sd) { struct adv7511_state *state = get_adv7511_state(sd); cec_unregister_adapter(state->cec_adap); } static const struct v4l2_subdev_internal_ops adv7511_int_ops = { .registered = adv7511_registered, .unregistered = adv7511_unregistered, }; /* ----------------------------------------------------------------------- */ /* Setup ADV7511 */ static void adv7511_init_setup(struct v4l2_subdev *sd) { struct adv7511_state *state = get_adv7511_state(sd); struct adv7511_state_edid *edid = &state->edid; u32 cec_clk = state->pdata.cec_clk; u8 ratio; v4l2_dbg(1, debug, sd, "%s\n", __func__); /* clear all interrupts */ adv7511_wr(sd, 0x96, 0xff); adv7511_wr(sd, 0x97, 0xff); /* * Stop HPD from resetting a lot of registers. * It might leave the chip in a partly un-initialized state, * in particular with regards to hotplug bounces. */ adv7511_wr_and_or(sd, 0xd6, 0x3f, 0xc0); memset(edid, 0, sizeof(struct adv7511_state_edid)); state->have_monitor = false; adv7511_set_isr(sd, false); adv7511_s_stream(sd, false); adv7511_s_audio_stream(sd, false); if (state->i2c_cec == NULL) return; v4l2_dbg(1, debug, sd, "%s: cec_clk %d\n", __func__, cec_clk); /* cec soft reset */ adv7511_cec_write(sd, 0x50, 0x01); adv7511_cec_write(sd, 0x50, 0x00); /* legacy mode */ adv7511_cec_write(sd, 0x4a, 0x00); adv7511_cec_write(sd, 0x4a, 0x07); if (cec_clk % 750000 != 0) v4l2_err(sd, "%s: cec_clk %d, not multiple of 750 Khz\n", __func__, cec_clk); ratio = (cec_clk / 750000) - 1; adv7511_cec_write(sd, 0x4e, ratio << 2); } static int adv7511_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct adv7511_state *state; struct adv7511_platform_data *pdata = client->dev.platform_data; struct v4l2_ctrl_handler *hdl; struct v4l2_subdev *sd; u8 chip_id[2]; int err = -EIO; /* Check if the adapter supports the needed features */ if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA)) return -EIO; state = devm_kzalloc(&client->dev, sizeof(struct adv7511_state), GFP_KERNEL); if (!state) return -ENOMEM; /* Platform data */ if (!pdata) { v4l_err(client, "No platform data!\n"); return -ENODEV; } memcpy(&state->pdata, pdata, sizeof(state->pdata)); state->fmt_code = MEDIA_BUS_FMT_RGB888_1X24; state->colorspace = V4L2_COLORSPACE_SRGB; sd = &state->sd; v4l2_dbg(1, debug, sd, "detecting adv7511 client on address 0x%x\n", client->addr << 1); v4l2_i2c_subdev_init(sd, client, &adv7511_ops); sd->internal_ops = &adv7511_int_ops; hdl = &state->hdl; v4l2_ctrl_handler_init(hdl, 10); /* add in ascending ID order */ state->hdmi_mode_ctrl = v4l2_ctrl_new_std_menu(hdl, &adv7511_ctrl_ops, V4L2_CID_DV_TX_MODE, V4L2_DV_TX_MODE_HDMI, 0, V4L2_DV_TX_MODE_DVI_D); state->hotplug_ctrl = v4l2_ctrl_new_std(hdl, NULL, V4L2_CID_DV_TX_HOTPLUG, 0, 1, 0, 0); state->rx_sense_ctrl = v4l2_ctrl_new_std(hdl, NULL, V4L2_CID_DV_TX_RXSENSE, 0, 1, 0, 0); state->have_edid0_ctrl = v4l2_ctrl_new_std(hdl, NULL, V4L2_CID_DV_TX_EDID_PRESENT, 0, 1, 0, 0); state->rgb_quantization_range_ctrl = v4l2_ctrl_new_std_menu(hdl, &adv7511_ctrl_ops, V4L2_CID_DV_TX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL, 0, V4L2_DV_RGB_RANGE_AUTO); state->content_type_ctrl = v4l2_ctrl_new_std_menu(hdl, &adv7511_ctrl_ops, V4L2_CID_DV_TX_IT_CONTENT_TYPE, V4L2_DV_IT_CONTENT_TYPE_NO_ITC, 0, V4L2_DV_IT_CONTENT_TYPE_NO_ITC); sd->ctrl_handler = hdl; if (hdl->error) { err = hdl->error; goto err_hdl; } state->pad.flags = MEDIA_PAD_FL_SINK; sd->entity.function = MEDIA_ENT_F_DV_ENCODER; err = media_entity_pads_init(&sd->entity, 1, &state->pad); if (err) goto err_hdl; /* EDID and CEC i2c addr */ state->i2c_edid_addr = state->pdata.i2c_edid << 1; state->i2c_cec_addr = state->pdata.i2c_cec << 1; state->i2c_pktmem_addr = state->pdata.i2c_pktmem << 1; state->chip_revision = adv7511_rd(sd, 0x0); chip_id[0] = adv7511_rd(sd, 0xf5); chip_id[1] = adv7511_rd(sd, 0xf6); if (chip_id[0] != 0x75 || chip_id[1] != 0x11) { v4l2_err(sd, "chip_id != 0x7511, read 0x%02x%02x\n", chip_id[0], chip_id[1]); err = -EIO; goto err_entity; } state->i2c_edid = i2c_new_dummy_device(client->adapter, state->i2c_edid_addr >> 1); if (IS_ERR(state->i2c_edid)) { v4l2_err(sd, "failed to register edid i2c client\n"); err = PTR_ERR(state->i2c_edid); goto err_entity; } adv7511_wr(sd, 0xe1, state->i2c_cec_addr); if (state->pdata.cec_clk < 3000000 || state->pdata.cec_clk > 100000000) { v4l2_err(sd, "%s: cec_clk %u outside range, disabling cec\n", __func__, state->pdata.cec_clk); state->pdata.cec_clk = 0; } if (state->pdata.cec_clk) { state->i2c_cec = i2c_new_dummy_device(client->adapter, state->i2c_cec_addr >> 1); if (IS_ERR(state->i2c_cec)) { v4l2_err(sd, "failed to register cec i2c client\n"); err = PTR_ERR(state->i2c_cec); goto err_unreg_edid; } adv7511_wr(sd, 0xe2, 0x00); /* power up cec section */ } else { adv7511_wr(sd, 0xe2, 0x01); /* power down cec section */ } state->i2c_pktmem = i2c_new_dummy_device(client->adapter, state->i2c_pktmem_addr >> 1); if (IS_ERR(state->i2c_pktmem)) { v4l2_err(sd, "failed to register pktmem i2c client\n"); err = PTR_ERR(state->i2c_pktmem); goto err_unreg_cec; } state->work_queue = create_singlethread_workqueue(sd->name); if (state->work_queue == NULL) { v4l2_err(sd, "could not create workqueue\n"); err = -ENOMEM; goto err_unreg_pktmem; } INIT_DELAYED_WORK(&state->edid_handler, adv7511_edid_handler); adv7511_init_setup(sd); #if IS_ENABLED(CONFIG_VIDEO_ADV7511_CEC) state->cec_adap = cec_allocate_adapter(&adv7511_cec_adap_ops, state, dev_name(&client->dev), CEC_CAP_DEFAULTS, ADV7511_MAX_ADDRS); err = PTR_ERR_OR_ZERO(state->cec_adap); if (err) { destroy_workqueue(state->work_queue); goto err_unreg_pktmem; } #endif adv7511_set_isr(sd, true); adv7511_check_monitor_present_status(sd); v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name, client->addr << 1, client->adapter->name); return 0; err_unreg_pktmem: i2c_unregister_device(state->i2c_pktmem); err_unreg_cec: i2c_unregister_device(state->i2c_cec); err_unreg_edid: i2c_unregister_device(state->i2c_edid); err_entity: media_entity_cleanup(&sd->entity); err_hdl: v4l2_ctrl_handler_free(&state->hdl); return err; } /* ----------------------------------------------------------------------- */ static int adv7511_remove(struct i2c_client *client) { struct v4l2_subdev *sd = i2c_get_clientdata(client); struct adv7511_state *state = get_adv7511_state(sd); state->chip_revision = -1; v4l2_dbg(1, debug, sd, "%s removed @ 0x%x (%s)\n", client->name, client->addr << 1, client->adapter->name); adv7511_set_isr(sd, false); adv7511_init_setup(sd); cancel_delayed_work_sync(&state->edid_handler); i2c_unregister_device(state->i2c_edid); i2c_unregister_device(state->i2c_cec); i2c_unregister_device(state->i2c_pktmem); destroy_workqueue(state->work_queue); v4l2_device_unregister_subdev(sd); media_entity_cleanup(&sd->entity); v4l2_ctrl_handler_free(sd->ctrl_handler); return 0; } /* ----------------------------------------------------------------------- */ static const struct i2c_device_id adv7511_id[] = { { "adv7511-v4l2", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, adv7511_id); static struct i2c_driver adv7511_driver = { .driver = { .name = "adv7511-v4l2", }, .probe = adv7511_probe, .remove = adv7511_remove, .id_table = adv7511_id, }; module_i2c_driver(adv7511_driver);