// SPDX-License-Identifier: GPL-2.0 /* * This is for all the tests related to logic bugs (e.g. bad dereferences, * bad alignment, bad loops, bad locking, bad scheduling, deep stacks, and * lockups) along with other things that don't fit well into existing LKDTM * test source files. */ #include "lkdtm.h" #include #include #include #include #include #include #if IS_ENABLED(CONFIG_X86_32) && !IS_ENABLED(CONFIG_UML) #include #endif struct lkdtm_list { struct list_head node; }; /* * Make sure our attempts to over run the kernel stack doesn't trigger * a compiler warning when CONFIG_FRAME_WARN is set. Then make sure we * recurse past the end of THREAD_SIZE by default. */ #if defined(CONFIG_FRAME_WARN) && (CONFIG_FRAME_WARN > 0) #define REC_STACK_SIZE (_AC(CONFIG_FRAME_WARN, UL) / 2) #else #define REC_STACK_SIZE (THREAD_SIZE / 8UL) #endif #define REC_NUM_DEFAULT ((THREAD_SIZE / REC_STACK_SIZE) * 2) static int recur_count = REC_NUM_DEFAULT; static DEFINE_SPINLOCK(lock_me_up); /* * Make sure compiler does not optimize this function or stack frame away: * - function marked noinline * - stack variables are marked volatile * - stack variables are written (memset()) and read (pr_info()) * - function has external effects (pr_info()) * */ static int noinline recursive_loop(int remaining) { volatile char buf[REC_STACK_SIZE]; memset((void *)buf, remaining & 0xFF, sizeof(buf)); pr_info("loop %d/%d ...\n", (int)buf[remaining % sizeof(buf)], recur_count); if (!remaining) return 0; else return recursive_loop(remaining - 1); } /* If the depth is negative, use the default, otherwise keep parameter. */ void __init lkdtm_bugs_init(int *recur_param) { if (*recur_param < 0) *recur_param = recur_count; else recur_count = *recur_param; } void lkdtm_PANIC(void) { panic("dumptest"); } void lkdtm_BUG(void) { BUG(); } static int warn_counter; void lkdtm_WARNING(void) { WARN_ON(++warn_counter); } void lkdtm_WARNING_MESSAGE(void) { WARN(1, "Warning message trigger count: %d\n", ++warn_counter); } void lkdtm_EXCEPTION(void) { *((volatile int *) 0) = 0; } void lkdtm_LOOP(void) { for (;;) ; } void lkdtm_EXHAUST_STACK(void) { pr_info("Calling function with %lu frame size to depth %d ...\n", REC_STACK_SIZE, recur_count); recursive_loop(recur_count); pr_info("FAIL: survived without exhausting stack?!\n"); } static noinline void __lkdtm_CORRUPT_STACK(void *stack) { memset(stack, '\xff', 64); } /* This should trip the stack canary, not corrupt the return address. */ noinline void lkdtm_CORRUPT_STACK(void) { /* Use default char array length that triggers stack protection. */ char data[8] __aligned(sizeof(void *)); pr_info("Corrupting stack containing char array ...\n"); __lkdtm_CORRUPT_STACK((void *)&data); } /* Same as above but will only get a canary with -fstack-protector-strong */ noinline void lkdtm_CORRUPT_STACK_STRONG(void) { union { unsigned short shorts[4]; unsigned long *ptr; } data __aligned(sizeof(void *)); pr_info("Corrupting stack containing union ...\n"); __lkdtm_CORRUPT_STACK((void *)&data); } static pid_t stack_pid; static unsigned long stack_addr; void lkdtm_REPORT_STACK(void) { volatile uintptr_t magic; pid_t pid = task_pid_nr(current); if (pid != stack_pid) { pr_info("Starting stack offset tracking for pid %d\n", pid); stack_pid = pid; stack_addr = (uintptr_t)&magic; } pr_info("Stack offset: %d\n", (int)(stack_addr - (uintptr_t)&magic)); } void lkdtm_UNALIGNED_LOAD_STORE_WRITE(void) { static u8 data[5] __attribute__((aligned(4))) = {1, 2, 3, 4, 5}; u32 *p; u32 val = 0x12345678; p = (u32 *)(data + 1); if (*p == 0) val = 0x87654321; *p = val; if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) pr_err("XFAIL: arch has CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS\n"); } void lkdtm_SOFTLOCKUP(void) { preempt_disable(); for (;;) cpu_relax(); } void lkdtm_HARDLOCKUP(void) { local_irq_disable(); for (;;) cpu_relax(); } void lkdtm_SPINLOCKUP(void) { /* Must be called twice to trigger. */ spin_lock(&lock_me_up); /* Let sparse know we intended to exit holding the lock. */ __release(&lock_me_up); } void lkdtm_HUNG_TASK(void) { set_current_state(TASK_UNINTERRUPTIBLE); schedule(); } volatile unsigned int huge = INT_MAX - 2; volatile unsigned int ignored; void lkdtm_OVERFLOW_SIGNED(void) { int value; value = huge; pr_info("Normal signed addition ...