// SPDX-License-Identifier: GPL-2.0 /* * Driver for ST MIPID02 CSI-2 to PARALLEL bridge * * Copyright (C) STMicroelectronics SA 2019 * Authors: Mickael Guene * for STMicroelectronics. * * */ #include #include #include #include #include #include #include #include #include #include #include #include #define MIPID02_CLK_LANE_WR_REG1 0x01 #define MIPID02_CLK_LANE_REG1 0x02 #define MIPID02_CLK_LANE_REG3 0x04 #define MIPID02_DATA_LANE0_REG1 0x05 #define MIPID02_DATA_LANE0_REG2 0x06 #define MIPID02_DATA_LANE1_REG1 0x09 #define MIPID02_DATA_LANE1_REG2 0x0a #define MIPID02_MODE_REG1 0x14 #define MIPID02_MODE_REG2 0x15 #define MIPID02_DATA_ID_RREG 0x17 #define MIPID02_DATA_SELECTION_CTRL 0x19 #define MIPID02_PIX_WIDTH_CTRL 0x1e #define MIPID02_PIX_WIDTH_CTRL_EMB 0x1f /* Bits definition for MIPID02_CLK_LANE_REG1 */ #define CLK_ENABLE BIT(0) /* Bits definition for MIPID02_CLK_LANE_REG3 */ #define CLK_MIPI_CSI BIT(1) /* Bits definition for MIPID02_DATA_LANE0_REG1 */ #define DATA_ENABLE BIT(0) /* Bits definition for MIPID02_DATA_LANEx_REG2 */ #define DATA_MIPI_CSI BIT(0) /* Bits definition for MIPID02_MODE_REG1 */ #define MODE_DATA_SWAP BIT(2) #define MODE_NO_BYPASS BIT(6) /* Bits definition for MIPID02_MODE_REG2 */ #define MODE_HSYNC_ACTIVE_HIGH BIT(1) #define MODE_VSYNC_ACTIVE_HIGH BIT(2) /* Bits definition for MIPID02_DATA_SELECTION_CTRL */ #define SELECTION_MANUAL_DATA BIT(2) #define SELECTION_MANUAL_WIDTH BIT(3) static const u32 mipid02_supported_fmt_codes[] = { MEDIA_BUS_FMT_SBGGR8_1X8, MEDIA_BUS_FMT_SGBRG8_1X8, MEDIA_BUS_FMT_SGRBG8_1X8, MEDIA_BUS_FMT_SRGGB8_1X8, MEDIA_BUS_FMT_SBGGR10_1X10, MEDIA_BUS_FMT_SGBRG10_1X10, MEDIA_BUS_FMT_SGRBG10_1X10, MEDIA_BUS_FMT_SRGGB10_1X10, MEDIA_BUS_FMT_SBGGR12_1X12, MEDIA_BUS_FMT_SGBRG12_1X12, MEDIA_BUS_FMT_SGRBG12_1X12, MEDIA_BUS_FMT_SRGGB12_1X12, MEDIA_BUS_FMT_UYVY8_1X16, MEDIA_BUS_FMT_BGR888_1X24, MEDIA_BUS_FMT_RGB565_2X8_LE, MEDIA_BUS_FMT_RGB565_2X8_BE, MEDIA_BUS_FMT_YUYV8_2X8, MEDIA_BUS_FMT_UYVY8_2X8, MEDIA_BUS_FMT_JPEG_1X8 }; /* regulator supplies */ static const char * const mipid02_supply_name[] = { "VDDE", /* 1.8V digital I/O supply */ "VDDIN", /* 1V8 voltage regulator supply */ }; #define MIPID02_NUM_SUPPLIES ARRAY_SIZE(mipid02_supply_name) #define MIPID02_SINK_0 0 #define MIPID02_SINK_1 1 #define MIPID02_SOURCE 2 #define MIPID02_PAD_NB 3 struct mipid02_dev { struct i2c_client *i2c_client; struct regulator_bulk_data supplies[MIPID02_NUM_SUPPLIES]; struct v4l2_subdev sd; struct media_pad pad[MIPID02_PAD_NB]; struct clk *xclk; struct gpio_desc *reset_gpio; /* endpoints info */ struct v4l2_fwnode_endpoint rx; u64 link_frequency; struct v4l2_fwnode_endpoint tx; /* remote source */ struct v4l2_async_notifier notifier; struct v4l2_subdev *s_subdev; /* registers */ struct { u8 clk_lane_reg1; u8 data_lane0_reg1; u8 data_lane1_reg1; u8 mode_reg1; u8 mode_reg2; u8 data_selection_ctrl; u8 data_id_rreg; u8 pix_width_ctrl; u8 pix_width_ctrl_emb; } r; /* lock to protect all members below */ struct mutex lock; bool streaming; struct v4l2_mbus_framefmt fmt; }; static int bpp_from_code(__u32 code) { switch (code) { case MEDIA_BUS_FMT_SBGGR8_1X8: case MEDIA_BUS_FMT_SGBRG8_1X8: case MEDIA_BUS_FMT_SGRBG8_1X8: case MEDIA_BUS_FMT_SRGGB8_1X8: return 8; case MEDIA_BUS_FMT_SBGGR10_1X10: case MEDIA_BUS_FMT_SGBRG10_1X10: case MEDIA_BUS_FMT_SGRBG10_1X10: case MEDIA_BUS_FMT_SRGGB10_1X10: return 10; case MEDIA_BUS_FMT_SBGGR12_1X12: case MEDIA_BUS_FMT_SGBRG12_1X12: case MEDIA_BUS_FMT_SGRBG12_1X12: case MEDIA_BUS_FMT_SRGGB12_1X12: return 12; case MEDIA_BUS_FMT_UYVY8_1X16: case MEDIA_BUS_FMT_YUYV8_2X8: case MEDIA_BUS_FMT_UYVY8_2X8: case MEDIA_BUS_FMT_RGB565_2X8_LE: case MEDIA_BUS_FMT_RGB565_2X8_BE: return 16; case MEDIA_BUS_FMT_BGR888_1X24: return 24; default: return 0; } } static u8 data_type_from_code(__u32 code) { switch (code) { case MEDIA_BUS_FMT_SBGGR8_1X8: case MEDIA_BUS_FMT_SGBRG8_1X8: case MEDIA_BUS_FMT_SGRBG8_1X8: case MEDIA_BUS_FMT_SRGGB8_1X8: return 0x2a; case MEDIA_BUS_FMT_SBGGR10_1X10: case MEDIA_BUS_FMT_SGBRG10_1X10: case MEDIA_BUS_FMT_SGRBG10_1X10: case MEDIA_BUS_FMT_SRGGB10_1X10: return 0x2b; case MEDIA_BUS_FMT_SBGGR12_1X12: case MEDIA_BUS_FMT_SGBRG12_1X12: case MEDIA_BUS_FMT_SGRBG12_1X12: case MEDIA_BUS_FMT_SRGGB12_1X12: return 0x2c; case MEDIA_BUS_FMT_UYVY8_1X16: case MEDIA_BUS_FMT_YUYV8_2X8: case MEDIA_BUS_FMT_UYVY8_2X8: return 0x1e; case MEDIA_BUS_FMT_BGR888_1X24: return 0x24; case MEDIA_BUS_FMT_RGB565_2X8_LE: case MEDIA_BUS_FMT_RGB565_2X8_BE: return 0x22; default: return 0; } } static void init_format(struct v4l2_mbus_framefmt *fmt) { fmt->code = MEDIA_BUS_FMT_SBGGR8_1X8; fmt->field = V4L2_FIELD_NONE; fmt->colorspace = V4L2_COLORSPACE_SRGB; fmt->ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(V4L2_COLORSPACE_SRGB); fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE; fmt->xfer_func = V4L2_MAP_XFER_FUNC_DEFAULT(V4L2_COLORSPACE_SRGB); fmt->width = 640; fmt->height = 480; } static __u32 get_fmt_code(__u32 code) { unsigned int i; for (i = 0; i < ARRAY_SIZE(mipid02_supported_fmt_codes); i++) { if (code == mipid02_supported_fmt_codes[i]) return code; } return mipid02_supported_fmt_codes[0]; } static __u32 serial_to_parallel_code(__u32 serial) { if (serial == MEDIA_BUS_FMT_UYVY8_1X16) return MEDIA_BUS_FMT_UYVY8_2X8; if (serial == MEDIA_BUS_FMT_BGR888_1X24) return MEDIA_BUS_FMT_BGR888_3X8; return serial; } static inline struct mipid02_dev *to_mipid02_dev(struct v4l2_subdev *sd) { return container_of(sd, struct mipid02_dev, sd); } static int mipid02_read_reg(struct mipid02_dev *bridge, u16 reg, u8 *val) { struct i2c_client *client = bridge->i2c_client; struct i2c_msg msg[2]; u8 buf[2]; int ret; buf[0] = reg >> 8; buf[1] = reg & 0xff; msg[0].addr = client->addr; msg[0].flags = client->flags; msg[0].buf = buf; msg[0].len = sizeof(buf); msg[1].addr = client->addr; msg[1].flags = client->flags | I2C_M_RD; msg[1].buf = val; msg[1].len = 1; ret = i2c_transfer(client->adapter, msg, 2); if (ret < 0) { dev_dbg(&client->dev, "%s: %x i2c_transfer, reg: %x => %d\n", __func__, client->addr, reg, ret); return ret; } return 0; } static int mipid02_write_reg(struct mipid02_dev *bridge, u16 reg, u8 val) { struct i2c_client *client = bridge->i2c_client; struct i2c_msg msg; u8 buf[3]; int ret; buf[0] = reg >> 8; buf[1] = reg & 0xff; buf[2] = val; msg.addr = client->addr; msg.flags = client->flags; msg.buf = buf; msg.len = sizeof(buf); ret = i2c_transfer(client->adapter, &msg, 1); if (ret < 0) { dev_dbg(&client->dev, "%s: i2c_transfer, reg: %x => %d\n", __func__, reg, ret); return ret; } return 0; } static int mipid02_get_regulators(struct mipid02_dev *bridge) { unsigned int i; for (i = 0; i < MIPID02_NUM_SUPPLIES; i++) bridge->supplies[i].supply = mipid02_supply_name[i]; return devm_regulator_bulk_get(&bridge->i2c_client->dev, MIPID02_NUM_SUPPLIES, bridge->supplies); } static void mipid02_apply_reset(struct mipid02_dev *bridge) { gpiod_set_value_cansleep(bridge->reset_gpio, 0); usleep_range(5000, 10000); gpiod_set_value_cansleep(bridge->reset_gpio, 1); usleep_range(5000, 10000); gpiod_set_value_cansleep(bridge->reset_gpio, 0); usleep_range(5000, 10000); } static int mipid02_set_power_on(struct mipid02_dev *bridge) { struct i2c_client *client = bridge->i2c_client; int ret; ret = clk_prepare_enable(bridge->xclk); if (ret) { dev_err(&client->dev, "%s: failed to enable clock\n", __func__); return ret; } ret = regulator_bulk_enable(MIPID02_NUM_SUPPLIES, bridge->supplies); if (ret) { dev_err(&client->dev, "%s: failed to enable regulators\n", __func__); goto xclk_off; } if (bridge->reset_gpio) { dev_dbg(&client->dev, "apply reset"); mipid02_apply_reset(bridge); } else { dev_dbg(&client->dev, "don't apply reset"); usleep_range(5000, 10000); } return 0; xclk_off: clk_disable_unprepare(bridge->xclk); return ret; } static void mipid02_set_power_off(struct mipid02_dev *bridge) { regulator_bulk_disable(MIPID02_NUM_SUPPLIES, bridge->supplies); clk_disable_unprepare(bridge->xclk); } static int mipid02_detect(struct mipid02_dev *bridge) { u8 reg; /* * There is no version registers. Just try to read register * MIPID02_CLK_LANE_WR_REG1. */ return mipid02_read_reg(bridge, MIPID02_CLK_LANE_WR_REG1, ®); } static u32 mipid02_get_link_freq_from_cid_link_freq(struct mipid02_dev *bridge, struct v4l2_subdev *subdev) { struct v4l2_querymenu qm = {.id = V4L2_CID_LINK_FREQ, }; struct v4l2_ctrl *ctrl; int ret; ctrl = v4l2_ctrl_find(subdev->ctrl_handler, V4L2_CID_LINK_FREQ); if (!ctrl) return 0; qm.index = v4l2_ctrl_g_ctrl(ctrl); ret = v4l2_querymenu(subdev->ctrl_handler, &qm); if (ret) return 0; return qm.value; } static u32 mipid02_get_link_freq_from_cid_pixel_rate(struct mipid02_dev *bridge, struct v4l2_subdev *subdev) { struct v4l2_fwnode_endpoint *ep = &bridge->rx; struct v4l2_ctrl *ctrl; u32 pixel_clock; u32 bpp = bpp_from_code(bridge->fmt.code); ctrl = v4l2_ctrl_find(subdev->ctrl_handler, V4L2_CID_PIXEL_RATE); if (!ctrl) return 0; pixel_clock = v4l2_ctrl_g_ctrl_int64(ctrl); return pixel_clock * bpp / (2 * ep->bus.mipi_csi2.num_data_lanes); } /* * We need to know link frequency to setup clk_lane_reg1 timings. Link frequency * will be computed using connected device V4L2_CID_PIXEL_RATE, bit per pixel * and number of lanes. */ static int mipid02_configure_from_rx_speed(struct mipid02_dev *bridge) { struct i2c_client *client = bridge->i2c_client; struct v4l2_subdev *subdev = bridge->s_subdev; u32 link_freq; link_freq = mipid02_get_link_freq_from_cid_link_freq(bridge, subdev); if (!link_freq) { link_freq = mipid02_get_link_freq_from_cid_pixel_rate(bridge, subdev); if (!link_freq) { dev_err(&client->dev, "Failed to get link frequency"); return -EINVAL; } } dev_dbg(&client->dev, "detect link_freq = %d Hz", link_freq); bridge->r.clk_lane_reg1 |= (2000000000 / link_freq) << 2; return 0; } static int mipid02_configure_clk_lane(struct mipid02_dev *bridge) { struct i2c_client *client = bridge->i2c_client; struct v4l2_fwnode_endpoint *ep = &bridge->rx; bool *polarities = ep->bus.mipi_csi2.lane_polarities; /* midid02 doesn't support clock lane remapping */ if (ep->bus.mipi_csi2.clock_lane != 0) { dev_err(&client->dev, "clk lane must be map to lane 0\n"); return -EINVAL; } bridge->r.clk_lane_reg1 |= (polarities[0] << 1) | CLK_ENABLE; return 0; } static int mipid02_configure_data0_lane(struct mipid02_dev *bridge, int nb, bool are_lanes_swap, bool *polarities) { bool are_pin_swap = are_lanes_swap ? polarities[2] : polarities[1]; if (nb == 1 && are_lanes_swap) return 0; /* * data lane 0 as pin swap polarity reversed compared to clock and * data lane 1 */ if (!are_pin_swap) bridge->r.data_lane0_reg1 = 1 << 1; bridge->r.data_lane0_reg1 |= DATA_ENABLE; return 0; } static int mipid02_configure_data1_lane(struct mipid02_dev *bridge, int nb, bool are_lanes_swap, bool *polarities) { bool are_pin_swap = are_lanes_swap ? polarities[1] : polarities[2]; if (nb == 1 && !are_lanes_swap) return 0; if (are_pin_swap) bridge->r.data_lane1_reg1 = 1 << 1; bridge->r.data_lane1_reg1 |= DATA_ENABLE; return 0; } static int mipid02_configure_from_rx(struct mipid02_dev *bridge) { struct v4l2_fwnode_endpoint *ep = &bridge->rx; bool are_lanes_swap = ep->bus.mipi_csi2.data_lanes[0] == 2; bool *polarities = ep->bus.mipi_csi2.lane_polarities; int nb = ep->bus.mipi_csi2.num_data_lanes; int ret; ret = mipid02_configure_clk_lane(bridge); if (ret) return ret; ret = mipid02_configure_data0_lane(bridge, nb, are_lanes_swap, polarities); if (ret) return ret; ret = mipid02_configure_data1_lane(bridge, nb, are_lanes_swap, polarities); if (ret) return ret; bridge->r.mode_reg1 |= are_lanes_swap ? MODE_DATA_SWAP : 0; bridge->r.mode_reg1 |= (nb - 1) << 1; return mipid02_configure_from_rx_speed(bridge); } static int mipid02_configure_from_tx(struct mipid02_dev *bridge) { struct v4l2_fwnode_endpoint *ep = &bridge->tx; bridge->r.data_selection_ctrl = SELECTION_MANUAL_WIDTH; bridge->r.pix_width_ctrl = ep->bus.parallel.bus_width; bridge->r.pix_width_ctrl_emb = ep->bus.parallel.bus_width; if (ep->bus.parallel.flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH) bridge->r.mode_reg2 |= MODE_HSYNC_ACTIVE_HIGH; if (ep->bus.parallel.flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH) bridge->r.mode_reg2 |= MODE_VSYNC_ACTIVE_HIGH; return 0; } static int mipid02_configure_from_code(struct mipid02_dev *bridge) { u8 data_type; bridge->r.data_id_rreg = 0; if (bridge->fmt.code != MEDIA_BUS_FMT_JPEG_1X8) { bridge->r.data_selection_ctrl |= SELECTION_MANUAL_DATA; data_type = data_type_from_code(bridge->fmt.code); if (!data_type) return -EINVAL; bridge->r.data_id_rreg = data_type; } return 0; } static int mipid02_stream_disable(struct mipid02_dev *bridge) { struct i2c_client *client = bridge->i2c_client; int ret; /* Disable all lanes */ ret = mipid02_write_reg(bridge, MIPID02_CLK_LANE_REG1, 0); if (ret) goto error; ret = mipid02_write_reg(bridge, MIPID02_DATA_LANE0_REG1, 0); if (ret) goto error; ret = mipid02_write_reg(bridge, MIPID02_DATA_LANE1_REG1, 0); if (ret) goto error; error: if (ret) dev_err(&client->dev, "failed to stream off %d", ret); return ret; } static int mipid02_stream_enable(struct mipid02_dev *bridge) { struct i2c_client *client = bridge->i2c_client; int ret = -EINVAL; if (!bridge->s_subdev) goto error; memset(&bridge->r, 0, sizeof(bridge->r)); /* build registers content */ ret = mipid02_configure_from_rx(bridge); if (ret) goto error; ret = mipid02_configure_from_tx(bridge); if (ret) goto error; ret = mipid02_configure_from_code(bridge); if (ret) goto error; /* write mipi registers */ ret = mipid02_write_reg(bridge, MIPID02_CLK_LANE_REG1, bridge->r.clk_lane_reg1); if (ret) goto error; ret = mipid02_write_reg(bridge, MIPID02_CLK_LANE_REG3, CLK_MIPI_CSI); if (ret) goto error; ret = mipid02_write_reg(bridge, MIPID02_DATA_LANE0_REG1, bridge->r.data_lane0_reg1); if (ret) goto error; ret = mipid02_write_reg(bridge, MIPID02_DATA_LANE0_REG2, DATA_MIPI_CSI); if (ret) goto error; ret = mipid02_write_reg(bridge, MIPID02_DATA_LANE1_REG1, bridge->r.data_lane1_reg1); if (ret) goto error; ret = mipid02_write_reg(bridge, MIPID02_DATA_LANE1_REG2, DATA_MIPI_CSI); if (ret) goto error; ret = mipid02_write_reg(bridge, MIPID02_MODE_REG1, MODE_NO_BYPASS | bridge->r.mode_reg1); if (ret) goto error; ret = mipid02_write_reg(bridge, MIPID02_MODE_REG2, bridge->r.mode_reg2); if (ret) goto error; ret = mipid02_write_reg(bridge, MIPID02_DATA_ID_RREG, bridge->r.data_id_rreg); if (ret) goto error; ret = mipid02_write_reg(bridge, MIPID02_DATA_SELECTION_CTRL, bridge->r.data_selection_ctrl); if (ret) goto error; ret = mipid02_write_reg(bridge, MIPID02_PIX_WIDTH_CTRL, bridge->r.pix_width_ctrl); if (ret) goto error; ret = mipid02_write_reg(bridge, MIPID02_PIX_WIDTH_CTRL_EMB, bridge->r.pix_width_ctrl_emb); if (ret) goto error; return 0; error: dev_err(&client->dev, "failed to stream on %d", ret); mipid02_stream_disable(bridge); return ret; } static int mipid02_s_stream(struct v4l2_subdev *sd, int enable) { struct mipid02_dev *bridge = to_mipid02_dev(sd); struct i2c_client *client = bridge->i2c_client; int ret = 0; dev_dbg(&client->dev, "%s : requested %d / current = %d", __func__, enable, bridge->streaming); mutex_lock(&bridge->lock); if (bridge->streaming == enable) goto out; ret = enable ? mipid02_stream_enable(bridge) : mipid02_stream_disable(bridge); if (!ret) bridge->streaming = enable; out: dev_dbg(&client->dev, "%s current now = %d / %d", __func__, bridge->streaming, ret); mutex_unlock(&bridge->lock); return ret; } static int mipid02_enum_mbus_code(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_mbus_code_enum *code) { struct mipid02_dev *bridge = to_mipid02_dev(sd); int ret = 0; switch (code->pad) { case MIPID02_SINK_0: if (code->index >= ARRAY_SIZE(mipid02_supported_fmt_codes)) ret = -EINVAL; else code->code = mipid02_supported_fmt_codes[code->index]; break; case MIPID02_SOURCE: if (code->index == 0) code->code = serial_to_parallel_code(bridge->fmt.code); else ret = -EINVAL; break; default: ret = -EINVAL; } return ret; } static int mipid02_get_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *format) { struct v4l2_mbus_framefmt *mbus_fmt = &format->format; struct