\n"); value += 1; ignored = value; pr_info("Overflowing signed addition ...\n"); value += 4; ignored = value; } void lkdtm_OVERFLOW_UNSIGNED(void) { unsigned int value; value = huge; pr_info("Normal unsigned addition ...\n"); value += 1; ignored = value; pr_info("Overflowing unsigned addition ...\n"); value += 4; ignored = value; } /* Intentionally using old-style flex array definition of 1 byte. */ struct array_bounds_flex_array { int one; int two; char data[1]; }; struct array_bounds { int one; int two; char data[8]; int three; }; void lkdtm_ARRAY_BOUNDS(void) { struct array_bounds_flex_array *not_checked; struct array_bounds *checked; volatile int i; not_checked = kmalloc(sizeof(*not_checked) * 2, GFP_KERNEL); checked = kmalloc(sizeof(*checked) * 2, GFP_KERNEL); if (!not_checked || !checked) { kfree(not_checked); kfree(checked); return; } pr_info("Array access within bounds ...\n"); /* For both, touch all bytes in the actual member size. */ for (i = 0; i < sizeof(checked->data); i++) checked->data[i] = 'A'; /* * For the uninstrumented flex array member, also touch 1 byte * beyond to verify it is correctly uninstrumented. */ for (i = 0; i < sizeof(not_checked->data) + 1; i++) not_checked->data[i] = 'A'; pr_info("Array access beyond bounds ...\n"); for (i = 0; i < sizeof(checked->data) + 1; i++) checked->data[i] = 'B'; kfree(not_checked); kfree(checked); pr_err("FAIL: survived array bounds overflow!\n"); if (IS_ENABLED(CONFIG_UBSAN_BOUNDS)) pr_expected_config(CONFIG_UBSAN_TRAP); else pr_expected_config(CONFIG_UBSAN_BOUNDS); } void lkdtm_CORRUPT_LIST_ADD(void) { /* * Initially, an empty list via LIST_HEAD: * test_head.next = &test_head * test_head.prev = &test_head */ LIST_HEAD(test_head); struct lkdtm_list good, bad; void *target[2] = { }; void *redirection = ⌖ pr_info("attempting good list addition\n"); /* * Adding to the list performs these actions: * test_head.next->prev = &good.node * good.node.next = test_head.next * good.node.prev = test_head * test_head.next = good.node */ list_add(&good.node, &test_head); pr_info("attempting corrupted list addition\n"); /* * In simulating this "write what where" primitive, the "what" is * the address of &bad.node, and the "where" is the address held * by "redirection". */ test_head.next = redirection; list_add(&bad.node, &test_head); if (target[0] == NULL && target[1] == NULL) pr_err("Overwrite did not happen, but no BUG?!\n"); else { pr_err("list_add() corruption not detected!\n"); pr_expected_config(CONFIG_DEBUG_LIST); } } void lkdtm_CORRUPT_LIST_DEL(void) { LIST_HEAD(test_head); struct lkdtm_list item; void *target[2] = { }; void *redirection = ⌖ list_add(&item.node, &test_head); pr_info("attempting good list removal\n"); list_del(&item.node); pr_info("attempting corrupted list removal\n"); list_add(&item.node, &test_head); /* As with the list_add() test above, this corrupts "next". */ item.node.next = redirection; list_del(&item.node); if (target[0] == NULL && target[1] == NULL) pr_err("Overwrite did not happen, but no BUG?!\n"); else { pr_err("list_del() corruption not detected!\n"); pr_expected_config(CONFIG_DEBUG_LIST); } } /* Test that VMAP_STACK is actually allocating with a leading guard page */ void lkdtm_STACK_GUARD_PAGE_LEADING(void) { const unsigned char *stack = task_stack_page(current); const unsigned char *ptr = stack - 1; volatile unsigned char byte; pr_info("attempting bad read from page below current stack\n"); byte = *ptr; pr_err("FAIL: accessed page before stack! (byte: %x)\n", byte); } /* Test that VMAP_STACK is actually allocating with a trailing guard page */ void lkdtm_STACK_GUARD_PAGE_TRAILING(void) { const unsigned char *stack = task_stack_page(current); const unsigned char *ptr = stack + THREAD_SIZE; volatile unsigned char