mipid02_dev *bridge = to_mipid02_dev(sd); struct i2c_client *client = bridge->i2c_client; struct v4l2_mbus_framefmt *fmt; dev_dbg(&client->dev, "%s probe %d", __func__, format->pad); if (format->pad >= MIPID02_PAD_NB) return -EINVAL; /* second CSI-2 pad not yet supported */ if (format->pad == MIPID02_SINK_1) return -EINVAL; if (format->which == V4L2_SUBDEV_FORMAT_TRY) fmt = v4l2_subdev_get_try_format(&bridge->sd, sd_state, format->pad); else fmt = &bridge->fmt; mutex_lock(&bridge->lock); *mbus_fmt = *fmt; /* code may need to be converted for source */ if (format->pad == MIPID02_SOURCE) mbus_fmt->code = serial_to_parallel_code(mbus_fmt->code); mutex_unlock(&bridge->lock); return 0; } static void mipid02_set_fmt_source(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *format) { struct mipid02_dev *bridge = to_mipid02_dev(sd); /* source pad mirror sink pad */ if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE) format->format = bridge->fmt; else format->format = *v4l2_subdev_get_try_format(sd, sd_state, MIPID02_SINK_0); /* but code may need to be converted */ format->format.code = serial_to_parallel_code(format->format.code); /* only apply format for V4L2_SUBDEV_FORMAT_TRY case */ if (format->which != V4L2_SUBDEV_FORMAT_TRY) return; *v4l2_subdev_get_try_format(sd, sd_state, format->pad) = format->format; } static void mipid02_set_fmt_sink(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *format) { struct mipid02_dev *bridge = to_mipid02_dev(sd); struct v4l2_mbus_framefmt *fmt; format->format.code = get_fmt_code(format->format.code); if (format->which == V4L2_SUBDEV_FORMAT_TRY) fmt = v4l2_subdev_get_try_format(sd, sd_state, format->pad); else fmt = &bridge->fmt; *fmt = format->format; } static int mipid02_set_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *format) { struct mipid02_dev *bridge = to_mipid02_dev(sd); struct i2c_client *client = bridge->i2c_client; int ret = 0; dev_dbg(&client->dev, "%s for %d", __func__, format->pad); if (format->pad >= MIPID02_PAD_NB) return -EINVAL; /* second CSI-2 pad not yet supported */ if (format->pad == MIPID02_SINK_1) return -EINVAL; mutex_lock(&bridge->lock); if (bridge->streaming) { ret = -EBUSY; goto error; } if (format->pad == MIPID02_SOURCE) mipid02_set_fmt_source(sd, sd_state, format); else mipid02_set_fmt_sink(sd, sd_state, format); error: mutex_unlock(&bridge->lock); return ret; } static const struct v4l2_subdev_video_ops mipid02_video_ops = { .s_stream = mipid02_s_stream, }; static const struct v4l2_subdev_pad_ops mipid02_pad_ops = { .enum_mbus_code = mipid02_enum_mbus_code, .get_fmt = mipid02_get_fmt, .set_fmt = mipid02_set_fmt, }; static const struct v4l2_subdev_ops mipid02_subdev_ops = { .video = &mipid02_video_ops, .pad = &mipid02_pad_ops, }; static const struct media_entity_operations mipid02_subdev_entity_ops = { .link_validate = v4l2_subdev_link_validate, }; static int mipid02_async_bound(struct v4l2_async_notifier *notifier, struct v4l2_subdev *s_subdev, struct v4l2_async_subdev *asd) { struct mipid02_dev *bridge = to_mipid02_dev(notifier->sd); struct i2c_client *client = bridge->i2c_client; int source_pad; int ret; dev_dbg(&client->dev, "sensor_async_bound call %p", s_subdev); source_pad = media_entity_get_fwnode_pad(&s_subdev->entity, s_subdev->fwnode, MEDIA_PAD_FL_SOURCE); if (source_pad < 0) { dev_err(&client->dev, "Couldn't find output pad for subdev %s\n", s_subdev->name); return source_pad; } ret = media_create_pad_link(&s_subdev->entity, source_pad, &bridge->sd.entity, 0, MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE); if (ret) { dev_err(&client->dev, "Couldn't create media link %d", ret); return ret; } bridge->s_subdev = s_subdev; return 0; } static void mipid02_async_unbind(struct v4l2_async_notifier *notifier, struct v4l2_subdev *s_subdev, struct v4l2_async_subdev *asd) { struct mipid02_dev *bridge = to_mipid02_dev(notifier->sd); bridge->s_subdev = NULL; } static const struct v4l2_async_notifier_operations mipid02_notifier_ops = { .bound = mipid02_async_bound, .unbind = mipid02_async_unbind, }; static int mipid02_parse_rx_ep(struct mipid02_dev *bridge) { struct v4l2_fwnode_endpoint ep = { .bus_type = V4L2_MBUS_CSI2_DPHY }; struct i2c_client *client = bridge->i2c_client; struct v4l2_async_subdev *asd; struct device_node *ep_node; int ret; /* parse rx (endpoint 0) */ ep_node = of_graph_get_endpoint_by_regs(bridge->i2c_client->dev.of_node, 0, 0); if (!ep_node) { dev_err(&client->dev, "unable to find port0 ep"); ret = -EINVAL; goto error; } ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(ep_node), &ep); if (ret) { dev_err(&client->dev, "Could not parse v4l2 endpoint %d\n", ret); goto error_of_node_put; } /* do some sanity checks */ if (ep.bus.mipi_csi2.num_data_lanes > 2) { dev_err(&client->dev, "max supported data lanes is 2 / got %d", ep.bus.mipi_csi2.num_data_lanes); ret = -EINVAL; goto error_of_node_put; } /* register it for later use */ bridge->rx = ep; /* register async notifier so we get noticed when sensor is connected */ v4l2_async_notifier_init(&bridge->notifier); asd = v4l2_async_notifier_add_fwnode_remote_subdev( &bridge->notifier, of_fwnode_handle(ep_node), struct v4l2_async_subdev); of_node_put(ep_node); if (IS_ERR(asd)) { dev_err(&client->dev, "fail to register asd to notifier %ld", PTR_ERR(asd)); return PTR_ERR(asd); } bridge->notifier.ops = &mipid02_notifier_ops; ret = v4l2_async_subdev_notifier_register(&bridge->sd, &bridge->notifier); if (ret) v4l2_async_notifier_cleanup(&bridge->notifier); return ret; error_of_node_put: of_node_put(ep_node); error: return ret; } static int mipid02_parse_tx_ep(struct mipid02_dev *bridge) { struct v4l2_fwnode_endpoint ep = { .bus_type = V4L2_MBUS_PARALLEL }; struct i2c_client *client = bridge->i2c_client; struct device_node *ep_node; int ret; /* parse tx (endpoint 2) */ ep_node = of_graph_get_endpoint_by_regs(bridge->i2c_client->dev.of_node, 2, 0); if (!ep_node) { dev_err(&client->dev, "unable to find port1 ep"); ret = -EINVAL; goto error; } ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(ep_node), &ep); if (ret) { dev_err(&client->dev, "Could not parse v4l2 endpoint\n"); goto error_of_node_put; } of_node_put(ep_node); bridge->tx = ep; return 0; error_of_node_put: of_node_put(ep_node); error: return -EINVAL; } static int mipid02_probe(struct i2c_client *client) { struct device *dev = &client->dev; struct mipid02_dev *bridge; u32 clk_freq; int ret; bridge = devm_kzalloc(dev, sizeof(*bridge), GFP_KERNEL); if (!bridge) return -ENOMEM; init_format(&bridge->fmt); bridge->i2c_client = client; v4l2_i2c_subdev_init(&bridge->sd, client, &mipid02_subdev_ops); /* got and check clock */ bridge->xclk = devm_clk_get(dev, "xclk"); if (IS_ERR(bridge->xclk)) { dev_err(dev, "failed to get xclk\n"); return PTR_ERR(bridge->xclk); } clk_freq = clk_get_rate(bridge->xclk); if (clk_freq < 6000000 || clk_freq > 27000000) { dev_err(dev, "xclk freq must be in 6-27 Mhz range. got %d Hz\n", clk_freq); return -EINVAL; } bridge->reset_gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH); if (IS_ERR(bridge->reset_gpio)) { dev_err(dev, "failed to get reset GPIO\n"); return PTR_ERR(bridge->reset_gpio); } ret = mipid02_get_regulators(bridge); if (ret) { dev_err(dev, "failed to get regulators %d", ret); return ret; } mutex_init(&bridge->lock); bridge->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE; bridge->sd.entity.function = MEDIA_ENT_F_VID_IF_BRIDGE; bridge->sd.entity.ops = &mipid02_subdev_entity_ops; bridge->pad[0].flags = MEDIA_PAD_FL_SINK; bridge->pad[1].flags = MEDIA_PAD_FL_SINK; bridge->pad[2].flags = MEDIA_PAD_FL_SOURCE; ret = media_entity_pads_init(&bridge->sd.entity, MIPID02_PAD_NB, bridge->pad); if (ret) { dev_err(&client->dev, "pads init failed %d", ret); goto mutex_cleanup; } /* enable clock, power and reset device if available */ ret = mipid02_set_power_on(bridge); if (ret) goto entity_cleanup; ret = mipid02_detect(bridge); if (ret) { dev_err(&client->dev, "failed to detect mipid02 %d", ret); goto power_off; } ret = mipid02_parse_tx_ep(bridge); if (ret) { dev_err(&client->dev, "failed to parse tx %d", ret); goto power_off; } ret = mipid02_parse_rx_ep(bridge); if (ret) { dev_err(&client->dev, "failed to parse rx %d", ret); goto power_off; } ret = v4l2_async_register_subdev(&bridge->sd); if (ret < 0) { dev_err(&client->dev, "v4l2_async_register_subdev failed %d", ret); goto unregister_notifier; } dev_info(&client->dev, "mipid02 device probe successfully"); return 0; unregister_notifier: v4l2_async_notifier_unregister(&bridge->notifier); v4l2_async_notifier_cleanup(&bridge->notifier); power_off: mipid02_set_power_off(bridge); entity_cleanup: media_entity_cleanup(&bridge->sd.entity); mutex_cleanup: mutex_destroy(&bridge->lock); return ret; } static int mipid02_remove(struct i2c_client *client) { struct v4l2_subdev *sd = i2c_get_clientdata(client); struct mipid02_dev *bridge = to_mipid02_dev(sd); v4l2_async_notifier_unregister(&bridge->notifier); v4l2_async_notifier_cleanup(&bridge->notifier); v4l2_async_unregister_subdev(&bridge->sd); mipid02_set_power_off(bridge); media_entity_cleanup(&bridge->sd.entity); mutex_destroy(&bridge->lock); return 0; } static const struct of_device_id mipid02_dt_ids[] = { { .compatible = "st,st-mipid02" }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, mipid02_dt_ids); static struct i2c_driver mipid02_i2c_driver = { .driver = { .name = "st-mipid02", .of_match_table = mipid02_dt_ids, }, .probe_new = mipid02_probe, .remove = mipid02_remove, }; module_i2c_driver(mipid02_i2c_driver); MODULE_AUTHOR("Mickael Guene "); MODULE_DESCRIPTION("STMicroelectronics MIPID02 CSI-2 bridge driver"); MODULE_LICENSE("GPL v2");