byte; pr_info("attempting bad read from page above current stack\n"); byte = *ptr; pr_err("FAIL: accessed page after stack! (byte: %x)\n", byte); } void lkdtm_UNSET_SMEP(void) { #if IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_UML) #define MOV_CR4_DEPTH 64 void (*direct_write_cr4)(unsigned long val); unsigned char *insn; unsigned long cr4; int i; cr4 = native_read_cr4(); if ((cr4 & X86_CR4_SMEP) != X86_CR4_SMEP) { pr_err("FAIL: SMEP not in use\n"); return; } cr4 &= ~(X86_CR4_SMEP); pr_info("trying to clear SMEP normally\n"); native_write_cr4(cr4); if (cr4 == native_read_cr4()) { pr_err("FAIL: pinning SMEP failed!\n"); cr4 |= X86_CR4_SMEP; pr_info("restoring SMEP\n"); native_write_cr4(cr4); return; } pr_info("ok: SMEP did not get cleared\n"); /* * To test the post-write pinning verification we need to call * directly into the middle of native_write_cr4() where the * cr4 write happens, skipping any pinning. This searches for * the cr4 writing instruction. */ insn = (unsigned char *)native_write_cr4; for (i = 0; i < MOV_CR4_DEPTH; i++) { /* mov %rdi, %cr4 */ if (insn[i] == 0x0f && insn[i+1] == 0x22 && insn[i+2] == 0xe7) break; /* mov %rdi,%rax; mov %rax, %cr4 */ if (insn[i] == 0x48 && insn[i+1] == 0x89 && insn[i+2] == 0xf8 && insn[i+3] == 0x0f && insn[i+4] == 0x22 && insn[i+5] == 0xe0) break; } if (i >= MOV_CR4_DEPTH) { pr_info("ok: cannot locate cr4 writing call gadget\n"); return; } direct_write_cr4 = (void *)(insn + i); pr_info("trying to clear SMEP with call gadget\n"); direct_write_cr4(cr4); if (native_read_cr4() & X86_CR4_SMEP) { pr_info("ok: SMEP removal was reverted\n"); } else { pr_err("FAIL: cleared SMEP not detected!\n"); cr4 |= X86_CR4_SMEP; pr_info("restoring SMEP\n"); native_write_cr4(cr4); } #else pr_err("XFAIL: this test is x86_64-only\n"); #endif } void lkdtm_DOUBLE_FAULT(void) { #if IS_ENABLED(CONFIG_X86_32) && !IS_ENABLED(CONFIG_UML) /* * Trigger #DF by setting the stack limit to zero. This clobbers * a GDT TLS slot, which is okay because the current task will die * anyway due to the double fault. */ struct desc_struct d = { .type = 3, /* expand-up, writable, accessed data */ .p = 1, /* present */ .d = 1, /* 32-bit */ .g = 0, /* limit in bytes */ .s = 1, /* not system */ }; local_irq_disable(); write_gdt_entry(get_cpu_gdt_rw(smp_processor_id()), GDT_ENTRY_TLS_MIN, &d, DESCTYPE_S); /* * Put our zero-limit segment in SS and then trigger a fault. The * 4-byte access to (%esp) will fault with #SS, and the attempt to * deliver the fault will recursively cause #SS and result in #DF. * This whole process happens while NMIs and MCEs are blocked by the * MOV SS window. This is nice because an NMI with an invalid SS * would also double-fault, resulting in the NMI or MCE being lost. */ asm volatile ("movw %0, %%ss; addl $0, (%%esp)" :: "r" ((unsigned short)(GDT_ENTRY_TLS_MIN << 3))); pr_err("FAIL: tried to double fault but didn't die\n"); #else pr_err("XFAIL: this test is ia32-only\n"); #endif } #ifdef CONFIG_ARM64 static noinline void change_pac_parameters(void) { if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL)) { /* Reset the keys of current task */ ptrauth_thread_init_kernel(current); ptrauth_thread_switch_kernel(current); } } #endif noinline void lkdtm_CORRUPT_PAC(void) { #ifdef CONFIG_ARM64 #define CORRUPT_PAC_ITERATE 10 int i; if (!IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL)) pr_err("FAIL: kernel not built with CONFIG_ARM64_PTR_AUTH_KERNEL\n"); if (!system_supports_address_auth()) { pr_err("FAIL: CPU lacks pointer authentication feature\n"); return; } pr_info("changing PAC parameters to force function return failure...\n"); /* * PAC is a hash value computed from input keys, return address and * stack pointer. As pac has fewer bits so there is a chance of * collision, so iterate few times to reduce the collision probability. */ for (i = 0; i < CORRUPT_PAC_ITERATE; i++) change_pac_parameters(); pr_err("FAIL: survived PAC changes! Kernel may be unstable from here\n"); #else pr_err("XFAIL: this test is arm64-only\n"); #endif }